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Chapter 1

1.2.X1 Consider the function )
1—c¢

1o ecos(d)
a) Plot r versus 6 from # = 0 to 2x for € = {0,0.1,0.5,0.9}. [Computer] b) Plot this function in z,y

coordinates taking r as the radial distance from the origin at angle € (i.e., as polar coordinates). What
is this function? [Computer]

r(6)

1.2.X2 The function f(z,y) = e*cosy from z = —2 to 1 and from y = —27 to 27 is graphed in
Fig. 1 by: a) contour plot; b) surface plot; ¢) mesh plot; d) combination surface and contour plot with
a value scale on the side. Recreate each of these plots; don’t forget axis labels and titles. [Computer]

1.4.X1 The purpose of this exercise is to get you started running the programs in the book on your
computer and printing results on your printer. a) Print a copy of the program orthog. b) Run orthog
for a variety of cases and print out the results. c¢) Run the interp program and print the resulting
graph as shown in the textbook figure 1.2. [Computer]

1.5.X1 Take the variablesa =z +1,b=a/z,c=b—1,d = cz, and e = 1 — d. a) Show that e = 0.
[Pencil] b) Write a program that computes these variables and prints the value of e for z = 1,..., 10.
What is significant about the resulting values? [Computer] ¢) Modify your program from the previous
part to plot e versus x for x = 1,...,200; use a different symbol for odd and even values of z. Comment
on the results.



1.5.X2 Write a program to graph the polynomial y = (z — 1)? but compute it using its expanded
expression, y = % — 92% +.... Plot y(z) in the range z = 0.96 to 1.04 and comment on the results.

1.5.X3 Consider the quadratic az® + bx + ¢ = 0 with roots x,, x_ (subscript given by + choice
in quadratic equation). a) Show that zyx_ = ¢/a. [Pencil]. b) Write a program to compute the two
roots using the quadratic equation and using a log-log scale plot |a/c — xy2_| versus b for b = 107,
i =1,...,15. Comment on the results. [Computer] c¢) Repeat part b) for b = 2, i = 1,...,50 and
comment on the results. [Computer] d) The previous parts show that using the quadratic equation to
find the two roots gives poor results for large b; what is a practical alternative to accurately compute

both roots? [Pencil]

1.5.X4 The Poisson distribution,
ae ™

Pln;a] = |

gives the probability of n “events” (e.g., radioactive decays) given that the average number of events is a
and each event occurs independently. Write a routine that computes and returns P[n;a]. What is more
likely, having no events occur when o = 10 or having exactly 10° events occur when a = 10°? [Computer]
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Chapter 2

2.1.X1 Modify balle to compute and plot the kinetic, potential, and total energy of the ball.
Graph these energies as a function of time; take initial height of 1 m, initial speed of 50 m/s, and angles
varying from 30 to 60 degrees. Use a time step such that, in the absence of air resistance, the total
energy is conserved to within about 1%. With air resistance, what is the fractional change in the total
energy for this range of angles?

2.1.X2 Consider the equation of motion of a particle in the case of linear drag, specifically,

cr 1

a = g
where 6 is a constant, which we call the damping time. a) Solve this ODE analytically to obtain r(¢) and
v(t) given the initial conditions r(0) and v(0). [Pencil] b) Write a program that solves these equations
of motion using the Euler method, plotting |r(¢)|/(]v(0)|#) as a function of ¢/6. Compare the numerical
results with the exact solution for the cases 7 = 0, %0, %0, and %0. Take the initial conditions r(0) = 0
and |v(0)| = 1; compute the solution up to ¢ = 106. [Computer] c) Repeat the previous part using
Euler-Cromer method.

2.2.X1 Modify the pendul program to compute and plot the total (normalized) energy,
E=_—"—"_ = _Z 2 _cosh

a) Show that for small angles and time steps the error in the energy grows linearly in time for the Euler
method. b) Estimating the velocity in the Verlet scheme as

6n+1 - en
T

Wn41 =
show that the scheme approximately conserves energy for the scenarios shown in Figs. 2.7 and 2.8 in

the textbook. ¢) Repeat the previous part but using the estimate

30n+1 - 4911 + 071,71
2T

which is the three-point forward difference formula (see exercise 2.1). [Computer]

Wnt1 =

2.2.X2 The period of a simple pendulum may be written as

L 1
T =2my | —

9 M (\/1-sin? 16, )

where M (z) is the arithmetic-multiplicative mean, defined as

n bn
M(z) = lim a, where ap =z, by=1, apy1 = On +

n—inf 2 ’ bn+1 - @n bn

a) Show that for small 6, this formulation gives (2.38). [Pencil] b) Write a routine that computes M (z)
and use it in pendul to compute the theoretical period and compare it with the period estimated from
the average time between reversals. [Computer]




Chapter 3

3.3.X1 Consider the following ODE,

d

d—: =ar? - pr?
a) If r(t) is the radial size of an object at time ¢, give a physical interpretation for this ODE. [Pencil]
b) Find the change of variable that transforms the above ODE as, [Pencil]

dR

ptah R2 _ R3

dT
c) Write a program that uses rk4 to compute R(T"). Plot the solution for the initial conditions R(0) =
1072, 1072, and 10~ up to times 2 x 102, 2 x 103, and 2 x 10*, respectively. In each case obtain the
solution taking 1000 time steps. Comment on the results. [Computer] d) Repeat part c) using rka;
also plot the time step 7 used by the adaptive routine as a function of the iteration step. set the
error tolerance to 10~*. [Computer] e) Repeat the previous part but using MATLAB’s stiff ODE solver,
ode23s. [MATLAB]

Chapter 4

4.1.X1 Alan, Brian, and Ed go shopping. a) Alan buys a pizza, two beers, and three bags of chips,
spending $29. Brian buys three pizzas, three beers, and three bags, spending $54; Ed buys four pizzas,
five beers, and five bags, spending $80. Using Gaussian elimination, find the price of each item. [Pencil
or Computer] b) Show that if Ed buys six bags of chips instead of five that he spends $83. [Pencil] c)
Alan buys a pizza, two beers, and 3 bags of chips, spending $29. Brian buys three pizzas, three beers,
and three bags, spending $54; Ed buys four pizzas, five beers, and six bags, spending $83. By direct
substitution, check that the price of pizza, beer, and bags of chips is $9.50, $6.00, and $2.50. Reconcile
this result with that of parts a) and b). [Pencil or Computer]

4.154 Also compute the solution error, S, defined here as S = max{|A;|} where A = a — a., with
a being the true solution and a, = V~!y being the computed solution. Do this for y; = 1 for which we
know the true solution is a; = 1, a; = 0 for i > 1. Plot S versus N.

4.3.X1 a) Find a function, f(x), which has a single root, z*, for which Newton’s method neither con-
verges nor diverges. That is, for any initial guess the iterations of Newton’s method oscillate equidistant
about z*. [Pencil] b) Write a program which plots this function and illustrates that Newton’s method
oscillates about the root. [Computer]

4.3.X2 The secant method of root finding is closely related to Newton’s method. Specifically, given
a pair of initial guesses, 1 and x,, the method iterates as,

@) e a o L@ = f@an)

dn Tp —Tp-1

Tpn4l = Tp —

The advantage of the secant method is that only the function is required, not its derivative; the dis-
advantage is that the secant method usually converges more slowly. Write a program that implements
the secant method and repeat exercise 4.16; for each case take xo = =1 + 11—0. Comment on the re-
sults. [Computer]




Chapter 5

5.2.X1 The SIDC-RWC Belgium World Data Center’s website (sidc.oma.be) provides data on
solar activity, such as sunspot number from 1749 to the present. a) Download the data set for monthly
sunspot number (unsmoothed) and graph sunspot number versus time. b) Fit the data with a straight
line and estimate the yearly rate of change of sunspot number. c¢) Remove the linear trend from the data
then compute and plot the power spectrum; show that sunspot number varies cyclicly with a period of
roughly 11 years. [Computer]

Chapter 6
Chapter 7

7.1.X1 Modify the advect program to use an initial condition of a square wave, initially centered at
the origin, of width L/2,

1 |z|<L/4

0 otherwise

foto) = {

Run your program for a variety of cases, including those in Figs. 7.3-7.7, and comment on the results.

Chapter 8

8.1.X1 In MATLAB the relax program takes significantly more CPU time to run when using Gauss-
Seidel or SOR, as compared with Jacobi, even when the latter takes more iterations to converge. The
difference is due to MATLAB’s vectorization of some operations, such as for loops, when possible. Mod-
ify the Gauss-Seidel and SOR calculations in relax, following the form used for the Jacobi calculation,
and demonstrate the resulting increase in computational speed. [MATLAB]

Chapter 9
Chapter 10
Chapter 11

11.2.X1 Monte Carlo integration selects random points instead of a regular grid, as in the quadrature
methods considered in the previous chapter. Monte Carlo integration is particularly useful when the
dimensionality of the integral is large or the boundaries are complicated; it is not particularly useful
for simple integrals, such as

I= /abf(a?)da?

which are evaluated as

N

;{a Z f(zs) where  z; =a+ (b—a)R;

S
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Figure 2:

Do exercise 10.13 using Monte Carlo integration, graphing the error as a function of N, the number of
grid points. [Computer]

11.2.X2 Monte Carlo integration (see previous problem) is a simple way to estimate the area, A of
an irregular surface. Specifically, define a surface by the function f(x,y) such that f(z,y) = 1 if the
point (z,y) is on the surface and zero if the point lies outside the surface. The Monte Carlo estimate
of the area is

(Zmax — Tmin) Ymax — Ymin) <
Ar Aye = N ;f(l'iayi)

where z; = Zmin + (Tmax — Tmin) i, ¥i = Ymin + (Ymax — Ymin)N;. a)Explain why this works. [Pencil] b)
Write a program that uses Monte Carlo integration to compute the area of the union of two unit circles
whose centers are separated by a distance R. Verify your program for R = 0 and R = 2; estimate the
area for R =1, 1, and 2. [Computer]

11.3.X3 A linear congruential random number generator called RANDU was in common use in the
1960’s. It used the coefficients a = 65539 = 21+3, ¢ = 0, M = 23!; these values were chosen because the
multiplication could be done efficiently by a bit shift and an addition. Unfortunately, these coefficients
yield a notoriously poor generator, which wasn’t noticed for years. a) Show that the sequence generated
by RANDU may be written as
In+2 = (AIn+1 — BIn) mod 231

and find the values of A and B, which are small (4, B < 10) positive integers. [Pencil] b) Write a program
to generate the RANDU sequence and verify the result from the previous part. [Computer] ¢) Use the
RANDU sequence to generate “random” points in 3-dimensional space. Plot the points r; = [I;12, Lit1, Ii],
i = 1,4,7,... and show that they fall in planes (see Fig. 2. d) Repeat the previous part using the
recommended values of a = 7%, ¢ =0, and M = 231 — 1.

11.18+ (e) Repeat parts (a-d) using Vegas-style rules, “On the first roll if you roll a 7 or 11, you
win but if you roll a 2, 3, or 12 then you lose. Any other roll (4, 5, 6, 8, 9, or 10) establishes your mark.
You continue throwing until you either roll your mark (and win) or roll a 7 (and lose).”




