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Abstract. Comparison of particle (DSMC) simulation with the numerical solution of the Navier-Stokes (NS)
equations for pressure-driven plane Poiseuille flow is presented and contrasted with that of the acceleration-driven
Poiseuille flow. Although for the acceleration-driven case DSMC measurements are qualitatively different from
the NS solution at relatively low Knudsen number, the two are in somewhat better agreement for pressure-driven
flow.

INTRODUCTION

The hydrodynamic equations may be obtained as a first approximation to the Boltzmann equation [1] and are generally
accurate at the macroscopic level except under some extreme conditions [2, 3], since these Navier-Stokes equations,
are derived under the assumptions of local equilibrium, small gradients and flows with small Knudsen number.
Surprisingly, even for the simple case of acceleration-driven Poiseuille flow with relatively small gradients and
Knudsen number, the Navier-Stokes equations fail to give qualitatively correct predictions. Specifically, they fail to
reproduce the central minimum in the temperature profile and a non-constant pressure profile, which are both predicted
by kinetic theory and observed in numerical simulations down to Knudsen numbers of 10 �2. [4]-[11] Furthermore, it
is not possible to correct this failure by modifying the equation of state, transport coefficients or boundary conditions
and, unlike slip phenomena, the discrepancy is not just near a boundary but throughout the system. The object of
this paper is to investigate whether a similar discrepancy occurs in what appears to be an equivalent system, namely
pressure-driven Poiseuille flow.

The Navier-Stokes equations have the following form [12]:

∂ρ
∂ t

�∇ � �ρv� � 0 (1)

ρ
�

∂v
∂ t

��v �∇�v
�

� ρf�∇p�∇ �µ∇v� 1
3 ∇�µ∇ �v� � ρf�∇ �Pi j (2)

ρcv

�
∂T
∂ t

��v �∇�T

�
� ∇ � �κ∇T��Φ� p∇ �v � (3)

where ρ is density, v velocity, f body force acceleration, P i j pressure tensor, p pressure, µ viscosity, cv heat capacity,
κ thermal conductivity, and Φ the dissipation function (i.e. viscous heating). Pressure-driven flow is related to the
acceleration-driven case because a constant gradient of pressure will serve as a constant body force (acceleration), that
is, the first two terms on the right hand side of eqn. (2) are equivalent at the hydrodynamic level. At the microscopic
level the two driving forces are very different since an external force accelerates individual particles while a pressure
gradient induces a collective flow due to a spatial variation of the particles. For acceleration-driven Poiseuille flow
only the first two terms on the right hand side of eqn. (3) contribute but for pressure-driven flow there can also be
cooling by expansion when the flow is compressible (i.e., when ∇ �v �� 0).

In this paper the velocity, temperature, pressure, pressure tensor and heat flux profiles are obtained from DSMC
simulations for both acceleration-driven and pressure-driven Poiseuille flows and compared with numerical solutions



of the Navier-Stokes equations. In hydrodynamics, the pressure tensor [13] can be expressed by

Pi j � pδi j� τi j� (4)

where τi j represents the viscous stress tensor given by
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where i� j�k are x, y or z with implied summation over k. The heat flux is defined as q ��κ∇T . In DSMC simulation,
the corresponds quantities are defines as [9]

Pi j �� mcic j ��ρviv j (6)
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where c is the particle velocity, i� j�k are x, y or z with implied summation over k. The angle brackets define volume
averages over particles with

ρ �� m � v �� mc � �ρ (8)

In the next section the numerical schemes for the Navier-Stokes solver and the DSMC simulations are described.
The following section presents the results of the numerical investigations. The paper concludes with a discussion of
our results and a list of further directions are given.

POISEUILLE FLOW

In Poiseuille flow the fluid is confined between two rigid parallel plates that are stationary and act as thermal reservoirs.
In the acceleration-driven case the boundary conditions are taken as periodic in the flow direction and a constant body
force is applied in this direction. In the pressure-driven case the boundary conditions are set to create a pressure
gradient and no external field is applied, see Fig. 1.

The numerical solution of the compressible Navier-Stokes (NS) equations is obtained using a second-order Godunov
method [14, 15, 16] to evaluate the hyperbolic fluxes and a Crank-Nicolson scheme to treat the parabolic terms,
which are approximated by standard finite difference methods. The computation of the hyperbolic flux terms using the
second-order Godunov procedure is an explicit procedure so that the integration algorithm has a time step restriction
based on CFL considerations of the Euler equations. The implicit discretization of the parabolic terms requires the
solution of a nonlinear system of equations and this is done by the standard Gauss-Seidel method.

Direct Simulation Monte Carlo (DSMC) [17] is a well-known algorithm for computing gas dynamics at the level
of the Boltzmann equation. In DSMC, the state of the system is given by the positions and velocities of particles.
In each time step, the particles are first moved as if they did not interact with each other. After moving the particles
and imposing any boundary conditions, collisions are evaluated by a stochastic process, conserving momentum and
energy and selecting the post-collision angles from their kinetic theory distributions. Being a stochastic algorithm,
DSMC measurements have statistical variation but this variation is that of spontaneous fluctuations and so confidence
intervals (error bars) may be evaluated using statistical mechanics. [18]

The boundary conditions for the Navier-Stokes equations are: at the entrance (x ��L x�2),

ρ � ρ0� ∂v�∂x � 0� p � p
�
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and at the exit (x � Lx�2),
∂ρ�∂x � 0� ∂v�∂x � 0� p � p

�
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These boundary conditions were chosen in an effort to minimize the entrance and exit boundary layers, that is, mimic
flow in a very long system. At the thermal walls (y � �Ly�2), the velocity and temperature boundary conditions are
v � uslip x̂ and T � T0 �Tjump, where the slip and jump corrections for a fully accommodating surface are [1]

uslip � αλ
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FIGURE 1. Pressure-driven Poiseuille flow

where λ is the mean free path, γ is the ratio of specific heats, and Pr is the Prandtl number. Ohwada et al. [19] and
Sone et al. [20] predict the coefficients α � 1�11 and β � 1�13, which is confirmed by DSMC simulations [21].

In the NS computation, the inflow boundary conditions are imposed by setting the values of the grid points at the
entrance as,

ρin � ρ0� vin � vin�1� pin � p� � (12)

where vin�1 is the velocity at the grid point immediately to the right of an entrance grid point. The outflow boundary
conditions at the exit are imposed in a similar fashion

ρout � ρout�1� vout � vout�1� pout � p
�

� (13)

The inflow and outflow boundary conditions for DSMC are imposed by refreshing the particles in the cells at the
entrance and exit as if they were in contact with a reservoir. At the entrance, the number of particles in each cell
is set according to the boundary condition ρ � ρ 0. The individual particle velocities are generated according to the
Chapman-Enskog distribution [22] with a temperature T � mp��ρk (perfect gas) and with a mean velocity equal to
that of the adjacent fluid cell, vin�1. At the exit the number of particles in each cell is set equal to the number in the
adjacent fluid cell so that ∂ρ�∂x � 0; the particle velocities are set as at the entrance but using the exit pressure p

�

. To
minimize fluctuations the fluid velocity used in setting the entrance and exit boundary cells is evaluated as a running
average.

NUMERICAL RESULTS

The simulated fluid is a hard sphere gas with particle mass m � 1 and diameter d � 1. At the reference density of
ρ0 � 1�21� 10�3, the mean free path is λ0 � m�

�
2πρ0d2��1 � 186. The distance between the thermal walls is

Ly � 10λ0 and their temperature is T0 � 1. The reference fluid speed is u0 �
�

2kT0�m � 1 so Boltzmann’s constant
is taken as k � 1�2. The reference sound speed is c0 �

�
γkT0�m � 0�91 since γ � 5�3 for a monatomic gas. The

reference pressure is p0 � ρ0kT0�m � 6�05� 10�4. The acceleration and pressure gradient are chosen so that the
flow will be sub-sonic, laminar and of similar magnitude in the two cases. Specifically, ρ 0 f � 8�31� 10�8 for the
acceleration-driven case and dP�dx � 1�08� 10�7 for the pressure-driven case (p� � 3

2 p0, p
�

� 1
2 p0, Lx � 30λ0).

In both cases the Knudsen number is Kn � λ�Ly � 0�1, the Mach number is Ma � 0�5 so the Reynolds number
Re�Ma�Kn is of order one.
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FIGURE 2. Stationary density, pressure, temperature profiles: the upper 3 plots are for the acceleration-driven case, the lower
3 plots are for the pressure-driven case in the cross-stream direction at the center of the system, the curves with error bars are the
DSMC results; solid curves are NS results.

The code was first tested for the acceleration-driven case since, as described in the Introduction, this scenario has
received considerable attention in the literature. The results, shown in Figures 2-6, upper plots, are in agreement with
earlier studies and clearly show that the solution of the Navier-Stokes equations qualitatively does not match the DSMC
measurement. Particularly, in DSMC one observes a non-constant pressure profile and a temperature dip in the center
of the channel. Also, the pressure tensor profiles for components Pxx, Pzz and the heat flux profiles for component qx
differ from the solution of the Navier-Stokes equations. On the other hand, the Navier-Stokes equations do accurately
predict the velocity profile, the pressure tensor profiles for diagonal component Pyy and all the off-diagonal components
and the heat flux profiles for components qy and qz. These results are in agreement with earlier DSMC work [6], [9].

The results for the pressure-driven case are shown in Figures 2-7. The comparison with the acceleration-driven case
is best made by considering the profiles in the cross-stream directions measured at the center of the system, Figures 2-
6, lower part plots. As with the acceleration-driven case the Navier-Stokes equations are in qualitative agreement with
the DSMC measurement for the velocity profile (Fig. 3) but unlike before the temperature profile (Fig. 2) is also in
qualitative agreement. In the acceleration-driven case T � T0 due to viscous heating but in the pressure-driven case
T � T0 since the viscous heating is surpassed by the expansion cooling. Interestingly, the DSMC data indicate a reverse
temperature jump at the wall, that is, the temperature of the gas near the walls is slightly greater than T0 though the
temperature gradient normal to walls is negative. The NS and DSMC pressure profiles, pressure tensor components Pxx

have opposite curvature (Fig. 2 and 4) but the magnitude of the pressure is nearly equal in the stream-wise direction
(Fig. 7). The component Pyy qualitatively matches while Pzz is almost constant in DSMC, but has curvature in NS. The
pressure tensor components Pi j match each other well. The heat flux profiles qx shows the same curvature as NS in
the center of the channel, but the profile is significant different near the thermal wall. The agreement for q y and qz is
similar to the acceleration-driven case. The stream-wise velocity and temperature profiles (Fig. 7) do not agree as well
as but this is not so surprising given that Kn � 0�1 and the aspect ratio is only L x�Ly � 3.
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FIGURE 3. Stationary velocity profiles the upper 3 plots are for the acceleration-driven case, the lower 3 plots are for the
pressure-driven case in the cross-stream direction at the center of the system, the curves with error bars are the DSMC results; solid
curves are NS results.
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FIGURE 4. Stationary diagonal pressure tensor Pii profiles the upper 3 plots are for the acceleration-driven case, the lower 3 plots
are for the pressure-driven case in the cross-stream direction at the center of the system, the curves with error bars are the DSMC
results; solid curves are NS results.
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FIGURE 5. Stationary off-diagonal pressure tensor Pi j profiles: upper 3 plots are the acceleration-driven case, lower 3 plots are
the pressure-driven case in the cross-stream direction at the center of the system, the curves with error bars are the DSMC results;
solid curves are NS results.
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FIGURE 6. Stationary heat flux profiles: the upper 3 plots are for the acceleration-driven case, the lower 3 plots are for the
pressure-driven case in the cross-stream direction at the center of the system, the curves with error bars are the DSMC results; solid
curves are NS results.
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FIGURE 7. Stationary velocity, pressure and temperature profile for pressure-driven case; the curves with error bars are the
DSMC results; solid curves are NS results. The profiles are in the stream-wise direction (x-direction) down the center-line (y� 0).

CONCLUSIONS

In this paper, plane Poiseuille flow is studied for acceleration-driven and pressure-driven conditions by comparing
DSMC simulations with numerical solutions of the Navier-Stokes equations. In both acceleration and pressure-driven
flows the velocity profile is approximately parabolic; the NS solution is in better agreement with the DSMC results in
the former case. The qualitative difference observed in the temperature profile in the acceleration-driven case is not
found in the pressure-driven case but the quantitative agreement is only fair. A concave pressure profile is observed in
the DSMC data for both types of flow though NS give a strictly constant pressure in the acceleration-driven flow and
a convex profile in the pressure-driven flow.

This investigation of pressure-driven Poiseuille flow is being extended in various directions. Some of the quantitative
differences observed in the profiles are likely due to the influence of the entrance and exit conditions. These effects may
be minimized by increasing the aspect ratio but then the pressure difference must be increased to maintain the same
pressure gradient and the DSMC simulations become computationally more expensive. A better approach is to modify
the entrance and exit reservoir conditions to better mimic the flow in a long channel. The quantitative and qualitative
differences will also vary with Knudsen number, as has already been shown for acceleration-driven Poiseuille flow,
and a similar analysis is underway for pressure-driven flow. Finally, the DSMC results will be compared with kinetic
theory (BGK approximation, moment methods, etc.) in cases where predictions are available.
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