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Two recent works have shown that at small Knudsen nunigthe pressure and temperature profiles in
plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes
equations. Tij and Santdd. Stat. Phys76, 1399(1994)] used the Bhatnagar-Gross-Kook model to show that
the temperature profile is bimodal and the pressure profile is nonconstant. Malek-Mansour, Baras, and Garcia
[Physica A240, 255(1997] qualitatively confirmed these predictions in computer experiments using the direct
simulation Monte Carlo metho©OSMC). In this paper we compare the DSMC measurements of hydrody-
namic variables and non-equilibrium fluxes with numerical solutions of the Burnett equations. Given that they
are in better agreement with molecular-dynamics simulafiBnSalomons and M. Mareschal, Phys. Rev. Lett.

69, 269(1992] of strong shock waves than Navier-StokEsJ. Uribe, R. M. Velasco, and L. S. GaeColn,

Phys. Rev. Lett81, 2044(1998], and that they are second order in Knudsen number suggests that the Burnett
equations may provide a better description for lakgeWe find that for plane Poiseuille flow the Burnett
equations do not predict the bimodal temperature profile but do recover many of the other anomalous features
(e.g., nonconstant pressure and nonzero parallel heat [Bik063-651X99)02410-1

PACS numbsg(s): 05.20.Dd, 05.60-k, 02.70.Ns, 47.45:n

I. INTRODUCTION (countablg even for a fixed Reynolds numbg2], so even
when only one solution exists, as in plane Poiseuille flow

The Navier-Stokes equations provide a sound and robustith stick boundary conditions, one needs to perform a sta-
theoretical method to study flows at the macroscopic levebility analysis of the solution§3].
which have innumerable applications. The complexity of the Recently Tij and Santof4] showed that a perturbative
equations is due to the fact that they are nonlinear except fagolution to the Bhatnagar-Gross-KodBGK) model pre-
simple cases where, due mainly to the symmetries involvediicted qualitatively different temperature and pressure pro-
they reduce to linear equations that can be solved in a closefiles from those predicted by the Navier-Stokes equations.
form. The Navier-Stokes equations can be derived fromMalek et al. [5] confirmed this result using the direct simu-
strictly macroscopic arguments or from a kinetic model, suchation Monte Carlo(DSMC) method to model plane Poi-
as the Boltzmann equation for dilute gases; however, theiseuille flow of a dilute hard sphere gas feg~10 andK
derivation assumes both local equilibrium hypotheses ane-1/10. Maleket al. also solved the Navier-Stokes equations
the small gradient approximation, which allows one to for-numerically and showed that slip corrections could not ex-
mulate the constitutive equations needed to close the consggtain the discrepancy. The results obtained by Tij and Santos
vation equations. In situations where large gradients exist, asre in better quantitative agreement with the DSMC data if
in a shock wave or in a boundary layer, these equations anée Chapman-Cowling expressions for the transport coeffi-
expected to fail, as has been pointed out in the past. Furthegients are used instead of the those derived from the BGK
more, being a macroscopic theory their validity is also re-model, which give an incorrect Euken factor. While the Eu-
stricted to situations in which the Knudsen numlik) is  ken factor is in contradiction with the results from both the
small and a crucial point is to know, for a given problem, theChapman-Enskog method and experiment, it should be
range of Knudsen numbers where they remain valid. Anothepointed out that the BGK model is able to reproduce quali-
important parameter is the Reynolds numbg)( which in  tative features in situations far from equilibrium where the
some cases determines when the solutions cease to be lar@ihapman-Enskog method is not applicable, and so the model
nar and the flow becomes turbulent. is useful as a guide in such situations.

The Navier-Stokes equations can, in principle, be solved To the authors’ knowledge, Poiseuille flow is the first
as an initial value problem. Usually stick boundary condi-scenario in which the Navier-Stokes equations have been
tions are used, but when the Knudsen number is not smahown to be susceptible to significant improvement for a
(K>10"?) the slip at the boundaries must be taken intoflow with relatively small gradients. Since Uribet al. [6]
account1]. There exist simple examples in which the solu-showed that the Burnett equations can provide an accurate
tions to the stationary Navier-Stokes equations are infinitelescription for strong shock waves, it is then a natural step to

compare the Burnett equations with DSMC simulations of

Poiseuille flow, and that is what we do here. The next four
*Permanent address: Physics Dept., San Jose State Universigections present the theoretical development of the conserva-
San Jose, CA 95192. tion equations, the Navier-Stokes equations, the Burnett
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equations, and the Burnett fluxes. The DSMC algorithm is o
outlined briefly in Sec. VI; simulation results are presented NS
and discussed in Secs. VIl and VIII. Section IX contains final P =pl—2uVc, (6)

remarks and a discussion of future work.

qi¥S=—\VT, (7)
Il. CONSERVATION EQUATIONS

We consider the flow between two infinite and stationarywhere 1. is the shear viscosityy the thermal conductivity,
plane parallel walls located ya==L/2. The hydrodynamic andl is the unit tensor. The double overbar denotes the sym-
velocity ¢, is assumed to have only ancomponent so that metric tensor, and the circle means the corresponding trace-
Co=u=u(r)i in the laminar, stationary cadenless stated less tensor. For stationary, plane Poiseuille flow, these con-
otherwise, we adopt the notation used by Chapman angtitutive relations simplify to
Cowling [7]). Following Landau and Lifshit8] we assume
that all the relevant quantities can only depend onytlee-

ordinate, in particulacy=u(y)i. Noting that, for any func- pNS — _Mdu(y),
tion, f(y), (co-V)f(y)=0, it follows that the conservation yx dy
equations reduce to
. NS _
0=V-(p(y)u(y)i), (D) Py =p(y),
()
1 dP NS
0=————+a 2 Pyz =0,
p(y) dy @ v
1 dP dT(y)
0=— v 3 NS _ _
p(y) dy 9 Ay dy
1 dpP, : - -
0=— (_y) dy ’ (4) For a dilute gas of rigid spheres, the transport coefficients
p are[7]
du(y) day(y)
0=Pr—gy " dy (5) _ 5o, (mKTy)\ 78, (KT
#1602\ o SR R

where p(y) is the mass densityp(y) the pressure tensor,

the heat flux, anda the acceleration from a constant, . . . .
a(y) where o is the particle diameter. While often the transport

external body forcde.g., gravity acting in thex direction. . . - ) .
Equation(1) is the mass conservation equation, which is au_coeff|C|ents are approximated by the first Sonine expansion
' c,=c,=1), for rigid spheres more precise values, (

tomatically satisfied. Equation®), (3), and(4) are the com- (Cu
ponents of Newton’s second laimomentum conservation ~ — 1:016034 and, =1.02513) are knowi7].

and Eq.(5) is the energy conservation equation. Notice that SuPstitution of Eqs(8) and (9) into Egs. (1)—(5) leads
we can conclude that the componefg, and P, of the

pressure tensor are constant, a result that does not depend on

the constitutive relations. 2 dT du

For the discussion that follows it is important to keep in 1OC,L|<2T(Y)2F: —5C,L|<2T(Y)d— v
mind that the results of this section depend on the three y yay
conditions:(1) u,=0. (2) u,=0. (3) All the physical quanti- —32pala(mmkT(y))¥2,

ties depend only on. The last condition will be referred to

as Landau’s symmetry argument. 0T dul? 4T 2
In a dilute gas the pressupdy) and temperaturé(y) are 3 o 2 an® 39!

related by the ideal gas equation of state pk T/m, where 30c,k T(y)dyz 8mc,k7T(y) dy 15,k dy/ -

m is the particle mass ank is Boltzmann’s constant. To (10

have a closed system in the variabl€y), p(y), andT(y),

one needs to introduce constitutive relations. Since the COMNote that in the Navier-Stokes regime the pressure is con-

%tant, so we have two second order nonlinear equations for

oped in Sec. Il

Ill. NAVIER-STOKES REGIME IV. BURNETT REGIME

The Navier-Stokes expressions for the pressure tensor The second order Knudsen number corrections for the
(PNS) and the heat flowd"S) are given by stress tensorR(®) and the heat fluxd®) are given by[7]
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5 2[p ° 5 o this result, we are Ie_d to sqlve the_ foIIowing reduced second
p(2) = wl%A§+ wz%{—? &—2Vc,- g_:.] + ws;‘)‘_T VAYAR order system of ordinary differential equations:
2 ° 2 ° 2 2
+(1)4pp-|— VpVT+w5% VTVT-Fwﬁ;L)L— 2.8 d2u* - 1 dT* £+bop*(s)
11 ds® 2T*(s) ds ds T*3%g)’

2

2
D
q@= 01%AVT+ 62%[D—:VT—V%-VT

/ Q
+60;—=Vp-
03p_|_Vp e

wr o, Buf_ d’T* 8¢, (du*|® 1 [(dT*\? 14
T0a7 Vet 05 T VT-6, d$2 = 15l ds| 2T*(s)\ ds |
where the numerical values for the's and 6’s are given
below and[7]
d’p* _bip**(s) bp**(s) bip**(s) 1 /dp*)2
e=Vc,, A=V-c, ds”  T*2(s)  T*%(s) T*¥s) P*(s)l ds
Do 2 1 dp* dT* 2p*(s)/du*\?
E(VT):_gv(TV'CO)_(VCO'VT)’ (12 T*(s) ds ds T*(s) | ds
° 8wzp*(s)c, [du*\? p*(s)wz (dT*)|2
Do 1 — 15w, T*(s)C) | ds ZwZT*Z(S) ds
= f’a)zV(a——V )—V V.
bt p PV VG i dp* dT*  wgp*(s) (dT*)2
For plane Poiseuille flow, we are led to w,T*(s) ds ds ~ w,T*%(s)| ds
wgp*(s) [du*|?
(2) — (2) — [ L I
Pyx=0, Pyz=0, +4w2T*(S)< ds )’ 19
P<2)—2 wou® dpdp 2 wu® d’p 2 wpu®
Y3 p(y)p(y) dy dy 3 p(y)p(y) dy* 3 p(y) wheres=y/L, p*(s)=p(y)/p(0), T*(s)=T(y)/Tg, with
Tr the temperature of the walls and™*(y)=u(y)/
du)2 2 (1)3,1,62 d2T 2 (1)4/.L2 R P . .
X|l—| +so——— -t ————— 2kTr/m)Y2 The coefficients are
dyl Y3760 82 T3 pT(Ie) (2KT=/m)
><dpdT_’_Z wsp? (dT>2+l w6,u,2(du>2 . , ) .y
dydy 3p(Ty?ldy) "12ppy) \dy/ o __BLavemROmot - 384LTp(0) mo
1 63u? dpdu 16,u°d’u 3  Gsu?
q)((z):_L_p__F_i_z_f__L de
2 p(y)p(y) dy dy 2 p(y) dy* 2 p(y)T(y) LZM(O)T(O)Z
dT du b,= 2 (16)
- 2)— 2)_ p(0)T
Xdy dy’ q,’=0, q,;’=0. R

Note that there is a heat flow along tRkedirection, but it

for symmetric profiles. Though the physical system is geo-

does not make a contribution to the conservation equation?‘netrically symmetry about theaxis, this does not guarantee

the reason being that in the energy conservation equation one symmetric profile since spontaneous symmetry breaking

has to evaluate the divergence of the heat flow, and only the . .

y component of the heat flux can contribute. may occul{2]. quever, the proflles measured in our DS.MC
The x component in the momentum conservation is theCOMputer experiments are in good agreement with this as-

same as the Navier-Stokes result beca®{§&=0. Similarly sumed symmetry. . .

the z component of momentum conservation is not altered In tern:s of the variablesy;(s) =u(s), Y5(s)=T7(s),

so only they component of momentum conservation is al- *3(8)=P (f)’ Y,(s)=du/ds, Y5(s)=(dT*/ds)(s), and

tered in the Burnett regime. Since this component must be &6(S)=(dp*/ds)(s), the previous system of three second

constant, we see from previous equations that the result is @der differential equations can be expressed as a system of

second order ordinary differential equation forin the pre-  six coupled first order differential equation¥,=F(Y),

vious equation foiP,, there appears a second derivative forwhere the dot denotes the derivative with respecs. tohe

the temperature, which can be obtained from @€). Using  vector fieldF is given by
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Fi(Y)=Y4, Fo(Y)=Ys, F3(Y)=Yg, Notice that#'s are not needed for solving the differential
equations, but are used to evaluate the heat flux; @&lsnd
1Y,Y5 Y3 6, do not appear in the expressions for the fluxes given by
Fa(Y)=— EY_2+ 0y 3/2’ Egs. (13). The Navier-Stokes equations result from taking
2 F;=0 andF¢=0 in Egs.(17).
8c, , 1Yi
Fs(Y)=— 15, 4 2Y,’ V. BURNETT DESCRIPTION FOR THE FLUXES
5 5 3 w2 2(17) In Sec. IV we saw that, unlike the Navier-Stokes equa-
Y3 Y3 E E_YGYS _ Y3Ys tions, the Burnett description predicts a heat flow alongxthe
Fe(Y)=by1— +b,— —b1— Y v v o ; :
Y3 Y3 Y3 3 2 2 direction that has no effect on the temperature profile. Since
the computer experiments can measure momentum and heat
8c, w3 Y3Y: w5 YaY: w4 YeYs flux, it is useful to evaluate the Burnett expressions explicitly
C15c,w, Y, 2w, Y2 +w_2 Y, for the various components of these fluxes.
First consider the expression of tlhecomponent of the
ws Y3Y2  wg Y3Y3 heat flux; from Eqgs(13), we have
wp Y3 4wy Y3 - 1 Gap? dpdu+1 0412 d2u+3 O 12
where for simplicity an explicis dependence is omitted. X "2 p(y)p(y) dy dy ' 2 p(y) dy? " 2 p(y)T(y)
To have a well posed problem requires the specification dT d
S " ; u
of initial or boundary conditions. For the Burnett equations, X (20)
several issues regarding boundary conditions are still unre- dy dy

solved. Rather than looking at this point in a general settingT o .
it is important to know first if the Burnett equations can he second derivative of the velocity can be evaluated from

indeed reproduce the features observed in problems fdf'® Navier-Stokes results and the mass density can be elimi-
which the Navier-Stokes equations are susceptible to imbated from the equation of state, giving

provement, and this is what we would like to test here for 2.2 ) 202
plane Poiseuille flow. 2 25 BsCKT(Y)"dpdu 25 6,C,KT(Y)
To avoid the difficulty of specifying boundary conditions X 512 wolp(y)? dydy 1024 molp(y)?
aty==*L/2 (s==x1/2), we use the centerlins€0) pro-
file values measured in the DSMC simulations as the initial dTdu 5 6,c,a(mkT(y))*
. . ><
values for the previous first order systdiq. (17)]. The dy dy 32 \/;04

explicit initial conditions used are

21,2 2
U (0)=ug, TH(0)=To, P*(0)=1, (18 |75 BseKTlY)" dT du

_— . (21
4

with the derivatives as=0 equal to zero and the valuag, 512 moply) dydy

p(0), andT, taken from the DSMC data. The dynamical

system[Eq. (17)], is given in terms of quotients of differen-

tiable functions, so that it is differentiable id=RXR"

In terms of the notation used for the dynamical system,
the reduced form of th& component of the heat flow reads

X +>< 3 H + HS
R™XR®, R being th_e real_n_umbers a® the positive ) dlY§Y4Y6 d,Y,Y Vs
real numbers. In particular, it is locally Lipshitz in that set (@)% — x _
[9], so that the usual local existence and uniqueness theorem ™% 2\/§(kT /)32 Y% Y,
holds for the initial values used as long as they are elements YRRy
of U [9,10]. We would like to emphasize that the Burnett o’/m
equations will be solved with initial conditions provided by RVAVRY.
the DSMC data; in this way the question of slip at the bound- oY, + 4727475 22)
aries is bypassed, but the calculated profiles at the bound- 3vie vz o
aries allow us to compare the predicted slip with the DSMC
data. where
Finally, the values of the coefficients are
2 2
407 1 dyo 2> KTebaCy 25 KTrfsC,
01=1.014 2| 5 - 5], ©2=2X1.014, 1024 o wp(0)L?’ 2048 gmp(0)L?’
3 5 ¢v26,c,am 75 kTrésC?
3=3X0.806, w;=0.681, ws= x0.806-0.99, dy= — 78#, di=+ 10 %.
1 1024 07 L
19 KT\ p(0)
ws=8x0.928, 6,=—3.09, 6,=2.418, Since according to Eq.7) there is nox component of the

heat flux at the Navier-Stokes regime, we conclude thakthe
05=8.3855. component of the total heat qu>qI), meaning the Navier-
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Stokes plus the Burnett contributions, is given qﬁ,:q)'js system is periodic in th& andz directions. Second, after all
+q®=q@ . Similarly we obtain that particles have moved, a given number are randomly selected

for collisions. This splitting of the evolution between stream-

qr ing and collisions is accurate if the time st&y< 7, wherer
TH= — L —dY,Ys, is the mean collision time for a particle.
2\/§(kTR/m)3’2 The concept of “collision” implies that the interaction
T m potential between particles is short ranged. In the simulations

presented here the particles are taken to be rigid spheres of
™ _{ (23 diameters, so 7= m/pma®(v,) where(v,) is the average
9" =5 relative speed among the particles. The number of collisions
amongN particles during a time step M = 3NAt/7. We use

wher . ) -
ere Bird’s “no time counter” method[11] for determiningM,
5 since it avoids the explicit evaluation ¢¥,).
75 ¢ oV2 : - :
= — ———. (24) Particles are randomly selected as collision partners with
256 | \/x the restriction that their mean separation be a fraction of a

mean free path=(v)r [16]. This restriction is typically en-
Several components of the pressure tensor can be treatésrced by sorting the particles into cells whose dimensions

in a similar way to obtain are smaller than a mean free path. For hard spheres, the
probability of selecting a given pair is proportional to the
. pQ‘X5+ pg() . pZNer pg) relative speed between the particles. DSMC evaluates indi-
* — * —

=0, vidual collisions stochastically, conserving momentum and

energy and selecting the post-collision angles from their ki-

NS (2 NS (o netic theory distributions. For hard spheres, the center of

PS4 p(2) P+ P2) locity and relati d d in the colli-

T Uy yy TPy mass velocity and relative speed are conserved in the colli
=7 S/ Ye 204,

5= 0 Py T Tp)

Tx
X p(0) Pyy = p(0) =d7, sion with the direction of the relative velocity uniformly dis-
(25) tributed in the unit sphere. This Markov approximation of
pNS, B2 5 1 doy the collision process is statistically accurate so long as the
Te— XX XX Sy T g 2y2 number of particles in a collision cell is sufficiently large,
X p(0) 2% 2 7%y, typically over 20[17,18.

We define the average density i(fv) as

TH P,Z\IZS+ P(Zzz) T
s = = 3Y3—d;— P, N;
p(0) 1 1
(f)y=g 2 o 2 fw(b), 27)
where Ny T Ve iee
5 2c kT 25 ,c2h, T2K2 vyherevi is the veloc_ity of particle, andN; is the ngmber of _
de=— — L, d=1— — M, time steps over which samples are taken. The inner sum is
16 \[7o2L p(0) 384 L%p(0)?ma? over all particles within celt, which has volumé/, and is
(26) centered at positioy. The hydrodynamic variables are de-
2y 202 21242 fined as
d 25 (l)zCszTRk d 25 CMk TRwewz
©~76812p(0)2m0" 171024 7o p(0)2L2"
p(0)’ma 7o"p(0) p(y)=(m)y, (28)
andb, is given by eq(16).
u(y)=(mv)y/p, (29

VI. DIRECT SIMULATION MONTE CARLO METHOD

The DSMC method is a well-established algorithm for 2m /1 1
computing gas dynamics at the level of kinetic theory. For T(y)= W(%mvz)y— §PU2>, (30
completeness, this section presents a brief summary of the P
method; it is described in detail in R¢f.1]; see Ref[12] for
a tutorial, and Refd.13,14 for reviews. Wagnef15] proved andp=pkT/m. The fluxes are defined as
that the DSMC method is equivalent to a stochastic evalua-
tion of the Boltzmann equation. _ _ . _ .

In the DSMC method, the state of the system is given by Pap(y) = (M(Va™Ua) (V5 Ug) y=(MVaV)y pu“uﬁ(él)
the positions and velocities of particles,;,v;}. First, the
particles are moved as if they did not interact; that is, their
positions are updated g+ v;At+ 3aAt?, whereAt is the du(Y)=3(M(v,—u,)|v—ul?),
time step. A particle that strikes the thermal walls at
y==*L/2 has its velocity replaced with a random value gen-
erated from the biased Maxwell-Boltzmann distribution; the (32

= 3(mv,v?),—(mv,v,)u.+pu,u?—3u,(mv?),,
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where @, B, and y arex, y, or z with implied summation 1.0 . - - .
over 7.

VIl. SIMULATION RESULTS 08

To simplify comparison with the DSMC data in R¢g],
for all the simulationsn=o=Tg=1 andk=3. The sound
speed at equilibrium is/5kTr/3m=1.29. The equilibrium
density ispy=1.21x10"3, giving a mean free path df, u, 06
=186.

A. Ten mean free path case

To simplify comparison with the DSMC data in R¢g],
the pressure is normalized by (7.133020 %)2kTr/c® to
makep* (0)= 1. The simulations were done for an accelera- o o
tion of a=1.6x10 *2kTg/mo and a system size of 0.2 ' . : :

. . 0.5 -0.3 -0.1 0.1 0.3 0.5
=1860r=10,. Using these values, we obtain s

0.4

bo=—6.235007643, b,;=—162.3309911, FIG. 1. Reduced velocity profile for the component of the

s velocity vectoru} vs s for the L=10, system. Circles: DSMC;
d;=—0.5022035&% 10" >, the error bars are smaller than the size of the symbols. Solid line:

Burnett.
d,=—0.196493245% 10" °,

daz — 02450273776 10" 4 bo=—5.879345273, b,=—577.3582581,
3= —Y '

d,= +0.40885709% 10 * 39 di=—0.133145012% 10",
ds=—0.1288339708 103 d,=—0.52094954086 10 ©,
de= —0.09546098954, d3=—0.612568444% 10",
(37)
dy=0.008456678889. d,=+0.108397577% 10 4,
The coefficientb, was determined in such a way that the ds=—0.6441653538 10 %,
solution to the differential equations reproduced the qualita-
tive behaviqr for the DSMC pressure profiles. The explicit dg=—0.05061788107,
value used is
from which we obtain 0.0020 ' ' ' '
d,=0.9953798101, dg=0.002310094933. (35
Finally the initial conditions used are 0.0010 .
u*(0)=0.90287, T*(0)=1.2052, p*(0)=1.0, u T i3
(36) i N X
0.0000 & L
with the derivatives at the center of the channel equal to zero T =ii
The simulation contained 2:510* particles, and evaluated =
2.5x 10° collisions with statistical samples taken during the -
latter 1.2< 10° collisions. The results for the profiles of the -0.0010 | .
normal variables and some moments are given in Figs. 1-14
B. 20 mean free path case 10,0020 . . . .
For comparison with the DSMC data in Rg5), the pres- 0.5 03 0.1 0.1 0.3 05

sure is normalized by (6.7X710 %)X 2kTg/o® to make s

p*(0)=1. The simulations were done for an acceleration of FIG. 2. Reduced velocity profile for thg component of the
a=4.0x10 °X2kTg/mo and a system size of =3720  velocity vectoruy vs s for the L=10, system. Circles: DSMC.
X o=20,. Using these values, we obtain Solid line: assumption for plane Poiseuille flow.
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0.0010

1,

-0.0010 E

-0.0020 . . L

-0.5 -0.3 -0.1 0.1
S

0.3

0.5

FIG. 3. Reduced velocity profile for the component of the

velocity vectoru} vs s for the L=101, system. Circles: DSMC.

Solid line: assumption for plane Poiseuille flow.
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1.040 T T T

1.010

1.000
-0.5

FIG. 5. Reduced pressure profig vs s for the L=10, sys-
tem. Circles: DSMC; the error bars are of approximately the same
size as the symbols. Solid line: Burnett.

The coefficientb, was determined in such a way that the With the derivatives at the center of the channel equal to zero.
solution to the differential equations reproduced the qualitaThe simulation contained 5:010" particles and evaluated
tive behavior for the DSMC pressure profiles. The explicit5.0X10% collisions with statistical samples taken during

value used is
b,=0.2047,

from which we obtain,

(39)

d;=0.9996454541, dg=0.0001772729471. (39

Finally the initial conditions used are:

u*(0)=0.7575, T*(0)=1.1293, p*(0)=1.0,

1.22 T T T

(40)

1.20

T 118

1.16

1.14
-0.5 -0.3 -0.1 0.1

0.5

FIG. 4. Reduced temperature profilé¢ vs s for the L=10,
system. Circles: DSMC; the error bars are of approximately theproximately three-fourths of the size of the symboBurnet) Long

same size as the symbols. Solid line: Burnett.

the latter 2.5 10 collisions. The results for the profiles of
the normal variables and some moments are given in Figs.
15-25.

C. 40 mean free path case

For comparison with the DSMC data in RE%], the pres-
sure is normalized by (6.55510 4)x2kTgo® to make
p* (0)=1. The simulations were done for an acceleration of
a=1.0x10 °x2kTg/mo and a system size of =7440
X o=40,. Using these values, we obtain

0.00005

0.00003 k

0.00001

q*

X
-0.00001

-0.00003

-0.00005 L ! L L
-0.5 -0.3 -0.1 0.1 0.3 0.5

FIG. 6. Reduced component of the heat fluxy; , vs s for the
L=10, system. Circles: DSMC. Solid line: the error bars are ap-

dashed line: Navier-Stokes.
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FIG. 7. Reducey component of the heat flugy , vss for the S

L=10, system. Circles: DSMC; the error bars are approximately
half of the size of the symbols. Solid line: Burnett. FIG. 9. Reducegy component of the pressure tensﬂj‘y, VSS
for the L=10, system. Circles: DSMC. Solid line: Burnett.

by=—5.729018622, b,;=—2192.8448741, ) _ _ . .
solution to the differential equations reproduced the qualita-

tive behavior for the DSMC pressure profiles. The explicit

d,;=—0.341598990% 10" °, :
value used is

_ -6
d,=—0.133654750% 10" ", b,= +0.051335336, (42

d3=—0.15314211K 10 °, from which we obtain

41
d,=+0.278104692% 10 °, ) d;=0.9999765896, dg=0.00001170519095. (43)
d-= — 0.00003220826771 Finally the initial conditions used are
5=—0. ,
u*(0)=0.689452, T*(0)=1.09814, p*(0)=1.0,
dg=—0.02597303478, (44)

with the derivatives at the center of the channel equal to zero.
The simulation contained 6:010% particles and evaluated
The coefficientb, was determined in such a way that the 9.0X 10 collisions with statistical samples taken during the

dy=0.000626027441.
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@' 1.04
-0.0000010 | E :

-0.0000020 L . L L
-0.5 -0.3 -0.1 0.1 0.3 0.5 ! .Oq
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FIG. 8. Reduced component of the heat fluxy, , vs s for the FIG. 10. Reducedtx component of the pressure tensef, , vs
L=10l, system. Circles: DSMC. Solid line: Burnett and Navier- s for the L=10, system. Circles: DSMC; the error bars are of
Stokes. approximately the same size as the symbols. Solid line: Burnett.
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Navier-Stokes.
latter 3.0< 10° collisions. The results for the profiles of the

ggrmal variables and some moments are given in Figs. 26§ignificant, in agreement with previous DSMC and

molecular-dynamic$MD) results[19]. The u, profiles pre-
dicted by the Burnett and Navier-Stokes equations are nearly
identical, so the latter are omitted in Figs. 1, 15, and 26.

This section discusses the general features observed in the For plane Poiseuille flow we assumed that the other com-
above DSMC data and the comparison with the continuunponents of the hydrodynamic velocity to be zero, and the
equations. In some cases the effects are subtle, which is teeasured profiles fan, andu, are shown in Figs. 2, 3, 16,
reason we provide numerous graphs where the reader cd, 27, and 28. For the velocity component perpendicular to
obtain a more detailed picture. In several cageg.,u,, T, the walls the DSMC data are consistent with the assumption
Pyx, andqy) the profiles obtained from the Navier-Stokes thatu,=0. For the parallel component,, there is notice-
equations and Burnett equations are practically indistinguishable variation, especially in the=40, system(Fig. 28,
able so only the latter are shown. because the long wavelength fluctuations in the periodic di-

From Figs. 1, 15, and 26, we conclude that the profile fofrections are very long lived. A similar effect is expected in
the x component of the velocity is in reasonable agreemeny;, | put is masked by the mean flow, which is nearly four

with the Burnett equations. The largest difference is obprders of magnitude larger. Though it is possible that the
served at the highest Knudsen numbé&r=I1,/L=1/10,

where the discrepancy in the slip at the boundary is the most

VIIl. ANALYSIS OF THE RESULTS
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FIG. 14. Reducegx component of the pressure tenslayx, Vs

FIG. 12. Reducedx component of the pressure tense},, vs sfor theL =10 system. Circles: DSMC; the error bars are a small
s for theL=10, system. Circles: DSMC. Solid line: Burnett. fraction of the size of the symbols. Solid line: Burnett.
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FIG. 15. Reduced velocity profile for the component of the FIG. 17. Reduced velocity profile for thecomponent of the

velocity vector,u , vs s for the L=20, system. Circles: DSMC; velc_>cit_y vector,u; , VSs for the L:2.0|° gystem. Circles: DSMC.
the error bars are a small fraction of the size of the symbols. SoliaSOIId line: assumption for plane Poiseuille flow.

line: B tt.
Ine: Burne the BGK model[4] and Grad’'s expansiof26]. The central

minimum in the temperature profile is well accounted for in

stationary situation has not been established, this explanatig 19-moment-equations approximation to the Boltzman
seems unlikely since the DSMC data are assembled from @quation as presented by Hess and Malek Manpdir
sequence of simulation runs, discarding any runs exhibiting The pressure profilegigs. 5, 19, and 30 all show good
remnants of the initial transient. agreement between the DSMC data and the Burnett equa-

The most striking feature in the DSMC temperature pro-tions. This agreement, however, is constructed because in
files (Figs. 4, 18, and 29is the appearance of two local lieu of determining the initial conditions the coefficiemt is
maxima, which is quite noticeable for the ten mean free patiselected so as to fit the data. This coefficient depends on the
case. The Burnett and Navier-Stokes equations give nearfgecond derivative op at s=0 but the DSMC data are not
identical predictiongthe latter is omitted from Figs. 4, 18 sufficiently accurate to extract its value. It turns out that the
and 29, and fail to capture this bimodal behavior. However, pressure profile obtained with the Burnett equations is sensi-
the maximum difference between the DSMC data and théive to the value ob, but the velocity and temperature pro-
Burnett prediction is about 1% for the ten mean free patiiles are not affected. The Navier-Stokes equations predict
case and the agreement improves with decreasing Knudséhatp*(s)=1.
number. This bimodal behavior is predicted in analyses using Next we examine the components of the heat flux and the

0.0010 r . r r T ' ' ' '
*
u, 113 } :
0.0005 | T .
H p—
5 111} 2
H 9
0.0000 d55 J_ -
] ﬂ , X 1,09 | .
-0.0005 N i
‘j 1.07
T [
-0.0010 ' : : : 1.05 L ' . .
0.5 0.3 0.1 0.1 0.3 0.5 0.5 03 -0.1 0.1 0.3 05
S s

FIG. 16. Reduced velocity profile for the component of the FIG. 18. Reduced temperature profilé vs s for the L=20,
velocity vector,u’y* , vs s for the L=20, system. Circles: DSMC. system. Circles: DSMC. Solid line: the error bars are about the third
Solid line: assumption for plane Poiseulle flow. part of the symbolgBurnet).
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FIG. 19. Reduced pressure profié vs s for the L=20l, sys- FIG. 21. Reduceg component of the heat fluxy , vssfor the
tem. Circles: DSMC. Solid line: Burnett. L=20, system. Circles: DSMC; the error bars are approximatly

one fourth of the size of the symbols. Solid line: Burnett.

complete pressure tensor. One goal is to infer, if possible, the
origin of the bimodal temperature profile. From the generalThe discrepancy is greatest at the boundaries where larger
assumptions for plane Poiseuille flow & u,=0 and Land- ~ gradients are present. Notice that even at the lowest Knudsen
au’s symmetry argumentthe velocity, temperature, and number the DSMC data clearly indicate thogt=0. A non-
pressure profiles can depend only gp, Py, and P,,.  zero parallel heat flux is also predicted in the BGK mddé!
However, to have a better understanding of the problem it i@nd Grad’s expansiof26].
useful to examine all the components @fand P to obtain Figures 7, 21, and 32 show thatomponent of the heat
the leading moments of the distribution function. Further-flux, as predicted by Burnett and Navier-Stokes, is in good
more, the three assumptions given in Sec. Il need to bagreement with the DSMC data, the differences being great-
tested. est at large Knudsen numbers and near the boundaries where
The x component of the heat flux is zero according to thelarger gradients are present. However, near the center of the
Navier-Stokes equations, but is different from zero accordingystem, where the bimodal behavior of the temperature is
to Burnett. Figures 6, 20, and 31 compare the Burnett preobserved, the heat flow given by the DSMC method and
diction with the results from the DSMC method. The quali- Burnett are in good agreement, which indicates that the dis-
tative behavior ofy, is very similar, in particular the change crepancy in the temperature profiles probably cannot be ex-
in sign of the heat flux, and the agreement between Burnefilained in terms of the differences fqy. The DSMC results
and the DSMC method is better at a lower Knudsen numbeconfirm that thez component of the heat flux is zero; results
from the ten mean free path system are shown in Fig. 8 and

S
qx <3 C’ 1.0040 T T T T
%
By
0.000010 1.0020 | ﬁ _
1.0000 -TFE—— *ﬁi - L
0.000000 g - 5
(ﬁi_ of—_% < I
0.9980 |
-0.000010 L L 1 L
-0.5 0.3 -0.1 0.1 03 05
S
0.9960 L L L L
FIG. 20. Reduceda component of the heat flugy; , vssfor the -0.5 -0.3 -0.1 0.1 03 0.5

w

L=20, system. Circles: DSMC; the error bars are of the same size
as the symbols. Solid line: Burnett. Long-dashed line: Navier- FIG. 22. Reduceg'y component of the pressure tenslqty, S
Stokes. s for the L=20l, system. Circles: DSMC. Solid line: Burnett.
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FIG. 23. Reduceatx component of the pressure tensef, , vs

s for the L=20 system. Circles: DSMC. Solid line: Burnett. FIG. 25. Reducegx component of the pressure tensB;x, Vs

s for the L=20, system. Circles: DSMC; the error bars are ap-

o proximately one-fifth of the size of the symbols. Solid line: Burnett.
the data from the other cases is similar.

From Landau’'s symmetry argument and given that Finally, we turn our attention to the off-diagonal elements
=u,=0 it follows from the conservation equations tH3f,  of P. The DSMC data confirm the Burnett and Navier-Stokes
must be a constant. Figure 9 shows that the DSMC data ffredictions that the componeries, and P,, are zero, as seen
the L=10, system exhibit a weak nonconstant behavior,in Figs. 12 and 13 for the =10, system with similar results
and are about 0.2% below the Burnett prediction. This COU|qOr the other cases. From F|gs 14, 25, and 36, we see that
be an explanation for the discrepancy for the temperature, s basically a linear function affor both the DSMC data
profile, though forL =20, the DSMC temperature profile and the Burnett equations. The slopes differ slightly, and
exhibits a bimodal behavior whil®,, is, within statistical  while we do not expect that this explains the bimodal tem-

error, a constant functiofsee Figs. 22 and 33A possible  perature profile and a more detailed analysis is needed.
explanation forP,, not being exactly constant in the

=10, system is that while, on average,=u,=0, these
components of velocity fluctuate and these non-equilibrium
fluctuations have long-range spatial correlati¢@6]. The From our results we conclude that the bimodal tempera-
other diagonal components of the pressure tensor are na@ire profile observed by the DSMC method cannot be ex-
zero; the DSMC data and Burnett predictions Ryt (Figs.  plained with the Burnett equations, but that the nonconstant
10, 23, and 3#andP,, (Figs. 11, 24, and 35are in qualita-

IX. FINAL REMARKS
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FIG. 26. Reduced velocity profile for the component of the
velocity vector,u} , vs s for the L=40 system. Circles: DSMC;

FIG. 24. Reducedz component of the pressure tense},, vs the error bars are a small fraction of the size of the symbols. Solid
s for theL=20, system. Circles: DSMC. Solid line: Burnett. line: Burnett.
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FIG. 27. Reduced velocity profile for the component of the
velocity vectorujﬁ , vs s for the L=40, system. Circles: DSMC.
Solid line: assumption for plane Poiseulle flow.

FIG. 29. Reduced temperature profil& vs s for the L=40l,
system. Circles: DSMC; the error bars are about a third of the size
of the symbols. Solid line: Burnett.
pressure profile is a second order Knudsen effect. This con-
clusion is consistent with the fact that as the Knudsen numment methods for Maxwellian molecules, and obtained the
ber is lowered the bimodality in the temperature profile be-Pimodal behavior for the temperature profiles. Unfortunately
comes unobservable, while a Significant nonconstan$imulati0ns of Poiseuille flow USing Maxwellian molecules
pressure is still measured by the DSMC methsdi The  are still lacking, so it is not known whether their prediction is
bimodal character of the temperature profiles is perhaps @uantitative. For the model used by & al. Ikenberry and
super-Burnett effect; however, it should be pointed out thafl ruesdell[25] evaluated a broad set of kinetic quantities that
the higher order Chapman-Cowliri@] gradient expansions allow one to compute many moments, but a similar analysis
are very complicated. While some work has been done witfias not been performed for other potentials, such as rigid
the super-Burnett equatioi21], this work is restricted to Spheres. Tiet al. predicted a heat flux in the direction, in
linearized corrections to the fluxes. For these reasons Aualitative agreement with the DSMC data and the Burnett
seems more promising to look for alternatives such as théesults presented here. As we pointed out, this heat flux has
regularization given by Rosend@?2] or the partial summa- o effect on the conservation equations, which are used to
tion to the Chapman-Enskog method given by Gorban an@btain the profiles. Recently Risso and Cordé26] used
Karlin [23]. These methods, however, have some restricMD simulations and Grad'’s expansion method to reach some
tions, such as the use of a linearized collision operator. ~ Of the same conclusions as in this work. There exist

Tij et al.[24] investigated the present problem using mo-molecular-dynamics calculations for dense systems in which
the inadequacy of the Navier-Stokes equations has also been
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FIG. 28. Reduced velocity profile for thecomponent of the
velocity vector,u; , vs s for the L=40, system. Circles: DSMC. FIG. 30. Reduced pressure profpig vs s for the L=40, sys-
Solid line: assumption for plane Poiseuille flow. tem. Circles: DSMC. Solid line: Burnett.
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the symbols. Solid line: Burnett. Long-dashed line: Navier Stokes.s for the L =401, system. Circles: DSMC. Solid line: Burnett,

pointed ouf27], in particular for plane Poiseuille floj28]. account there is no continuous continuous shock structure

Although these Work_s are somewhat inapplicable to th.ebeyond Mach 1.85, though this result has been challenged by
present resea_rch f_or dilute gases, the_y support th‘? Cor‘Clus'%eiss himself{34]. In contrast, Gilbarg and Paolucf30]

that ther_e exist S|mpl_e flows for which the Nav'er'StOkesremarked that, While the evidence from kinetic theory and
me&cﬁf? IS capablte oftllzn[()jrovement. f th litati the theory of nonlinear viscosity indicate that the Navier-
feat rle mt:)m;an dm.i F? S r.e?lowfalr mam/.cr) ] s th:]a| a'xeStokes equations yield values of the shock thickness that are
eatures observed | oiseiutie tlow, their robusiness .aﬁerhaps smaller than the actual one, there is nothing in the
been criticized not only for the closure problem but also iNGvidence to suggest that the classical theory is far wrong.

zi\g?leﬁrm%rfgr?cg dW?r\]/eeSﬁ Lf\r?]k:/;/ rei:;@]ofﬁ?r:?ed(r\g?e?e?fégﬁg- For shock waves there is indeed substantial evidence that the
y 9 9 Navier-Stokes theory is susceptible to improvement

shock structure in monatomic gases is not satisfactorily de 11,13,35,3% However, the evidence provided by Fiscko

scribed by the Navier-Stokes-Fourier theory, e.g., see Re nd Chapmaf37] that the Burnett equations give better pre-

[30]. But Grad’s 13-moment theory is even worse; indeed, ;. .. e ) )
Grad [31,32] himself found that no continuous shock Struc__dlc'uons than the Navier-Stokes equations, which was quoted

: L : in Refs.[13,36, was flawed; an explanation of the errors and
ture exists b_eyond Mach 1.65, which is t,he maximum Speefgrther extension of this important work can be find in the
of propagation of the 13-moment thedryHolway [33]

h d that no matter h many moments are taken int aper by Zhonget al. [38]. Two classical accounts of the
showe at no matter how many moments are taken intg, ., q equations applied to shock waves are the works by
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FIG. 32. Reduceg component of the heat f|u1q;,° , vssfor the

L=40, system. Circles: DSMC; the error bars are about one-fourth  FIG. 34. Reducedtx component of the pressure tensef, , vs
of the size of the symbols. Solid line: Burnett. s for the L=40l, system. Circles: DSMC. Solid line: Burnett.
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Wang-Chang and UhlenbeR1] and Foch 39]. The DSMC
calculations for the shock wave problem were done a Iongn
time ago(see Ref[11] for references but the MD calcula-
tions are more recend0] and in particular the first MD
calculations for a dilute gas of rigid spheres were made i
1992 by Salomons and Maresclpdl]. Salomons and Mare-
schal[41] provided strong evidence that the Burnett equa-
tions can indeed provide a sustantial improvement over th
Navier-Stokes equations at high Mach numbers, but curi-
ously enough a few months later a communication by thes
authors and Holian’s group was publisHé@] leaving aside
the previous claim about the Burnett regime. Uréieal. [6]
followed Salomons and Mareschal’'s remark, and found in- We would like to express our gratitude to R.M. Velasco
deed that Burnett equations provided an accurate descriptidor discussions held along the lines of this work, and to M.
for strong shock waves; however, in their qualitative analysid opez de Haro for bringing to our attention the works by D.
of the Burnett dynamical system they found a “Hopf-like R. Chapman and collaborators. This work was supported in
bifurcation” at the upstream critical point, suggesting thatpart by CONACyT through a grant from the Fluid and Par-
there may not be a heteroclinic trajectory for Mach numbergicle Processes program at the National Science Foundation,
greater than about 2.69. Rather than continuing to list aland by a grant from the European Commision DGPSS
points of view on this topic, let us conclude by stating that a1045. F. J. Uribe wants to thank the Physics Department of
vigorous debate exists and that further experiments anthe University of Newcastle-upon-Tyne where this work was

DSMC simulations can provide detailed measurements of
oments of the velocity distribution function but in the past
such measurements were restricted to extremely nonequilib-
r{lum flows, such as strong shock&l]; for shock waves
experimental information about the distribution function is
also available[43]. This paper demonstrates that the heat
lux and pressure tensor can differ measurably from their

avier-Stokes predictions, and that the Burnett equations can
go significantly better even in a simple, subsonic flow.
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