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The Limiting Kinetic Equation of the Consistent
Boltzmann Algorithm for Dense Gases
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This paper establishes a theoretical foundation for the Consistent Boltzmann
Algorithm (CBA) by deriving the limiting kinetic equation. The formulation is
similar to the proof by one of the authors that the Boltzmann equation is the
limiting kinetic equation for Direct Simulation Monte Carlo [W. Wagner,
J. Statist. Phys. 66:1011 (1992)]. For a simplified model distilled from CBA, the
limiting equation is solved numerically, and very good agreement with the
predictions of the theory is found.

KEY WORDS: Kinetic theory; Enskog equation; direct simulation Monte
Carlo; Boltzmann equation; consistent Boltzmann Algorithm; dense gases.

1. INTRODUCTION

Direct Simulation Monte Carlo (DSMC) is presently the most widely used
numerical algorithm in kinetic theory.(3) The limiting kinetic equation for
DSMC is the nonlinear Boltzmann equation(16) so its application is restricted
to dilute gases. In DSMC, particle pairs are randomly chosen to collide
according to the collision probability for the interparticle potential. For
example, for the hard sphere potential this probability is proportional to
the particles' relative speed. The post-collision velocities are determined by
randomly selecting the collision angles and the number of collisions each
time step is computed from the local collision frequency. Note that in
DSMC particles can be chosen to collide even if their actual trajectories do
not overlap.
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Recently, the Consistent Boltzmann Algorithm (CBA) was introduced
as a simple variant of DSMC for dense gases.(1) Although CBA can be
generalized to any equation of state(2) here we will only consider the hard
sphere gas with particle diameter _. In CBA the collision process is as
in DSMC with two additions. First, when a pair collides the unit apse
vector, e, that is, the unit vector parallel to the line connecting the centers
at impact, is computed from the pre- and post-collision velocities of the
particles. Each particle is displaced a distance _, one in the direction e and
the other in the direction &e (see Fig. 1). Second, the dense hard sphere
collision frequency, which contains the so-called Y-factor, is used. With
these two simple additions CBA yields the hard sphere equation of state at
all densities.

Frezzotti(6) and others(11) have proposed dense gas variants of DSMC
based on the Enskog equation.(13) The main advantages of CBA over
Enskog-based schemes are its simplicity in implementation and almost neg-
ligible effect on computational efficiency for a standard DSMC program.
The transport coefficients for CBA, obtained by Green�Kubo analysis, are
similar to those of the Enskog equation.(1) As already mentioned, CBA can
be extended to potentials other than hard spheres. Besides the standard
problems in kinetic theory, CBA has proved useful in the study of granular
materials(8) and nuclear physics.(9)

Until now the principal deficiency of the Consistent Boltzmann Algo-
rithm was that it lacked a complete theoretical foundation. This paper
establishes much of that foundation by deriving the limiting kinetic equa-
tion for CBA. In the next section we give a description of the CBA by
introducing the corresponding Markov process. In Section 3 we formally
derive the equation satisfied by the limit of the empirical measures of this

Fig. 1. Two illustrations of CBA collision displacement for different apse vectors. Before
collision the particles have position and velocity (x, v), ( y, w). After collision the velocities are
v* and w*; the shifted positions are indicated by shaded particles.
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process when the number of particles tends to infinity. In Section 4 we
transform the limiting equation for measure-valued functions into a form
for densities. The relationship between this equation and other kinetic
equations, including the Enskog equation, is outlined in Section 5. Various
sources of numerical error in the CBA and their influence on the limiting
equation are discussed in Section 6. In order to illustrate the general
results, we consider a simplified model in Section 7. For this toy model, the
stochastic process and the limiting equation are solved numerically, and
very good agreement with the predictions of the theory is found. The paper
closes with some concluding remarks in Section 8.

2. THE MARKOV PROCESS RELATED TO THE CBA

The interaction of two particles (x, v) and ( y, w) is determined by the
functions

x*(x, v, y, w, e), y*(x, v, y, w, e), v*(x, v, y, w, e),

w*(x, v, y, w, e), e # S2

describing the post-collision positions and the post-collision velocities,
respectively. These functions are defined as

v*(x, v, y, w, e)=v+e(e, w&v), w*(x, v, y, w, e)=w&e(e, w&v)

(2.1)

and

x*(x, v, y, w, e)=x+_
(v*&w*)&(v&w)

&(v*&w*)&(v&w)&
(2.2)

y*(x, v, y, w, e)=y&_
(v*&w*)&(v&w)

&(v*&w*)&(v&w)&

where x, y # R3, v, w # R3, S2/R3 is the unit sphere, and ( } , } ), & }& denote
the scalar product and the Euclidean norm in R3, respectively. If
(e, v&w)=0 then define x*=x and y*= y. The parameter _�0 is inter-
preted as the diameter of the particles. The standard Boltzmann collision
transformation is recovered in the case _=0.

Remark 2.1. We consider the position space R3 in order to avoid
the discussion of boundary effects.
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Using (2.1) one obtains

(v*&w*)&(v&w)=2e(e, w&v) (2.3)

and (2.2) takes the form

x*=x+_e sign(e, w&v), y*= y&_e sign(e, w&v) (2.4)

or

x*=x+�(v, w, e), y*= y&�(v, w, e) (2.5)

using the notation

�(v, w, e)=_e sign(e, w&v) (2.6)

From (2.3) one obtains

(e, w*&v*)=(e, w&v)+2(e, v&w)=&(e, w&v)

and

�(v*, w*, e)=&�(v, w, e)=�(w, v, e) (2.7)

so that

(x**, v**, y**, w**)=(x, v, y, w) (2.8)

The Markov process related to the collision step of the CBA has states
of the form

z=((x1 , v1),..., (xn , vn)) # (R3_R3)n

and the infinitesimal generator

A(8)(z)=
1

2n
:

1�i{ j�n
|

S2
Q(z, i, j, e)[8(J(z, i, j, e))&8(z)] de (2.9)

where the jump transformation is

(xk , vk), if k{i, j
[J(z, i, j, e)]k={(x*, v*), if k=i (2.10)

( y*, w*), if k= j
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and the functions x*, v*, y*, w* depend on the arguments xi , vi , xj , vj , e.
The intensity function has the form

Q(z, i, j, e)=Y \1
n

:
n

k=1

g(x i , xk)+ h(x i , x j ) B(vi , vj , e) (2.11)

The functions h and g are mollifying kernels (non-negative approximations
of Dirac's delta-function), and will be specified when necessary. The func-
tion B is the Boltzmann collision kernel. In the case of hard spheres the
collision kernel takes the form

B(v, w, e)=const |(e, w&v)| (2.12)

Finally, the notation used here for the function Y follows that of the
``Y-factor'' from kinetic theory.(13) This function is continuous and strictly
positive with Y(*) going to infinity as * � *m where *m is the density at
close-packing.

3. DERIVATION OF THE LIMITING EQUATION

The Markov process Z(t)=(Xi (t), Vi (t))n
i=1 defined by the generator

(2.9) satisfies

8(Z(t))=8(Z(0))+|
t

0
A(8)(Z(s)) ds+M(t), t�0 (3.1)

where 8 is an appropriate test function, and M(t) is some martingale term.
We consider the function

8(z)=
1
n

:
n

i=1

.(xi , vi ) (3.2)

so that

8(Z(t))=
1
n

:
n

i=1

.(Xi (t), Vi (t))=|
R3_R3

.(x, v) &(n)(t, dx, dv)

where &(n) are the empirical measures of the particle process. According to
(2.9)�(2.11), one obtains

A(8)(z)=
1

2n2 :
1�i{ j�n

|
S2

Y \1
n

:
n

k=1

g(xi , xk)+ h(x i , xj ) B(vi , v j , e)

_[.(x*, v*)&.(xi , vi )+.( y*, w*)&.(xj , vj )] de
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and

A(8)(Z(s))= 1
2 |

R3_R3 |R3_R3 |
S2

Y \|R3
g(x, u) &(n)(s, du, R3)+

_h(x, y) B(v, w, e)

_[.(x*, v*)&.(x, v)+.( y*, w*)&.( y, w)] de

_&(n)(s, dx, dv) &(n)(s, dy, dw)+O(n&1)

where the functions x*, v*, y*, w* depend on the arguments x, v, y, w, e.
Suppose that the following relations are fulfilled as n � �,

&(n)(t) � P(t), M (n)(t) � 0, \t�0 (3.3)

for some deterministic measure-valued function P(t). Under certain
assumptions concerning this convergence, one can conclude from (3.1) that
the limit P(t) satisfies the equation

|
R3_R3

.(x, v) P(t, dx, dv)

=|
R3_R3

.(x, v) P0(dx, dv)

+|
t

0

1
2 |

R3_R3 |R3_R3 |S2
Y \|R3

g(x, u) P(s, du, R3)+ h(x, y) B(v, w, e)

_[.(x*, v*)&.(x, v)+.( y*, w*)&.( y, w)] de

_P(s, dx, dv) P(s, dy, dw) ds

The differential form with respect to t is

d
dt |

R3_R3
.(x, v) P(t, dx, dv)

=
1
2 |

R3_R3 |R3_R3 |S2
Y \|R3

g(x, u) P(t, du, R3)+ h(x, y) B(v, w, e)

_[.(x*, v*)&.(x, v)+.( y*, w*)&.( y, w)] de

_P(t, dx, dv) P(t, dy, dw) (3.4)

with the initial condition

P0= lim
n � �

&(n)(0) (3.5)

1070 Garcia and Wagner



In the case of non-splitting (free flow included) a term of the form

:
n

i=1

(vi , {xi
) (3.6)

is added to the generator, where { denotes the gradient. Applied to the
function (3.2), the operator (3.6) gives

1
n

:
n

i=1

(vi , ({x.)(x i , vi ))

so that additionally the term

|
R3_R3

(v, ({x.)(x, v)) P(t, dx, dv) (3.7)

occurs at the right-hand side of Eq. (3.4).
The weak form (3.4) of the equation is convenient for obtaining

conservation properties (put .=1, v, &v&2).
The crucial point in making the above derivation rigorous is to estab-

lish property (3.3). For the case of standard DSMC (Y#1, _=0), this was
done in ref. 16. General results for stochastic systems with Boltzmann-type
interaction were obtained in ref. 12. Some results covering Vlasov-type
terms (like the Y-factor) can be found in ref. 7. We refer to ref. 17 concern-
ing historical comments and an extended reference list.

4. TRANSFORMATION OF THE LIMITING EQUATION

Assume the measures have densities

P(t, dx, dv)= p(t, x, v) dx dv

and denote

;(x)=Y \|R3
g(x, u) *(t, u) du+ (4.1)

where

*(t, x)=|
R3

p(t, x, v) dv
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Assume that h is symmetric and

B(v, w, e)=B(v*, w*, e)=B(w, v, e)=B(v, w, &e) (4.2)

Note that the kernel (2.12) satisfies (4.2).
Consider the right-hand side of Eq. (3.4). Applying the substitution

(v*, w*) � (v, w), a substitution of variables in the position space, and
properties (4.2), (2.7), (2.8), these terms take the form (cf. (2.5), (2.6))

I1= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de

_;(x) h(x, y) B(v, w, e) .(x+�(v, w, e), v*) p(t, x, v) p(t, y, w)

= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de

_;(x) h(x, y) B(v*, w*, e) .(x+�(v*, w*, e), v) p(t, x, v*) p(t, y, w*)

= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de

_;(x) h(x, y) B(v, w, e) .(x+�(w, v, e), v) p(t, x, v*) p(t, y, w*)

= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de B(v, w, e)

_;(x+�(v, w, e)) h(x+�(v, w, e), y) .(x, v)

_p(t, x, +�(v, w, e), v*) p(t, y, w*)

and

I2= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de

_;(x) h(x, y) B(v, w, e) .( y+�(w, v, e), w*) p(t, x, v) p(t, y, w)

= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de

_;(x) h(x, y) B(v*, w*, e) .( y+�(w*, v*, e), w) p(t, x, v*) p(t, y, w*)

= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de

_;(x) h(x, y) B(v, w, e) .( y+�(v, w, e), w) p(t, x, v*) p(t, y, w*)
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= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de

_;(x) h(x, y+�(w, v, e)) B(v, w, e) .( y, w) p(t, x, v*)

_p(t, y+�(w, v, e), w*)

= 1
2 |

R3
dx |

R3
dy |

R3
dv |

R3
dw |

S2
de

_;( y) h( y, x+�(v, w, e)) B(v, w, e) .(x, v) p(t, y, w*)

_p(t, x+�(v, w, e), v*)

Removing the test functions, one obtains

�
�t

p(t, x, v)=|
R3

dy |
R3

dw |
S2

de B(v, w, e)

__;(x*)+;( y)
2

h( y, x*) p(t, x*, v*) p(t, y, w*)

&
;(x)+;( y)

2
h(x, y) p(t, x, v) p(t, y, w)& (4.3)

Finally, taking into account the free flow term (3.7), we obtain the equation

�
�t

p(t, x, v)+(v, {x) p(t, x, v)

=|
R3

dy |
R3

dw |
S2

de B(v, w, e)

__;(x*)+;( y)
2

h( y, x*) p(t, x*, v*) p(t, y, w*)

&
;(x)+;( y)

2
h(x, y) p(t, x, v) p(t, y, w)& (4.4)

If

h(x, y)=h(n)(x, y) � $(x& y) (n � �) (4.5)
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then Eq. (4.4) takes the form

�
�t

p(t, x, v)+(v, {x) p(t, x, v)

=|
R3

dw |
S2

de B(v, w, e)[;(x*) p(t, x*, v*) p(t, x*, w*)

&;(x) p(t, x, v) p(t, x, w)] (4.6)

According to (4.1), if

g(x, y)= g(n)(x, y) � $(x& y) (n � �) (4.7)

then ;(x)=Y(*(t, x)), and Eq. (4.6) takes the form

�
�t

p(t, x, v)+(v, {x) p(t, x, v)

=|
R3

dw |
S2

de B(v, w, e)[Y(*(t, x*)) p(t, x*, v*) p(t, x*, w*)

&Y(*(t, x)) p(t, x, v) p(t, x, w)] (4.8)

This is the kinetic equation, which is numerically solved by the CBA.
The rigorous derivation of the limiting equation from the stochastic

particle system becomes much more difficult in the case (4.5), (4.7). Such
a procedure for a one-dimensional model with strictly local interaction was
carried out in ref. 4. Results for a discrete velocity Boltzmann equation
were obtained in ref. 14. The Boltzmann case with small initial data was
treated in ref. 10.

5. RELATED EQUATIONS

First we note that in the case Y#1, _=0 (cf. (2.2)) the Boltzmann
equation

�
�t

p(t, x, v)+(v, {x) p(t, x, v)

=|
R3

dw |
S2

de B(v, w, e)[ p(t, x, v*) p(t, x, w*)& p(t, x, v) p(t, x, w)]

is derived from Eq. (4.8).
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With

S2
+=S2

+(v, w)=[e : (e, w&v)>0], S2
&=[e : (e, w&v)<0]

we obtain (cf. (2.4), (4.1), (4.7), (4.2))

|
S2

de B(v, w, e) ;(x*) p(t, x*, v*) p(t, x*, w*)

=|
S

2
+

de B(v, w, e) ;(x+_e) p(t, x+_e, v*) p(t, x+_e, w*)

+|
S

2
&

de B(v, w, e) ;(x&_e) p(t, x&_e, v*) p(t, x&_e, w*)

=2 |
S

2
&

de B(v, w, e) ;(x&_e) p(t, x&_e, v*) p(t, x&_e, w*)

=2 |
S

2
+

de B(v, w, e) ;(x+_e) p(t, x+_e, v*) p(t, x+_e, w*)

so that Eq. (4.8) takes the form

�
�t

p(t, x, v)+(v, {x) p(t, x, v)

=2 |
R3

dw |
S

2
+

de B(v, w, e)

_[Y(*(t, x+_e)) p(t, x+_e, v*) p(t, x+_e, w*)

&Y(*(t, x)) p(t, x, v) p(t, x, w)] (5.1)

Compare this equation with the Enskog equation (cf. [5, Ch. 16])

�
�t

p(t, x, v)+(v, {x) p(t, x, v)

=2 |
R3

dw |
S

2
+

de B(v, w, e)

_[Y(*(t, x+ 1
2_e)) p(t, x, v*) p(t, x+_e, w*)

&Y(*(t, x& 1
2_e)) p(t, x, v) p(t, x&_e, w)] (5.2)
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The revised Enskog equation(15) is the same as (5.2) with the Y-factor
replaced with the local-equilibrium pair distribution function; a similar
revision of CBA has not been investigated.

6. SOURCES OF ERROR IN THE CBA

Equation (4.8) has been derived in the limit n � � assuming that all
other sources of error vanish. As in the Boltzmann case (Y#1, _=0) there
are other forms of the limiting equation, in which the influence of different
numerical errors can be seen.

The splitting of the free flow and the collision step leads to a 2t-error.
This is reflected in a corresponding splitting of the limiting equation into
(4.3) and

�
�t

p(t, x, v)+(v, {x) p(t, x, v)=0

During the collision simulation step a partition R3=C1 _ C2 _ } } } of the
position space into disjoint cells is used. This leads to a 2x-error and is
reflected by the presence of the mollifying kernel

h(x, y)=:
l

1
|Cl |

/Cl
(x) /Cl

( y) (6.1)

in the limiting equation (4.3). Here |Cl | denotes the Lebesgue measure of
the cell Cl , and / is the indicator function.

Moreover, unlike the Boltzmann case, the jump processes in different
cells are not independent from each other since particle positions change
during collisions. This is inconvenient from a numerical point of view.
Therefore the particles are sorted into cells only at the beginning of the
collision time step and these subsystems evolve independently. While in the
original process only particles in the same cell interact, in the approximate
processes particles in different cells may interact if they were in the same
cell at the beginning of the time step. Conversely, particles that begin the
time step in different cells cannot interact even if a collision displaces them
to the same cell during the time step.

This approximation leads to an additional 2t-error, which is reflected
in the limiting equation in the following way. For each l, the initial state
of the approximate process consists of all particles belonging to cell Cl . Its
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evolution is determined by the generator (2.9)�(2.11), where the function h
is replaced by

hl (x, y)=
1

|Cl |
(6.2)

and the sum is taken over the appropriately reduced set of indices. The
corresponding limiting equation is (cf. (4.3))

�
�s

p~ l (s, x, v)=
1

|Cl | |R3
dy |

R3
dw |

S2
de B(v, w, e)

__;(x*)+;( y)
2

p~ l (s, x*, v*) p~ l (s, y, w*)

&
;(x)+;( y)

2
p~ l (s, x, v) p~ l (s, y, w)& , s�t (6.3)

with initial condition (cf. (3.5))

p~ l (t, x, v)=/Cl
(x) p(t, x, v) (6.4)

These equations are solved on the time interval [t, t+2t]. Then the solu-
tion at the end of the time step is constructed as

p(t+2t, x, v)=:
l

p~ l (t+2t, x, v) (6.5)

The time step in the simulations is selected such that only a small fraction
of particles collide at each step so typically this error is small.

7. A TOY MODEL

As an illustrative example, in this section we consider an extremely
simplified random walk model that is directly related to the Consistent
Boltzmann Algorithm. Following the ideas from the previous sections, we
derive a limiting kinetic equation, which may be expressed as a partial
differential equation. This equation is solved numerically, illustrating the
convergence behaviour of the stochastic system.

Consider a system where the particles do not have velocities but
change their positions during an interaction. The evolution of the system is
determined by the generator

A(8)(x)=
B
2n

:
1�i{ j�n

|
S2

h(xi , x j )[8(J(x, i, j, e))&8(x)] de (7.1)
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where x=(x1 ,..., xn) # (R3)n and

xk , if k{i, j
[J(x, i, j, e)]k={xi+_e, if k=i (7.2)

xj&_e, if k= j

Compared with (2.9)�(2.11), the function B is a constant, since particle
velocities are absent. For simplicity we take Y=1.

For 8(x)=(1�n) �n
i=1 .(xi ), one obtains

A(8)(x)=
B

2n2 :
1�i{ j�n

|
S2

h(xi , xj )

_[.(xi+_e)&.(xi )+.(x j&_e)&.(xj )] de

and

A(8)(X(s))=
B
2 |

R3 |
R3 |S2

h(x, y)[.(x+_e)&.(x)+.( y&_e)&.( y)]

_de &(n)(s, dx) &(n)(s, dy)+O(n&1)

so that

d
dt |

R3
.(x) P(t, dx)

=
B
2 |

R3 |R3 |S2
h(x, y)[.(x+_e)&.(x)+.( y&_e)&.( y)]

_de P(t, dx) P(t, dy) (7.3)

in analogy with (3.4).
First we suppose that the limiting measures P(t, dx) have densities

p(t, x). From

I=|
R3

dx |
R3

dy |
S2

de h(x, y) .(x+_e) p(t, x) p(t, y)

=|
R3

dx |
R3

dy |
S2

de h(x&_e, y) .(x) p(t, x&_e) p(t, y)
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and

|
R3

dx |
R3

dy |
S2

de h(x, y) .( y&_e) p(t, x) p(t, y)

=|
R3

dx |
R3

dy |
S2

de h(x, y+_e) .( y) p(t, x) p(t, y+_e)

=|
R3

dx |
R3

dy |
S2

de h( y, x+_e) .(x) p(t, y) p(t, x+_e)=I

one obtains

�
�t

p(t, x)=B |
R3

dy |
S2

de

_[h( y, x+_e) p(t, x+_e) p(t, y)&h(x, y) p(t, x) p(t, y)]

(7.4)

or, with (4.5),

�
�t

p(t, x)=B |
S2

[ p(t, x+_e)2& p(t, x)2] de (7.5)

This basic equation for the toy model is the analogue of the kinetic equa-
tion (4.8).

Equation (6.3) takes the form

�
�s

p~ l (s, x)=
B

|Cl | |R3
dy |

S2
de[ p~ l (s, x+_e) p~ l (s, y)& p~ l (s, x) p~ l (s, y)]

=
B

|Cl | |R3
p~ l (s, y) dy |

S2
[ p~ l (s, x+_e)& p~ l (s, x)] de, s�t

(7.6)

Note that (7.3) implies

d
dt |

R3
.(x) P(t, dx)=0

for .(x)=1 (mass conservation) and .(x)=x (conservation of the mean),
and any symmetric h. Using mass conservation we obtain

|
R3

p~ l (s, y) dy=|
R3

p~ l (t, y) dy=|
Cl

p(t, y) dy, s�t
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which is used to simplify (7.6). Finally, the approximate equations
(6.3)�(6.5) take the form

�
�s

p~ l (s, x)=
B

|Cl | |Cl

p(t, y) dy |
S2

[ p~ l (s, x+_e)& p~ l (s, x)] de, s�t
(7.7)

p~ l (t, x)=/Cl
(x) p(t, x) (7.8)

p(t+2t, x)=:
l

p~ l (t+2t, x) (7.9)

Note that Eqs. (7.7) are linear. Compared with (7.5), one factor of the
quadratic terms has been replaced by a function constant in space and
time.

In the one-dimensional case we choose

B=
D
_2 (7.10)

for some constant D>0, so that Eq. (7.5) takes the form

�
�t

p(t, x)=D
p(t, x+_)2+ p(t, x&_)2&2p(t, x)2

_2 (7.11)

giving in the limit _ � 0 the partial differential equation

�
�t

p(t, x)=D
�2

�x2 p(t, x)2 (7.12)

Note that the unit sphere degenerates to the set [&1; 1], where each point
is given unit weight. An alternative way of writing (7.12) is

�
�t

p(t, x)=
�

�x
D

�
�x

p(t, x)

where D=2Dp(x, t) can be viewed as a nonlinear diffusion coefficient.
Next we consider a situation where the limiting measures P(t, dx) are

not absolutely continuous with respect to Lebesgue measure. Starting on
the grid

G=[i_ : i=..., &1, 0, 1,...]
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the process remains there, so that the limiting measures are concentrated
on G. Using the notations

x=i_, y= j_, p(t, x)=P(t, [x])

and considering the test functions .i ( y)=/[x]( y)=$i, j , one obtains from
(7.3)

d
dt

p(t, x)=B :
j
|

S0
[h( y, x+_e) p(t, x+_e) p(t, y)

&h(x, y) p(t, x) p(t, y)] de (7.13)

in analogy with (7.4). Choosing

h(x, y)=:
l

/[l_](x) /[l_]( y)=$i, j (7.14)

and assuming (7.10), Eq. (7.13) takes the form

d
dt

p(t, x)=D
p(t, x+_)2+ p(t, x&_)2&2p(t, x)2

_2 , x # G (7.15)

in analogy with Eq. (7.11).
Now the single grid points play the role of the cells in the continuous

case. For each l, the approximate process starts with n l particles in the grid
point l_. Its evolution is determined by the generator (7.1), (7.2), where the
function h is replaced by (cf. (6.2), (6.1), (7.14)) hl (x, y)=1, the sum is
taken over the appropriately reduced set of indices, and the coefficient B is
chosen according to (7.10). Thus, the jump intensity is

*l=
Dnl (nl&1)

n_2

Note that |S0|=2. The expected number of jumps during a time interval
of duration 2t is

*l 2t=
Dnl (nl&1)

n_2 2t (7.16)

Each jump consists of choosing a pair i, j, moving the first particle one step
to the right and the second particle one step to the left, according to the
transformation (7.2).
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The corresponding approximate equations are obtained in analogy
with (7.7), (7.8), and take the form

d
ds

p~ l (s, x)=Dp(t, l_)
p~ l (s, x+_)+ p~ l (s, x&_)&2p~ l (s, x)

_2 , s�t, x # G
(7.17)

with initial condition

p~ l (t, x)=/[l_](x) p(t, x), x # G (7.18)

and a recombination rule analogous to (7.9).

Remark 7.1. An explicit difference scheme for Eq. (7.15) provides

p(t+2t, x)= p(t, x)+2t D
p(t, x+_)2+ p(t, x&_)2&2p(t, x)2

_2 , x # G
(7.19)

Analogously, one obtains for Eqs. (7.17), (7.18)

p~ l (t+2t, x)= p~ l (t, x)+2t Dp(t, l_)

_
p~ l (t, x+_)+ p~ l (t, x&_)&2p~ l (t, x)

_2 , x # G

which reduces to

p~ l (t+2t, l_)=p(t, l_)+2t Dp(t, l_)
&2p(t, l_)

_2

p~ l (t+2t, (l+1) _)=2t Dp(t, l_)
p(t, l_)

_2

p~ l (t+2t, (l&1) _)=2t Dp(t, l_)
p(t, l_)

_2

p~ l (t+2t, x)=0, otherwise
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Combining these equations via (7.9) one obtains

p(t+2t, x)=p(t, x)+2t Dp(t, x)
&2p(t, x)

_2 +2t D
p(t, x+_)2

_2

+2t D
p(t, x&_)2

_2

=p(t, x)+2t D
p(t, x+_)2+ p(t, x&_)2&2p(t, x)2

_2 , x # G

which is identical to (7.19).

Remark 7.2. In conclusion, the stochastic algorithm on the grid
solves (as n � �) Eq. (7.15), if there is an appropriate interaction between
cell processes. This equation takes the form (7.12) when _ � 0. The stochastic
algorithm solves (as n � �) Eqs. (7.17), (7.18), if there is no interaction
between cell processes (this is the case for the original CBA). Here an addi-
tional 2t-error is involved. According to Remark 7.1, this limiting equation
takes the form (7.15) when 2t � 0, and therefore (7.12) when 2t � 0, _ � 0.

Fig. 2. Particle distribution in the stochastic system (histogram bars) and probability dis-
tribution from the explicit difference scheme (solid line) after 215 time steps.
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Fig. 3. Second and fourth moments versus time as measured in the stochastic system (g
and m) and in the explicit difference scheme (_ and +). The solid and dashed lines go as t2�3

and t4�3, respectively.

The results from numerical simulations of the stochastic system on a
grid (cf. (7.16)) and of the explicit difference scheme (7.19) are shown in
Figs. 2 and 3. The stochastic system has 5000 particles. For both the
stochastic system and the difference scheme we take _=0.3, D=1, and
2t=10&2. The initial distribution is a Gaussian with zero mean and unit
variance; the distribution after a long time is bullet-shaped, as shown in
Fig. 2. The second and fourth moments go as t2�3 and t4�3, as shown in
Fig. 3; these results may be obtained from (7.12) using the scaling
hypothesis (see appendix). Note that the distribution spreads more slowly
than in the standard random walk model for which these moments go as
t and t2.

8. CONCLUDING REMARKS

The Consistent Boltzmann Algorithm has proven to be a useful com-
putational tool in the study of moderately dense gases (see Section 1). The
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algorithm's original formulation was based on general arguments from
kinetic theory, specifically, considering how a displacement of colliding
particles could give the hard-sphere virial. This paper gives CBA a better
theoretical foundation by establishing the limiting kinetic equation for the
stochastic process on which the numerical scheme is based. Many studies
of this kinetic equation remain to be done: the proof of an H-theorem;
the calculation of the equation of state and transport coefficients by the
Chapman�Enskog expansion, etc. In brief, it will be of interest to repeat
earlier studies that considered the Boltzmann and Enskog equations and,
if these show the new kinetic equation to be fruitful, we will present them
in a future paper.

APPENDIX: SCALING HYPOTHESIS FOR THE TOY MODEL

The scaling hypothesis states that the probability density scales as
p(x, t)=:p(:x, :at), where the constant a is determined by the governing
equation. For this equation we take the more general expression

�
�t

p(x, t)=
�2

�x2 pn(x, t)

with n=1 giving the standard diffusion equation and n=2 giving (7.12).
To find the scaling power a, we define z=:x, s=:at and write

�
�t

p(x, t)=:
�
�t

p(z, s)=:a+1 �
�s

p(z, s)=:a+1 �2

�z2 pn(z, s)

=:a&1 �2

�x2 pn(z, s)=:a&1&n �2

�x2 pn(x, t)

so a=n+1. Now consider the moments of the distribution,

(xm(t)) =|
�

&�
xmp(x, t) dx=|

�

&�
:&mzmp(z, s) dz=:&m(xm(s))

If the moments follow a power law of the form (xm)B tb then the scaling
result gives tb=:&m(:at)b so b=m�a. For n=2, the scaling power is a=3
and b=m�3, in agreement with the results shown in Fig. 3.
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