
Francis J. Alexander
Computer Research and Applications (CIC-3), Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Alejandro L. Garcia a)
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Berni J. Alder
Lawrence Livermore National Laboratory, Livermore, California 94550

(Received 2 November 1999; accepted 22 November 1999)

Our original paper 1 uses Green–Kubo analysis to obtain the dependence of viscosity and thermal conductivity on cell size in stochastic particle algorithms such as direct simulation Monte Carlo (DSMC). Repeating the calculation of the integrals over collision angles, we find that $\langle (\Delta u_i)^2 \rangle = \frac{1}{3} kT/m$ (this value was incorrectly given as $\frac{5}{9} kT/m$). This correction affects only two equations in Ref. 1, specifically Eq. (6) should read

$$\eta^P = \frac{1}{2} m \Gamma L^2 \gamma,$$

and Eq. (8) should read

$$\eta = \frac{5}{16 \sigma^2} \sqrt{\frac{mkT}{\pi}} \left(1 + \frac{16 L^2 \gamma}{45 \pi \lambda^2}\right).$$

Figure 1 shown here is similar to Fig. 1 in Ref. 1 but with both the original and corrected expressions. New DSMC simulations, similar to those described in Ref. 1, were performed. Compared with the original runs, the new simulations used five times as many particles, ran for four times as many time steps, and had half the applied shear (reducing the viscous heating by a factor of 4). Given that the error bars for the original data are about 50% larger than those shown for the new data, both sets of data are in good agreement with the Green–Kubo result.

ACKNOWLEDGMENT

The authors wish to thank Professor N. Hadjiconstantinou for pointing out this correction.

a)Permanent address: Physics Department, San Jose State University, San Jose, California 95192.