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Thermal Fluctuations

Blue sky due to 
Rayleigh scattering 
from density 
fluctuations in air

The study of stochastic fluctuations at the microscopic scale 
is a seminal topic of statistical mechanics

Brownian motion



Entropy & Probability
A fundamental principle of thermodynamics is that 
entropy is maximum at thermodynamic equilibrium.

𝑃(𝑥)

𝑥

𝑥௘௤

The variable 𝑥 could be any thermodynamic quantity 
such as temperature, pressure, density, etc.

Equilibrium

𝑆(𝑥) 

𝑃 𝑥 = 𝐶 exp ( − ∆𝑆(𝑥) /𝑘஻)

∆𝑆 𝑥 = 𝑆 𝑥௘௤ − 𝑆 𝑥 ≥ 0

where 𝑃(𝑥) is the probability of a state and 

is the difference in entropy between 
the equilibrium state and the state 𝑥. 

𝑘஻: Boltzmann constant
𝐶: Normalization constant

This led Einstein to make the following conjecture 
regarding entropy and probability:



Entropy & Probability (cont.)

∆𝑆 𝑥 = ∆𝑆 𝑥௘௤ −
ௗௌ

ௗ௫ ௫೐೜

𝑥 − 𝑥௘௤ −  
ଵ

ଶ
 

ௗమௌ

ௗ௫మ
௫೐೜

 (𝑥 − 𝑥௘௤)ଶ

By Taylor expansion about 𝑥 = 𝑥௘௤

𝑃(𝑥)

𝑥

𝑥௘௤

Equilibriumzero zero

𝜎

𝑃 𝑥 = 𝐶 exp ( −(𝑥 − 𝑥௘௤)ଶ/2𝜎ଶ)

The probability of a state is 

which is a Gaussian probability distribution with variance

𝜎ଶ = 𝛿𝑥ଶ =  (𝑥 − 𝑥௘௤)ଶ =
−𝑘஻

𝑑ଶ𝑆
𝑑𝑥ଶ

௫೐೜

൙

𝑃 𝑥 = 𝐶 exp ( − ∆𝑆(𝑥) /𝑘஻)

∆𝑆 𝑥 = 𝑆 𝑥௘௤ − 𝑆(𝑥) 

Remember



Temperature Fluctuations
Let’s work this out for temperature fluctuations, that is take 𝑥 to be 𝑇. 

Start with the thermodynamic relation 𝑑𝐸 = 𝑇 𝑑𝑆
and definition of heat capacity, 𝐶௏ = 𝑑𝐸/𝑑𝑇 so 

𝑃(𝑇)

𝑇

𝑇௘௤

Equilibrium

𝜎

𝑑ଶ𝑆

𝑑𝑇ଶ
= −

𝐶௏

𝑇ଶ

𝑑𝑆

𝑑𝑇
=

𝐶௏

𝑇
and

The variance of temperature fluctuations is

𝜎ଶ =  𝛿𝑇ଶ =  (𝑇 − 𝑇௘௤)ଶ =
𝑘஻𝑇௘௤

ଶ

𝐶௏
൘

For water, 𝐶௏ ≈ 9𝑘஻𝑁 where 𝑁 is the number of molecules.
In a cubic micron of water 𝑁 ≈ 10ଵ଴ so 𝜎 ≈ 10ି଺ degrees (tiny!).

𝜎ଶ = 𝛿𝑥ଶ =
−𝑘஻

𝑑ଶ𝑆
𝑑𝑥ଶ

௫೐೜

൙

Remember



Significance of Thermal Fluctuations

ATP synthase is 
a molecular motor 
and ion pump

Thermal fluctuations are tiny so why study them?
Two reasons:

* The understanding of thermal fluctuations is of 
increasing importance given advances in nanoscale 
technology, including applications in cellular biology.

* Theoretical models of thermal fluctuations can be 
experimentally tested, leading to improved 
stochastic hydrodynamic models for other 
applications (e.g., stochastic climate modelling).

But how can we model the dynamics of these fluctuations?



Origins of Fluctuating Hydrodynamics
In 1957, Landau and Lifshitz formulated the basic equations of fluctuating hydrodynamics 
in this 2-page paper. A slightly expanded form appears in their textbook.

Soviet Physics JETP 5, Part 3, 512 (1957)



Central Idea of Fluctuating Hydrodynamics

The equations of hydrodynamics…with no specific form of the stress tensor 
and the heat flux vector simply express the conservation of mass, momentum, 
and energy. In this form they are therefore valid for any motion, including 
fluctuational changes…

The usual expressions for the stress tensor and the heat flux relate them 
respectively to the velocity gradients and the temperature gradient. 
When there are fluctuations in a fluid, there are also spontaneous local 
stresses and heat fluxes unconnected with these gradients; we denote these 
(as) “random quantities”…

From Landau & Lifshitz, Statistical Physics, Part 2



Deterministic Heat Equation
For simple conduction we write the change in energy density, 𝜌𝑒, in terms of heat flux, 𝑸 , as

𝜕

𝜕𝑡
𝜌𝑒 = −∇ ⋅ 𝑸 𝜌 : mass density (constant)

Approximate 𝑸 as the deterministic heat flux, 𝑸, using the Fourier law, 

𝑸 ≈ 𝑸 = −𝜆∇𝑇 𝜆 : thermal conductivity

Since 𝑒 = 𝑐௏𝑇 we arrive at the heat equation for thermal diffusion

which is a well-known parabolic partial differential equation.

𝜌𝑐௏

𝜕𝑇

𝜕𝑡
= 𝜆∇ଶ𝑇 𝑐௏: specific heat capacity



Stochastic Heat Equation (part 1 of 3)

Write the deterministic heat flux in Onsager form as

(Flux) = (Onsager coefficient) x (Thermodynamic “Force”)𝑸 = 𝐿 𝑿

We now formulate a stochastic version by adding a white noise term, 𝑸෩ , so now

𝜕

𝜕𝑡
𝜌𝑒 = −∇ ⋅ 𝑸 𝑸 = 𝑸 + 𝑸෩ (Total) = (deterministic) + (stochastic) where

𝑸෩ 𝒓, 𝑡 𝑸෩ 𝒓ᇱ, 𝑡ᇱ = 2 𝑘୆ 𝐿 𝒁෩ 𝒓, 𝑡 𝒁෩ 𝒓ᇱ, 𝑡ᇱ

By the fluctuation-dissipation theorem the stochastic heat flux has correlation

and 𝐼 is the identity tensor.

where 𝒁෩ is Gaussian white noise: 𝒁෩ 𝒓, 𝑡 𝒁෩ 𝒓ᇱ, 𝑡ᇱ = δ 𝑡 − 𝑡ᇱ δ 𝒓 − 𝒓ᇱ 𝐼

Landau & Lifshitz
SP1, Section 120



Langevin Equation Analogy
𝑑𝑥

𝑑𝑡
= − 𝛾 𝑥 +  𝜉

𝜉 𝑡  𝜉(𝑡ᇱ) = 𝐵 𝛿(𝑡 − 𝑡ᇱ)

𝐵 = 2 𝛾 𝛿𝑥ଶ

Take a simple Langevin equation written as

where the variance of the noise is

C.W. GardinerTreated as an Ornstein–Uhlenbeck process we find that 

Similarly, for the heat equation the variance of the stochastic heat flux is 2 𝑘஻ 𝐿 .

We’ve already seen that temperature fluctuations 𝛿𝑇ଶ  are given by entropy.

Next we’ll make the connection between entropy (specifically 𝑑𝑆/𝑑𝑡)
and the Onsager coefficient, 𝐿 .

𝛿𝑇ଶ =
−𝑘஻

𝑑ଶ𝑆
𝑑𝑇ଶ

௫೐೜

൙

Remember



Stochastic Heat Equation (part 2 of 3)

After a few manipulations (integration by parts) we find the thermodynamic force

𝑿 =  𝛁
1

𝑇
=  −

1

𝑇ଶ
𝛁𝑇 𝑸 = 𝐿 𝑿 = −

𝐿

𝑇ଶ
𝛁𝑇and thus

From non-equilibrium thermodynamics the rate of entropy change is

𝑑𝑆̅

𝑑𝑡
= න

𝜕𝑠̅

𝜕𝑡
 𝑑𝒓

ஐ

= න 𝑿 ⋅ 𝑸 𝑑𝒓
ஐ

−  
𝑸

𝑇 డஐ

(internal 𝑑𝑆̅/𝑑𝑡)       (external 𝑑𝑆̅/𝑑𝑡) 

Ω – System volume
𝜕Ω – System boundary

න
𝜕𝑠̅

𝜕𝑡
 𝑑𝒓

ஐ

= න
𝜌

𝑇

𝜕𝑒̅

𝜕𝑡
 𝑑𝒓

ஐ

= − න
1

𝑇
∇ ȉ 𝑸ഥ 𝑑𝒓

ஐ

Using the Gibb’s relation, 𝜌 𝑑𝑒 = 𝑇 𝑑𝑠, we have

𝜕

𝜕𝑡
𝜌𝑒̅ = −∇ ⋅ 𝑸ഥRecall



Stochastic Heat Equation (part 3 of 3)
Comparing 𝑸 = −(𝐿/𝑇ଶ)𝛁𝑇 with Fourier law

tells us that the Onsager coefficient is 𝑸 = −λ𝛁𝑇 𝐿 = λ𝑇ଶ

𝜌𝑐௏

𝜕𝑇

𝜕𝑡
= λ∇ଶ𝑇 + ∇ ȉ 2λ𝑘୆𝑇ଶ 𝒁෩

Collecting the above and writing 𝑒 = 𝑐௏𝑇 gives the stochastic heat equation, 

where 𝒁෩ is Gaussian white noise

𝒁෩ 𝒓, 𝑡 𝒁෩ 𝒓ᇱ, 𝑡ᇱ = δ 𝑡 − 𝑡ᇱ δ 𝒓 − 𝒓ᇱ 𝐼

Total heat flux has the form required for linear response theory

𝑸 = 𝑸 + 𝑸෩ =  λ𝑇ଶ 𝑿 + 𝑸෩

𝑃 𝑥 = 𝐶 exp ( − ∆𝑆(𝑥) /𝑘஻)

This noise ensures that

𝑸෩ 𝒓, 𝑡 𝑸෩ 𝒓ᇱ, 𝑡ᇱ = 2 𝑘୆ λ𝑇ଶδ 𝑡 − 𝑡ᇱ δ 𝒓 − 𝒓ᇱ  𝐼

with the variance of the noise being
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Numerics for Stochastic Heat Equation
Write the 1D Stochastic Heat Equation as

𝜕௧𝑇 = κ 𝜕௫
ଶ 𝑇 + 𝛼 𝜕௫ 𝑇 Z෨

Discretize time and space using centered spatial derivatives

𝜕௧𝑇 =  
డ்

డ௧
→  ೔்

೙శభ ି ೔்
೙

∆௧
𝜕௫

ଶ 𝑇 =  
డమ்

డ௫మ →  ೔்శభ
೙ ି ଶ ೔்

೙ ା ೔்షభ
೙  

∆௫మ

𝑇௜
௡

𝑖 𝑖 + 1𝑖 − 1
𝑛

𝑛 + 1

Space (x)

Time (t)

𝜅 = 𝜆/𝜌𝑐୚ 𝛼 = 2𝑘஻𝜆/𝜌𝑐୚where
white noise

𝛼 𝜕௫ 𝑇 Z෨  →   
ℱ೔శభ/మ

೙  ି ℱ೔షభ/మ
೙

∆௫

ℱ௜ାଵ/ଶ
௡ = α 𝑇௜ାଵ/ଶ

௡ 𝑍௜ାଵ/ଶ
௡

The stochastic term becomes

where

 𝑇௜ାଵ/ଶ
௡ =  ଵ

ଶ
 ( 𝑇௜ାଵ

௡ + 𝑇௜
௡ )



Numerical Schemes
Forward Euler scheme for 

𝑇௜
௡ାଵ = 𝑇௜

௡ +
κΔ𝑡

Δ𝑥ଶ
𝑇௜ାଵ

௡ − 2𝑇௜
௡ + 𝑇௜ିଵ

௡ +
αΔ𝑡

Δ𝑥
𝑇௜ାଵ ଶ⁄

௡ 𝑍௜ାଵ ଶ⁄
௡ − 𝑇௜ିଵ ଶ⁄

௡ 𝑍௜ିଵ ଶ⁄
௡

𝜕௧𝑇 = κ 𝜕௫
ଶ 𝑇 + 𝛼𝜕௫ 𝑇 Z෨

Predictor-Corrector scheme has two steps

𝑇௜
∗ = 𝑇௜

௡ +
κΔ𝑡

Δ𝑥ଶ
𝑇௜ାଵ

௡ − 2𝑇௜
௡ + 𝑇௜ିଵ

௡ +
αΔ𝑡

Δ𝑥
𝑇௜ାଵ ଶ⁄

௡ 𝑍௜ାଵ ଶ⁄
௡ − 𝑇௜ିଵ ଶ⁄

௡ 𝑍௜ିଵ ଶ⁄
௡

𝑇௜
௡ାଵ =

1

2
𝑇௜

௡ + 𝑇௜
∗ +

κΔ𝑡

Δ𝑥ଶ
𝑇௜ାଵ

∗ − 2𝑇௜
∗ + 𝑇௜ିଵ

∗ +
αΔ𝑡

Δ𝑥
𝑇௜ାଵ ଶ⁄

∗ 𝑍௜ାଵ ଶ⁄
௡ − 𝑇௜ିଵ ଶ⁄

∗ 𝑍௜ିଵ ଶ⁄
௡

Predictor step

Corrector step

There are other explicit schemes (e.g., Runge-Kutta) and implicit schemes (e.g., Crank-Nicolson)



Discretized White Noise
The white noise is discretized as

where      is a normal (Gaussian) distributed random number.

Z෨  → 𝑍௜ାଵ/ଶ
௡ =

1

∆𝑡 ∆𝑉
 ℕ௜ାଵ/ଶ

௡

ℕ

𝑍௜ାଵ/ଶ
௡ 𝑍௜ᇱାଵ/ଶ

௡ᇱ =
1

∆𝑡 ∆𝑉
ℕ௜ାଵ/ଶ

௡  ℕ௜ᇱାଵ/ଶ
௡ᇱ =  

𝛿௡,௡ᇱ

∆𝑡
 
 𝛿௜,௜ᇱ

∆𝑉

𝑍෨ 𝒓, 𝑡 𝑍෨ 𝒓ᇱ, 𝑡ᇱ = δ 𝑡 − 𝑡ᇱ δ 𝒓 − 𝒓ᇱ

This definition for the discrete noise has a correlation

which is the discretized form of

𝑍௜ାଵ/ଶ
௡

𝑖
𝑛

𝑛 + 1

Space (x)

Time (t)
𝑍௜ିଵ/ଶ

௡



Boundary Conditions

𝑍ାଵ/ଶ
௡𝑍ିଵ/ଶ

௡

𝑇଴
௡ 𝑇ଵ

௡𝑇ேିଵ
௡

Periodic BC

𝑇଴
௡ାଵ = 𝑇଴

௡ +
κΔ𝑡

Δ𝑥ଶ
𝑇ଵ

௡ − 2𝑇଴
௡ + 𝑇ேିଵ

௡ +
αΔ𝑡

Δ𝑥
𝑇ଵ ଶ⁄

௡ 𝑍ଵ ଶ⁄
௡ − 𝑇 ଵ ଶ⁄

௡ 𝑍ିଵ ଶ⁄
௡

 𝑇௜ାଵ/ଶ
௡ =  ଵ

ଶ
 ( 𝑇௜ାଵ

௡ + 𝑇௜
௡ )

Periodic “wrap-around”

Periodic BCs are straight-forward. For the leftmost cell,

𝑇଴
௡ାଵ = 𝑇଴

௡ +
κΔ𝑡

Δ𝑥ଶ
𝑇ଵ

௡ − 3𝑇଴
௡ + 2𝑇௅ +

αΔ𝑡

Δ𝑥
𝑇ଵ ଶ⁄

௡ 𝑍ଵ ଶ⁄
௡ − 𝟐 𝑇௅ 𝑍ିଵ ଶ⁄

௡

Uncentered 𝜕௫
ଶ Uncentered noise

Dirichlet BCs (fixed temperature walls) are a bit tricky. For the leftmost cell,

𝑍ଵ/ଶ
௡

𝑇ଵ
௡

𝑍ିଵ/ଶ
௡

𝑇଴
௡𝑇௅

Dirichlet BC

𝑇௅ - Left wall 
temperature



Two Remarks on FHD
Note that in Fluctuating Hydrodynamics:

• The stochastic flux terms only appear when there is entropy 
production (e.g., thermal diffusion). There are no noise terms 
due to reversible forces, such as surface tension, nor due to 
non-inertial terms, such as the Coriolis force.

• The random fluxes are multiplicative noises and, in principle, the 
numerical scheme should depend on the stochastic calculus. 
In practice, we find that this does not really matter for our 
hydrodynamic problems of interest.



Python Notebook StochasticHeat
Demonstration program, StochasticHeat, can be 
downloaded from GitHub. 
Written in Python, it computes the Stochastic Heat 
Equation for temperature fluctuations in an iron rod.  

Program options:
• Periodic or Dirichlet boundary conditions
• Forward Euler or Predictor-Corrector schemes
• Equilibrium or Non-equilibrium (T) conditions

Runs take only a few minutes on a laptop

10 nm

44000 atoms

QR code for GitHub download

https://github.com/AlejGarcia/IntroFHD



Variance of Temperature Fluctuations

δ𝑇௜
ଶ =

𝑘஻ 𝑇௜
ଶ

ρ𝑐௏Δ𝑉
=

𝑘஻𝑇௘௤
ଶ

𝐶௏

Forward Euler Predictor-Corrector

From statistical mechanics, the equilibrium 
variance of temperature fluctuations is

Simulation data

Theory

Dirichlet BCs
2 million steps

N = 32 cells



Spatial Correlation of Fluctuations

Forward Euler Predictor-Corrector

Dirichlet BCs
2 million steps

N = 32 cells

From statistical mechanics, the equilibrium 
correlation of temperature fluctuations is

δ𝑇௜δ𝑇௝ = δ𝑇௜
ଶ  δ௜,௝

Overshoot

Undershoot

𝑖 = 𝑗 𝑖 = 𝑗



Conservation Corrections

Periodic BCs
2 million steps

N = 32 cells

Predictor-Corrector

With i = j point

Without i = j

For periodic BCs, the equilibrium correlation 
of temperature fluctuations is δ𝑇௜δ𝑇௝ = δ𝑇௜

ଶ  (δ௜,௝  − 1/𝑁)

By energy conservation Σ௜ 𝜌𝑐௏ 𝛿𝑇௜ = 0

Predictor-Corrector

−1/𝑁 correction



Static Structure Factor

𝑆௞ = 𝑇෠௞𝑇෠௞
∗

=
𝑘஻𝑇௘௤

ଶ

ρ𝑐௏
𝑁

Forward Euler Predictor-Corrector

From statistical mechanics, the equilibrium 
fluctuation power spectrum (structure factor) is

Donev, et al., CAMCOS 5 149 (2010)

Dirichlet BCs
2 million steps

N = 32 cells



Non-equilibrium Correlation

Predictor-Corrector

𝛿𝑇௜𝛿𝑇௝ =
𝑘஻𝑇௘௤

ଶ

𝜌𝑐௏Δ𝑉
δ௜,௝ +

𝑘஻ ∇𝑇 ଶ

𝜌𝑐௏𝑉
 × ൝

𝑥௜ (ℓ −  𝑥௝) (𝑥௜ < 𝑥௝)

𝑥௝ (ℓ −  𝑥௜) otherwise

For a non-equilibrium system 
with a temperature gradient ∇𝑇

Predictor-Corrector

With i = j point Without i = j

Garcia, et al., J. Stat. Phys., 47 209 (1987)

𝑖 = 𝑗 𝑖 = 𝑗

Dirichlet BCs
20 million steps

N = 32 cells

∇𝑇
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Stochastic Species Diffusion Equation 

𝜕௧ 𝑛 = 𝛁 ⋅ 𝐷𝛁𝑛 + 2𝐷 𝑛 𝒁෩

We can derive a similar stochastic diffusion equation for mass diffusion in ideal solutions

where n is the number density and D is the diffusion coefficient.

𝜕௧ 𝑇 = 𝛁 ⋅ 𝜅𝛁𝑇 + α 𝑇 𝒁෩ 𝜅 = 𝜆/𝜌𝑐୚ 𝛼 = 2𝑘஻𝜆/𝜌𝑐୚where

Notice the similarity with the stochastic heat equation

The deterministic forms of these two diffusion equations give equivalent solutions 
however the stochastic noises differ so the stochastic solutions differ.

Dean-Kawasaki equation



Multi-species Compressible FHD

𝜕

𝜕𝑡
ρ = −∇ ⋅ ρ𝐯

𝜕

𝜕𝑡
ρ௞ = −∇ ⋅ ρ௞𝐯  − ∇ ⋅ 𝑭ഥ௞ + 𝑭௞

෪

డ

డ௧
ρ𝐯 = −∇ ⋅ ρ𝐯 ⊗ 𝐯 + 𝑝𝐈 − ∇ ⋅ 𝚷ഥ + 𝚷෩ + 𝜌𝒈

𝜕

𝜕𝑡
ρ𝐸 = −∇ ⋅ 𝐯 ρ𝐸 + 𝑝  − ∇ ⋅ 𝐐ഥ + 𝐐෩ − ∇ ⋅ 𝚷ഥ + 𝚷෩ ⋅ 𝐯 + 𝜌𝒈 ⋅ 𝐯

Full multi-species compressible fluctuating hydrodynamic (FHD) equations are

Mass (species k) 

Momentum

Energy

Species flux

Stress tensor

Heat flux

Summing the mass equation over species gives the continuity equation

Mass (total) 
For incompressible fluids the pressure 
serves as a Lagrange multiplier that 
enforces the incompressibility constraint.
Donev, et al. Phys. Fluids, 27(3), 2015



Ne/Kr Mixture in T

xx’

x’

x’

Spatial correlations of fluctuations for a 
neon/krypton mixture in a temperature gradient.

(upper) Temperature – temperature correlation
(lower) Velocity – density correlation

FHD and particle simulations (DSMC) are in 
excellent agreement; delta correlations when T = 0

Cold
273 K

Hot
517 K

3.8 μm

Equal mass concentrations

𝛿𝑇(𝑥)𝛿𝑇(𝑥′)

𝛿𝑢(𝑥)𝛿𝜌(𝑥′)

Srivastava, et al., Phys. Rev. E 107 015305 (2023)



Ne/Kr Mixture in T

xx’

x’

x’
x

Spatial correlations of fluctuations for a 
neon/krypton mixture in a temperature gradient.

(upper) Temperature – temperature correlation
(lower) Velocity – density correlation

FHD and particle simulations (DSMC) are in 
excellent agreement; delta correlations when T = 0

Cold
273 K

Hot
517 K

3.8 μm

Equal mass concentrations

𝛿𝑇(𝑥)𝛿𝑇(𝑥′)

𝛿𝑢(𝑥)𝛿𝜌(𝑥′)

Recall the result for the 
stochastic heat equation



Giant Fluctuation Phenomenon
Vailati, et al., Nature Comm., 2 (2011)

Experiments in 2011 found macroscopic fluctuations in interface mixing.
Phenomenon due to correlation of concentration-velocity fluctuations.

5 mm

Top-down view of 
density fluctuations 
during mixing

Light

Heavy



Giant Fluctuation
Simulations

Donev, et al., CAMCOS, 9-1:47-105 (2014) 

Initial
State

Deterministic
Hydrodynamics

Molecular
Dynamics

Fluctuating
Hydrodynamics

Molecular dynamics 
simulations of this “giant 
fluctuation” phenomenon 
indistinguishable from 
those using fluctuating 
hydrodynamics.



Simulation Results

Early time

Late time

In
te

rf
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e 
Sp
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um

Wavenumber

- Fluctuating Hydrodynamics
- Hard disk Molecular Dynamics

Excellent quantitative 
agreement between 
molecular dynamics and 
FHD for the form and 
growth rate of the rough 
mixing interface.

Donev, et al., CAMCOS, 9-1:47-105 (2014) 



FHD & Instabilities

Stochastic Hydrodynamics Deterministic Hydrodynamics

Donev, et al., Physics of Fluids, 27(3):037103 (2015)



Mixed-mode Instability

13 s

26 s

51 s

g = 0

Initial

𝑘ିସ

With
gravity

Donev, et al., Physics of Fluids, 27(3):037103 (2015)

The non-equilibrium 
fluctuation signal is 
trampled by the 
large amplitude of 
the hydrodynamic 
instability



Barker, et al., Proc. Nat. Acad. Sci., 120 e2306088120 (2023)

FHD & Multi-phase fluids

Can us diffuse interface models 
(e.g., Cahn-Hillard) in FHD to study 
multi-fluid interfaces. 

We have simulated the Rayleigh-
Plateau instability for liquid 
cylinders pinching into droplets.

Currently investigating droplets on 
solid surfaces with contact angle 
boundary conditions.

Breakup of a liquid torus into droplets



FHD & Chemistry

Deterministic

Stochastic (FHD)

Kim, et al., J. Chem. Phys., 146, 124110 (2017)

Chemical reactions can be incorporated 
into FHD by adding source terms to the 
species equation.

𝜕

𝜕𝑡
ρ௞ = −∇ ⋅ ρ௞𝐯  − ∇ ⋅ 𝑭ഥ௞ + 𝑭௞

෪ + 𝛺ത௞ + 𝛺௞
෪

From the chemical Langevin equation

𝛺ത௞ =  ෍ 𝜈௞,௥ 𝑎௞( ρ௜ )

୰ୣୟୡ୲୧୭୬ୱ

௥

𝛺௞
෪ =  ෍ 𝜈௞,௥ 𝑎௞( ρ௜ ) 

୰ୣୟୡ୲୧୭୬ୱ

௥

𝒵௥ 𝜈௞,௥ 

𝑎௞( ρ௜ )

- Stochiometric coefficients

- Propensity (rate) function



FHD & Turbulence

Bell, et al., J. Fluid Mech. 939 A12 (2022) 

Inertial Near Dissipation Far Dis.

Deterministic

FHD

Thermal fluctuations dominate turbulent 
fluctuations in the near-dissipation range, 
that is, for length scales larger than the 
Kolmogorov length.

This theoretical prediction was confirmed 
by our FHD simulations of homogeneous, 
isotropic, incompressible turbulence.

Kolmogorov 
wavenumber

Also verified in DSMC particle simulations
Re = 3600

See my talk on Friday!



Summary & Remarks
Here are some closing thoughts:

• Thermal fluctuations can produce interesting meso- and 
macroscopic phenomena (e.g., giant fluctuation effect). 

• Fluctuating hydrodynamics is a powerful methodology for the 
study of these phenomena.

• There are accurate and efficient numerical methods for the 
fluctuating hydrodynamic equations.

• Simple FHD models, such as the stochastic heat equation, are 
an accessible introduction suitable for university students.

• Many opportunities exist for applying FHD to problems that 
are of interest to mathematicians, scientists, and engineers.  



Thank you for your 
attention and participation

Questions?

QR code for GitHub download

https://github.com/AlejGarcia/IntroFHD

Vorticity in compressible turbulence simulations
(left) Deterministic | (right) Stochastic
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