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Thermal Fluctuations

The study of stochastic fluctuations at the microscopic scale
is a seminal topic of statistical mechanics

Brownian motion

Blue sky due to
Rayleigh scattering
from density
fluctuations in air




Entropy & Probability

Equilibrium

A fundamental principle of thermodynamics is that
entropy is maximum at thermodynamic equilibrium. S(x) i

This led Einstein to make the following conjecture P(x)
regarding entropy and probability:

where P(x) is the probability of a state and !

P(x) = C exp(—AS(x) /kg) i

AS(x) = S(xeq) — S(x) = 0 Xeq

The variable x could be any thermodynamic quantity

is the difference in entropy between _
such as temperature, pressure, density, etc.

the equilibrium state and the state x.

kg: Boltzmann constant
C: Normalization constant



Entropy & Probability (cont.)

By Taylor expansion about x = x,,

AS(x) = AS(xeq) — [g] (x — xeq) — [dxz (x — Xeoq)?
\ ; Xeq

Zero zero

The probability of a state is

P(x) = C exp( —(x — x¢q)?/20%)

P(x
which is a Gaussian probability distribution with variance 2

02 = (6x%) = ((x — Xeq)?) /[dz s

Remember

P(x) = C exp(— AS(x) /kg)
AS(x) = S(xeq) — S(x)

Equilibrium




Temperature Fluctuations

Let’s work this out for temperature fluctuations, that is take x tobe T'.

Start with the thermodynamic relation dE = T dS
and definition of heat capacity, C, = dE /dT so

2
E — & and g — _&
dr T dT? T2

The variance of temperature fluctuations is
P(T)

kT2
02 = (§T%) = ((T - Tep)?) =" ¢,

For water, C;, = 9kgN where N is the number of molecules.
In a cubic micron of water N = 101° so o ~ 107° degrees (tiny!).

Remember

2 _ 2y _ —kg
o° =(6x°) = /[ﬁ
dx?

|

Xeq

Equilibrium

Teq




Significance of Thermal Fluctuations

Thermal fluctuations are tiny so why study them?
Two reasons:

ATP synthase is
a molecular motor

* The understanding of thermal fluctuations is of and fon pump

increasing importance given advances in nanoscale
technology, including applications in cellular biology.

* Theoretical models of thermal fluctuations can be et
experimentally tested, leading to improved
stochastic hydrodynamic models for other 8

applications (e.g., stochastic climate modelling). CM,V/\) li'
7);,.‘

But how can we model the dynamics of these fluctuations? & ismstruments




Origins of Fluctuating Hydrodynamics

In 1957, Landau and Lifshitz formulated the basic equations of fluctuating hydrodynamics
in this 2-page paper. A slightly expanded form appears in their textbook.

Soviet Physics JETP 5, Part 3, 512 (1957)

28

Hydrodynamic fluctuations

L. D. LANDAU AND E. M. LIFSHITZ

Translated by R. T. Beyer

A general theory of hydrodynamic fluctuations can be constructed by in-

troducing ‘outside’ terms into the equation of motion of the liquid, as was donl:

by Rytov [1] for the fluctuations of an gnetic field in cc

media; he introduced corresponding ‘outside’ fields in Maxwell's equations.
The introduction of such additional terms can be accomplished in different

equivalent ways. The most advantageous is the form in which the fluctuations

of the ‘outside quantities’ at the vanous points of the liquid are not correlated

with one another. This is by the intr ion of ‘outside stress
tensor’ s, in the Navier—Stokes equation and the *outside heat flow” vector g
in the heat ductis ion (the ion of continuity remains un-
changed). The system of hydrodynamic equations then takes the form
P 4 divipv = 0. [t
ot
av 9 , doi
- - 7 2
T PRl @
1 v, A, "
pT( + vvs) - E";*<a_x: + o—; — divg, 3)
v, dv, 2 én
= e L — 3 @)
i "(vxl o 3%y )t ( a,,‘ + S )
q=—xkVT+g (&)

(all the notation agrees with that used in our book [2]). To these equations
should be added the relations which define the mean values of the products of
components s, and g;. We do this by first assuming the fluctuations to be

Reprinied with permision from Sovie Physics JETP 8, Part 3,512, 1957.
@ 1957 American Institute of Physics
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classical (i.e. their frequencies w < kT/h), while the viscosity and the thermal
conductivity of the liquid are non-dispersive.

The rate of change of the total entropy of the liquid § is given by the
expression (see ref. 2, §49).

s [fou(on  ou) _qvT
2= J‘{lT(ux,‘ ﬁx,) T }dV ©

Following the general rules of fluctuation theory laid down in ref. 3, §§ 117,
120, we select as the values %, figuring in this theory the components of the
tensor o, and the vector g*. It is then evident from eq. (6) that the role of the
corresponding quantities X, will be played by

1 a
47!:‘ v, AV and 1 ar AV,
TaT\Ex, ax .

while egs (4) and (5) play the role of the relations %, = — v, X, + ¥, (see ref 3,
§120), where the s;, and g; correspond to the quantities y,. The coefficients yy,
in these relations determine directly the mean values

PalE (03] = klvas + %0030 — 12).
The final formulas have the form:
SalT, 0)50m(Es, 13) = 2kT [1(88im + Simbp)
+(— 2n/3)0ubim]10(rs — r,)8(; — 1),
iy, 1)gu(F2, t2) = 2kT K8, 5(rs — 1,801 — £,),

@lrs 1)8in(20 12) = 0. Y

If use is made of the spectral p of the
which are defined by
x= o [ xweod ¥ XoX, dw da
=50 s X f

then the factor 3(t; — ¢,) in oqs (7) is replaced by 8(w + w')/2n.

These results are generalised without difficulty to the case of the presence
of dispersion in the coefficients of viscosity or thermal conductivity and the
quantum nature of the fluctuations with the aid of the general theory of
Callen and others, in the form set forth in ref. 4. There appears only the factor

! An incssential differenc, connested with the fact that we arc dealing here with a continuous
(values at each point of the li a discrete set of which the
formulas in ref. 3 were deve]opeu can easu, be removed formally by dividing the volume of the
liquid into small but finite regions AV and carrying out the transition AV —0 in the final
equations.
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(hew/2kT) cothhw/2kT in the expressions for the average values of the
products of the spectral components s; and g;, while the quantities , {, x are
to be replaced by their real parts.
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Central Idea of Fluctuating Hydrodynamics

From Landau & Lifshitz, Statistical Physics, Part 2

The equations of hydrodynamics...with no specific form of the stress tensor
and the heat flux vector simply express the conservation of mass, momentum,
and energy. In this form they are therefore valid for any motion, including
fluctuational changes...

The usual expressions for the stress tensor and the heat flux relate them
respectively to the velocity gradients and the temperature gradient.

When there are fluctuations in a fluid, there are also spontaneous local
stresses and heat fluxes unconnected with these gradients; we denote these
(as) “random quantities”...



Deterministic Heat Equation

For simple conduction we write the change in energy density, pe, in terms of heat flux, Q, as
0 vV Q p : mass density (constant)
—pe = — . .
ot
Approximate Q as the deterministic heat flux, 6, using the Fourier law,
Q= 6 = —AVT A : thermal conductivity
Since e = ¢y T we arrive at the heat equation for thermal diffusion
pCy E = AV2T cy: specific heat capacity

which is a well-known parabolic partial differential equation.



Stochastic Heat Equation (part 1 of 3)

~

We now formulate a stochastic version by adding a white noise term, Q, so now

0 —
ape =-V-Q where Q=0+0Q (Total) = (deterministic) + (stochastic)

Write the deterministic heat flux in Onsager form as

Q=LX (Flux) = (Onsager coefficient) x (Thermodynamic “Force”) STk pan 1 nysics

Landau and Lifshitz
Course o f Theoretical Physics

By the fluctuation-dissipation theorem the stochastic heat flux has correlation

Q@ Q@' t)) = 2 kg L (Z(r, Z(@, t"))

where Z is Gaussian white noise: (Z(r,t)Z(r',t")) =8(t —t") §(r—1") I

and I is the identity tensor. Landau & Lifshitz
SP1, Section 120




Langevin Equation Analogy

dx CriSpinGardi.ner
: ; ; : — =—vx+ Stochastic ¢
Take a simple Langevin equation written as dt 14 3 Methods :

A Handbook for the Natural
and Social Sciences

where the variance of the noise is E@ERH)Y=Bo(t—t")

Treated as an Ornstein—Uhlenbeck process we find that B =2y (6x?)

C.W. Gardiner
Similarly, for the heat equation the variance of the stochastic heat fluxis 2 kg L .
Remember
We've already seen that temperature fluctuations (§T?) are given by entropy. — -
(6T2) =" / d2s
Next we’ll make the connection between entropy (specifically dS/dt) [W]xeq
and the Onsager coefficient, L .




Stochastic Heat Equation (part 2 of 3)

NON-EQUILIBRIUM

From non-equilibrium thermodynamics the rate of entropy change is THESRFQA%DYglAMICS
R. f
_ 3 — and P.eMéZSr
ds ds — Q
—_— = — X -Qdr|—||= () — System volume
dt Q ot Q T1s0 0Q — System boundary

(internal dS/dt)  (external dS/dt)
Using the Gibb’s relation, p de = T ds, we have

a§d_f pde flv_d E—
Q at "= Q T ot "= Q T Qadr Reca &Pe——V-Q

After a few manipulations (integration by parts) we find the thermodynamic force

1 _

1 L
X=V_=—VT = ==
T T2 and thus Q=LX T2 vT



Stochastic Heat Equation (part 3 of 3)

Comparing Q = —(L/T?)VT with Fourier law
6 = —AVT tells us that the Onsager coefficient is L =AT?

Total heat flux has the form required for linear response theory

Q=Q+Q=2T?X+Q

with the variance of the noise being This noise ensures that

(Q(r,)Q(r',t")) =2 kg AT?8(t —t) 8(r—1") I P(x) = C exp( — AS(x) /kg)

Collecting the above and writing e = ¢, T gives the stochastic heat equation,

PCVZ—T = AV2T + V- ./20kpgT2 Z where Z is Gaussian white noise
t (ZrOZ@, t)) =8t —t) 8 —1)1
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Numerics for Stochastic Heat Equation

Write the 1D Stochastic Heat Equation as

/ white noise

0,T=x0:T+a0,TZ

Discretize time and space using centered spatial derivatives

n+1 _ on 2 n n n
9.7 =T, T Ti 92T = 2L | Tiza=2Ti +7Timy
t ot At X 9x2 Ax2

The stochastic term becomes

T 7 Fit12 = Fiz1/2 n+1
—_

where

iri1/2 = Tiﬁ1/zzin+1/2 i7}|-1/2= % (T + 1)

where K = A/pcy a = ./2kgA/pcy

Time (t)
® ® ®
TN
l
O O O
i—1 i i+1




Numerical Schemes

Forward Euler scheme for 0,T =« 02T + a0, T Z

Tin+1 — TiTL (Tlrj-l _ 2Tn + Tln 1) + ( i+1/2 I_+1/2 Tiril/ZZZl—l/Z)

Predictor-Corrector scheme has two steps

. KAt _
TP =T"+ 5 (T — 2T + T2y + ( /2212 = Tita2Zi1y2) Predictor step

1 KAt .
T = 2 I+ T + (Tl+1 2Ty + T 1)+ (Tz+1/z i+1/2 Ti—l/ZZin—l/Z) Corrector step

There are other explicit schemes (e.g., Runge-Kutta) and implicit schemes (e.g., Crank-Nicolson)



Discretized White Noise

The white noise is discretized as

r7 n 1 n
L >Ziiip= NG Nii1/2

where N is a normal (Gaussian) distributed random number.

This definition for the discrete noise has a correlation

nrs nrs _ 61’1,71’ Si,i’

(Z0%1 /2201 2) = W< M1z Niiy o) = At AV
which is the discretized form of

(Z@r,Z@,t)) =8(t—t") 8(r —1')

n+1

n




Boundary Conditions

Periodic BCs are straight-forward. For the leftmost cell,

T = T8 + (T1 2Tg + Ty- 1)+

Ax Ar2 ( 1/2 1/2 1/2 1/2)

Periodic “wrap-around”

Dirichlet BCs (fixed temperature walls) are a bit tricky. For the leftmost cell,

KAt

Uncentered 92 Uncentered noise

1
iT-LH/z: 3 ( Ti7}|-1 + Tin )

Periodic BC
TN-1 . T T
o0——0 O
n n
-1/2 +1/2
Dirichlet BC
T
R
et
Y2 Zin
T, - Left wall

temperature



Two Remarks on FHD

Note that in Fluctuating Hydrodynamics:

* The stochastic flux terms only appear when there is entropy
production (e.g., thermal diffusion). There are no noise terms
due to reversible forces, such as surface tension, nor due to
non-inertial terms, such as the Coriolis force.

* The random fluxes are multiplicative noises and, in principle, the
numerical scheme should depend on the stochastic calculus.
In practice, we find that this does not really matter for our
hydrodynamic problems of interest.



Python Notebook StochasticHeat

https://github.com/AlejGarcia/IntroFHD

Demonstration program, StochasticHeat, can be
downloaded from GitHub.

Written in Python, it computes the Stochastic Heat
Equation for temperature fluctuations in an iron rod.

() 44000 atoms )

<

) 10 nm

»
»

Program options:

* Periodic or Dirichlet boundary conditions
. For\{v.aro.l Euler or Predlcjcc-)r-FZorrector sche.njes QR code for GitHub download
e Equilibrium or Non-equilibrium (VT) conditions

Runs take only a few minutes on a laptop



Variance of Temperature Fluctuations

From statistical mechanics, the equilibrium
variance of temperature fluctuations is

Variance < dT++2 >
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Spatial Correlation of Fluctuations

From statistical mechanics, the equilibrium (8T-8T-) _ (STZ) 5 Dirichlet BCs
. . . i01j) = i L,j .
correlation of temperature fluctuations is 2 million steps
N =32 cells
Forward Euler Predictor-Corrector
Average (circles), Theory (dashed) Average (circles), Theory (dashed)
o L
A
! 40 4 L]
%0 I l'l
A i Overshoot " i
= b 2 X
5 ¥ - |
¥ 201 5 \ Vv 20 - E ':
S i ! S K
s P Undershoot ke P
5 10 i ™ P
© P o 10 P
. |
| |
0 """"'Ll ahashenad bad s dl dle e ) 0 0.1—0“1 | bepesoodtondoeoesdenes
0.0 0.2 | 0.4 0.6 0.8 1.0 00 02 | 04 0.6 08 10
Position (m) le-8 ) B Position (m) le-8



Conservation Corrections

For periodic BCs, the equilibrium correlation
of temperature fluctuations is

140 4

120 4

Correlation < dT(x) dT(x*) >

N
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By energy conservation X; pcy 6T; = 0

(8T;8T;) = (8T7) (8;; — 1/N)
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Static Structure Factor

From statistical mechanics, the equilibrium
fluctuation power spectrum (structure factor) is

Structure factor S(k)
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Non-equilibrium Correlation

For a non-equilibrium system
with a temperature gradient VT

(6T;6T;) =

Predictor-Corrector
Average (circles), Theory (dashed)
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Stochastic Species Diffusion Equation

We can derive a similar stochastic diffusion equation for mass diffusion in ideal solutions

d;n=V-(DVn++v2DnZ) Dean-Kawasaki equation

where n is the number density and D is the diffusion coefficient.

Notice the similarity with the stochastic heat equation

0, T=V-(kVT +aTZ) where Kk =4/pcy a = ./2kgA/pcy

The deterministic forms of these two diffusion equations give equivalent solutions
however the stochastic noises differ so the stochastic solutions differ.



Multi-species Compressible FHD

Full multi-species compressible fluctuating hydrodynamic (FHD) equations are

o Sp_eciesflux
Mass (species k) a(pk) = -V (ppv) — V- [Fy + F;]
5 Stre_ss t(insor
Momentum E(PV) ==V -[pv@QVv+pl]-V- [H + H] + pg
0 HEat fEJx L
Energy a(PE) =-V-[v(pE+p)] —=V-[Q+Q|-V- [[H+H] ‘V] +pg-v

Summing the mass equation over species gives the continuity equation

For incompressible fluids the pressure
serves as a Lagrange multiplier that
enforces the incompressibility constraint.
Doney, et al. Phys. Fluids, 27(3), 2015

Mass (total) %(p) ==V (pv)



Srivastava, et al., Phys. Rev. E 107 015305 (2023)

Ne/Kr Mixture in VT

Cold
273K

A

Spatial correlations of fluctuations for a
neon/krypton mixture in a temperature gradient.

(upper) Temperature — temperature correlation
(lower) Velocity — density correlation

FHD and particle simulations (DSMC) are in
excellent agreement; delta correlations when VT =0
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Ne/Kr Mixture in VT

Spatial correlations of fluctuations for a
neon/krypton mixture in a temperature gradient.

(upper) Temperature — temperature correlation
(lower) Velocity — density correlation

FHD and particle simulations (DSMC) are in

excellent agreement; delta correlations when VT =0
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Giant Fluctuation Phenomenon

Vailati, et al., Nature Comm., 2 (2011)

+3%
g +2%
]
i
w +1%
0%

-1%

Top-down view of
2% density fluctuations
during mixing

Earth

Relative varation of shadowgraph intensity

-3%

0s 500 s 1000 s 2000 s

Experiments in 2011 found macroscopic fluctuations in interface mixing.
Phenomenon due to correlation of concentration-velocity fluctuations.



Giant Fluctuation
Simulations

Molecular dynamics
simulations of this “giant
fluctuation” phenomenon
indistinguishable from
those using fluctuating
hydrodynamics.

Fluctuating
Hydrodynamics

Initial
State

Deterministic
Hydrodynamics

Doney, et al., CAMCOS, 9-1:47-105 (2014)

Molecular
Dynamics



Simulation Results

Excellent quantitative
agreement between
molecular dynamics and
FHD for the form and
growth rate of the rough
mixing interface.

Interface Spectrum
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Doney, et al.,, CAMCOS, 9-1:47-105 (2014)
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FHD & Instabilities

Time=0

Density
-1.061

1.058

' 1.055
I 1.052
1.049

Stochastic Hydrodynamics

Time=0

Density
-1.061

1.058

l 1.055

1.052

1.049

Doney, et al., Physics of Fluids, 27(3):037103 (2015)

Deterministic Hydrodynamics



Mixed-mode Instability

The non-equilibrium
fluctuation signal is
trampled by the
large amplitude of
the hydrodynamic
instability

10

Spectrum S(k)
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Doney, et al., Physics of Fluids, 27(3):037103 (2015)
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FHD & Multi-phase fluids

Can us diffuse interface models
(e.g., Cahn-Hillard) in FHD to study
multi-fluid interfaces.

We have simulated the Rayleigh-
Plateau instability for liquid
cylinders pinching into droplets.

Currently investigating droplets on
solid surfaces with contact angle
boundary conditions.

Breakup of a liquid torus into droplets

Barker, et al., Proc. Nat. Acad. Sci., 120 2306088120 (2023)



FHD & Chemistry

Chemical reactions can be incorporated
into FHD by adding source terms to the
species equation.

d — _
E(pk) ==V (ppv) =V [Fi + F| + 2 +

From the chemical Langevin equation

reactions

Q= Z Vier ax({pi})

r

reactions

QT{ = Z Vir V ak({pi}) Zy

Kim, et al., J. Chem. Phys., 146, 124110 (2017)

Stochastic (FHD)

Deterministic

Vir - Stochiometric coefficients

ar({pi}) - Propensity (rate) function



FHD & Turbulence (olmogorov

wavenumber
|
Inertial Near Dissipation E Far Dis.
Thermal fluctuations dominate turbulent — Y A ; k \
fluctuations in the near-dissipation range, T
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Summary & Remarks

Here are some closing thoughts:

Thermal fluctuations can produce interesting meso- and
macroscopic phenomena (e.g., giant fluctuation effect).
Fluctuating hydrodynamics is a powerful methodology for the
study of these phenomena.

There are accurate and efficient numerical methods for the
fluctuating hydrodynamic equations.

Simple FHD models, such as the stochastic heat equation, are
an accessible introduction suitable for university students.
Many opportunities exist for applying FHD to problems that
are of interest to mathematicians, scientists, and engineers.



https://github.com/AlejGarcia/IntroFHD

Thank you for your
attention and participation

Questions?

QR code for GitHub download

Vorticity in compressible turbulence simulations
(left) Deterministic | (right) Stochastic






