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Burnett description for plane Poiseuille flow
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Physics Department, Universidad Auto´noma Metropolitana Iztapalapa, P.O. Box 55-534, 09340 Me´xico D.F., Mexico

Alejandro L. Garcia*
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~Received 30 March 1999!

Two recent works have shown that at small Knudsen number~K! the pressure and temperature profiles in
plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes
equations. Tij and Santos@J. Stat. Phys.76, 1399~1994!# used the Bhatnagar-Gross-Kook model to show that
the temperature profile is bimodal and the pressure profile is nonconstant. Malek-Mansour, Baras, and Garcia
@Physica A240, 255~1997!# qualitatively confirmed these predictions in computer experiments using the direct
simulation Monte Carlo method~DSMC!. In this paper we compare the DSMC measurements of hydrody-
namic variables and non-equilibrium fluxes with numerical solutions of the Burnett equations. Given that they
are in better agreement with molecular-dynamics simulations@E. Salomons and M. Mareschal, Phys. Rev. Lett.
69, 269~1992!# of strong shock waves than Navier-Stokes@F. J. Uribe, R. M. Velasco, and L. S. Garcı´a-Colı́n,
Phys. Rev. Lett.81, 2044~1998!#, and that they are second order in Knudsen number suggests that the Burnett
equations may provide a better description for largeK. We find that for plane Poiseuille flow the Burnett
equations do not predict the bimodal temperature profile but do recover many of the other anomalous features
~e.g., nonconstant pressure and nonzero parallel heat flux!. @S1063-651X~99!02410-1#

PACS number~s!: 05.20.Dd, 05.60.2k, 02.70.Ns, 47.45.2n
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I. INTRODUCTION

The Navier-Stokes equations provide a sound and ro
theoretical method to study flows at the macroscopic le
which have innumerable applications. The complexity of
equations is due to the fact that they are nonlinear excep
simple cases where, due mainly to the symmetries involv
they reduce to linear equations that can be solved in a clo
form. The Navier-Stokes equations can be derived fr
strictly macroscopic arguments or from a kinetic model, su
as the Boltzmann equation for dilute gases; however, t
derivation assumes both local equilibrium hypotheses
the small gradient approximation, which allows one to fo
mulate the constitutive equations needed to close the con
vation equations. In situations where large gradients exis
in a shock wave or in a boundary layer, these equations
expected to fail, as has been pointed out in the past. Furt
more, being a macroscopic theory their validity is also
stricted to situations in which the Knudsen number~K! is
small and a crucial point is to know, for a given problem, t
range of Knudsen numbers where they remain valid. Anot
important parameter is the Reynolds number (Re), which in
some cases determines when the solutions cease to be
nar and the flow becomes turbulent.

The Navier-Stokes equations can, in principle, be sol
as an initial value problem. Usually stick boundary con
tions are used, but when the Knudsen number is not sm
(K.1022) the slip at the boundaries must be taken in
account@1#. There exist simple examples in which the so
tions to the stationary Navier-Stokes equations are infi

*Permanent address: Physics Dept., San Jose State Unive
San Jose, CA 95192.
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~countable! even for a fixed Reynolds number@2#, so even
when only one solution exists, as in plane Poiseuille fl
with stick boundary conditions, one needs to perform a s
bility analysis of the solutions@3#.

Recently Tij and Santos@4# showed that a perturbativ
solution to the Bhatnagar-Gross-Kook~BGK! model pre-
dicted qualitatively different temperature and pressure p
files from those predicted by the Navier-Stokes equatio
Malek et al. @5# confirmed this result using the direct simu
lation Monte Carlo~DSMC! method to model plane Poi
seuille flow of a dilute hard sphere gas forRe'10 andK
51/10. Maleket al. also solved the Navier-Stokes equatio
numerically and showed that slip corrections could not
plain the discrepancy. The results obtained by Tij and San
are in better quantitative agreement with the DSMC data
the Chapman-Cowling expressions for the transport coe
cients are used instead of the those derived from the B
model, which give an incorrect Euken factor. While the E
ken factor is in contradiction with the results from both t
Chapman-Enskog method and experiment, it should
pointed out that the BGK model is able to reproduce qu
tative features in situations far from equilibrium where t
Chapman-Enskog method is not applicable, and so the m
is useful as a guide in such situations.

To the authors’ knowledge, Poiseuille flow is the fir
scenario in which the Navier-Stokes equations have b
shown to be susceptible to significant improvement fo
flow with relatively small gradients. Since Uribeet al. @6#
showed that the Burnett equations can provide an accu
description for strong shock waves, it is then a natural ste
compare the Burnett equations with DSMC simulations
Poiseuille flow, and that is what we do here. The next fo
sections present the theoretical development of the conse
tion equations, the Navier-Stokes equations, the Bur

ity,
4063 © 1999 The American Physical Society
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equations, and the Burnett fluxes. The DSMC algorithm
outlined briefly in Sec. VI; simulation results are presen
and discussed in Secs. VII and VIII. Section IX contains fin
remarks and a discussion of future work.

II. CONSERVATION EQUATIONS

We consider the flow between two infinite and stationa
plane parallel walls located ay56L/2. The hydrodynamic
velocity c0 is assumed to have only anx component so tha
c0[u5u(r ) i in the laminar, stationary case~unless stated
otherwise, we adopt the notation used by Chapman
Cowling @7#!. Following Landau and Lifshitz@8# we assume
that all the relevant quantities can only depend on they co-
ordinate, in particularc05u(y) i. Noting that, for any func-
tion, f (y), (c0•¹) f (y)50, it follows that the conservation
equations reduce to

05¹•„r~y!u~y!i…, ~1!

052
1

r~y!

dPyx

dy
1a ~2!

052
1

r~y!

dPyy

dy
, ~3!

052
1

r~y!

dPyz

dy
, ~4!

05Pyx

du~y!

dy
1

dqy~y!

dy
, ~5!

where r(y) is the mass density,P(y) the pressure tensor
q(y) the heat flux, anda the acceleration from a constan
external body force~e.g., gravity! acting in thex direction.
Equation~1! is the mass conservation equation, which is a
tomatically satisfied. Equations~2!, ~3!, and~4! are the com-
ponents of Newton’s second law~momentum conservation!,
and Eq.~5! is the energy conservation equation. Notice th
we can conclude that the componentsPyy and Pyz of the
pressure tensor are constant, a result that does not depe
the constitutive relations.

For the discussion that follows it is important to keep
mind that the results of this section depend on the th
conditions:~1! uy50. ~2! uz50. ~3! All the physical quanti-
ties depend only ony. The last condition will be referred to
as Landau’s symmetry argument.

In a dilute gas the pressurep(y) and temperatureT(y) are
related by the ideal gas equation of statep5rkT/m, where
m is the particle mass andk is Boltzmann’s constant. To
have a closed system in the variablesu(y), p(y), andT(y),
one needs to introduce constitutive relations. Since the c
tributions up to second order in the Knudsen number for
pressure tensor and heat flux include the Navier-Stokes te
~first order in the Knudsen number!, these terms are deve
oped in Sec. III.

III. NAVIER-STOKES REGIME

The Navier-Stokes expressions for the pressure te
(PNS) and the heat flow (qNS) are given by
s
d
l

y

d

-

t

on

e

n-
e

s

or

PNS5pI22m¹c0

+

, ~6!

qNS52l¹T, ~7!

wherem is the shear viscosity,l the thermal conductivity,
andI is the unit tensor. The double overbar denotes the s
metric tensor, and the circle means the corresponding tr
less tensor. For stationary, plane Poiseuille flow, these c
stitutive relations simplify to

Pyx
NS52m

du~y!

dy
,

Pyy
NS5p~y!,

~8!

Pyz
NS50,

qy
NS52l

dT~y!

dy
,

For a dilute gas of rigid spheres, the transport coefficie
are @7#

m5
5cm

16s2 S mkT~y!

p D 1/2

, l5
75cl

64s2 S k3T~y!

pm D 1/2

. ~9!

wheres is the particle diameter. While often the transpo
coefficients are approximated by the first Sonine expans
(cm5cl51), for rigid spheres more precise values (cm
51.016034 andcl51.02513) are known@7#.

Substitution of Eqs.~8! and ~9! into Eqs. ~1!–~5! leads
us to

10cmk2T~y!2
d2u

dy2 525cmk2T~y!
dT

dy

du

dy

232ps2a~pmkT~y!!1/2,

30clk3T~y!
d2T

dy2 528mcmk2T~y!S du

dyD
2

215clk3S dT

dyD 2

.

~10!

Note that in the Navier-Stokes regime the pressure is c
stant, so we have two second order nonlinear equations fu
andT. The boundary conditions for these equations are d
cussed in Sec. IV.

IV. BURNETT REGIME

The second order Knudsen number corrections for
stress tensor (P(2)) and the heat flux (q(2)) are given by@7#
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P~2!5v1
m2

p De+1v2
m2

p
H D0

Dt e+22¹c0•e+
+ J 1v3

m2

rT ¹¹T
+

1v4
m2

rpT ¹p¹T
+

1v5
m2

rT2 ¹T¹T
+

1v6
m2

rT e+•e+
+

,

~11!

q(2)5u1

m2

rT
D¹T1u2

m2

rT H D0

Dt
¹T2¹c0•¹TJ 1u3

m2

rT
¹p•e+

1u4

m2

r
¹•e+1u5

3m2

rT
¹T•e+,

where the numerical values for thev ’s and u ’s are given
below and@7#

e5¹c0, D5¹•c0 ,

D0

Dt
~¹T!52

2

3
¹~T¹•c0!2~¹c0•¹T!, ~12!

D0

Dt
~e+!5¹ S a2

1

r
¹pD

+

2¹c0•¹c0

+

.

For plane Poiseuille flow, we are led to

Pyx
(2)50, Pyz

(2)50,

Pyy
(2)5

2

3

v2m2

p~y!r~y!

dp

dy

dr

dy
2

2

3

v2m2

p~y!r~y!

d2p

dy2 2
2

3

v2m2

p~y!

3S du

dyD
2

1
2

3

v3m2

T~y!r~y!

d2T

dy2 1
2

3

v4m2

p~y!T~y!r~y!

3
dp

dy

dT

dy
1

2

3

v5m2

r~y!T~y!2 S dT

dyD 2

1
1

12

v6m2

p~y! S du

dyD
2

,

~13!

qx
(2)5

1

2

u3m2

r~y!p~y!

dp

dy

du

dy
1

1

2

u4m2

r~y!

d2u

dy2 1
3

2

u5m2

r~y!T~y!

3
dT

dy

du

dy
, qy

(2)50, qz
(2)50.

Note that there is a heat flow along thex direction, but it
does not make a contribution to the conservation equati
the reason being that in the energy conservation equation
has to evaluate the divergence of the heat flow, and only
y component of the heat flux can contribute.

The x component in the momentum conservation is
same as the Navier-Stokes result becausePyx

(2)50. Similarly
the z component of momentum conservation is not alter
so only they component of momentum conservation is
tered in the Burnett regime. Since this component must b
constant, we see from previous equations that the result
second order ordinary differential equation forp. In the pre-
vious equation forPyy there appears a second derivative
the temperature, which can be obtained from Eq.~10!. Using
s,
ne
e

e

,

a
a

r

this result, we are led to solve the following reduced seco
order system of ordinary differential equations:

d2u*

ds2 52
1

2T* ~s!

dT*

ds

du*

ds
1

b0p* ~s!

T* 3/2~s!
,

d2T*

ds2 52
8cm

15cl
S du*

ds D 2

2
1

2T* ~s! S dT*

ds D 2

, ~14!

d2p*

ds2 5
b1p* 2~s!

T* 2~s!
1

b2p* 2~s!

T* 2~s!
2

b1p* 3~s!

T* 2~s!
1

1

p* ~s!S dp*

ds D 2

2
1

T* ~s!

dp*

ds

dT*

ds
2

2p* ~s!

T* ~s! S du*

ds D 2

2
8v3p* ~s!cm

15v2T* ~s!cl
S du*

ds D 2

2
p* ~s!v3

2v2T* 2~s! S dT*

ds D 2

1
v4

v2T* ~s!

dp*

ds

dT*

ds
1

v5p* ~s!

v2T* 2~s! S dT*

ds D 2

1
v6p* ~s!

4v2T* ~s! S du*

ds D 2

, ~15!

wheres5y/L, p* (s)5p(y)/p(0), T* (s)5T(y)/TR , with
TR the temperature of the walls andu* (y)5u(y)/
(2kTR /m)1/2. The coefficients are

b052
8

5

L2aA2pp~0!ms2

cmk2TR
2 , b152

384

25

L2p~0!2ps4

v2cm
2 TR

2k2 ,

b25

L2
d2p

dy2
~0!T~0!2

p~0!TR
2 . ~16!

for symmetric profiles. Though the physical system is ge
metrically symmetry about thex axis, this does not guarante
a symmetric profile since spontaneous symmetry break
may occur@2#. However, the profiles measured in our DSM
computer experiments are in good agreement with this
sumed symmetry.

In terms of the variables;Y1(s)5u* (s), Y2(s)5T* (s),
Y3(s)5p* (s), Y4(s)5du/ds, Y5(s)5(dT* /ds)(s), and
Y6(s)5(dp* /ds)(s), the previous system of three secon
order differential equations can be expressed as a syste

six coupled first order differential equations,Ẏ5F(Y),
where the dot denotes the derivative with respect tos. The
vector fieldF is given by
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F1~Y!5Y4 , F2~Y!5Y5 , F3~Y!5Y6 ,

F4~Y!52
1

2

Y4Y5

Y2
1b0

Y3

Y2
3/2

,

F5~Y!52
8cm

15cl
Y4

22
1

2

Y5
2

Y2
,

~17!

F6~Y!5b1

Y3
2

Y2
2

1b2

Y3
2

Y2
2

2b1

Y3
3

Y2
2

1
Y6

2

Y3
2

Y6Y5

Y2
22

Y3Y4
2

Y2

2
8cmv3

15clv2

Y3Y4
2

Y2
2

v3

2v2

Y3Y5
2

Y2
2 1

v4

v2

Y6Y5

Y2

1
v5

v2

Y3Y5
2

Y2
2

1
v6

4v2

Y3Y4
2

Y2
.

where for simplicity an explicits dependence is omitted.
To have a well posed problem requires the specifica

of initial or boundary conditions. For the Burnett equation
several issues regarding boundary conditions are still u
solved. Rather than looking at this point in a general sett
it is important to know first if the Burnett equations ca
indeed reproduce the features observed in problems
which the Navier-Stokes equations are susceptible to
provement, and this is what we would like to test here
plane Poiseuille flow.

To avoid the difficulty of specifying boundary condition
at y56L/2 (s561/2), we use the centerline (s50) pro-
file values measured in the DSMC simulations as the ini
values for the previous first order system@Eq. ~17!#. The
explicit initial conditions used are

u* ~0!5u0 , T* ~0!5T0 , p* ~0!51, ~18!

with the derivatives ats50 equal to zero and the valuesu0 ,
p(0), andT0 taken from the DSMC data. The dynamic
system@Eq. ~17!#, is given in terms of quotients of differen
tiable functions, so that it is differentiable inU[R3R1

3R13R3, R being the real numbers andR1 the positive
real numbers. In particular, it is locally Lipshitz in that s
@9#, so that the usual local existence and uniqueness theo
holds for the initial values used as long as they are elem
of U @9,10#. We would like to emphasize that the Burne
equations will be solved with initial conditions provided b
the DSMC data; in this way the question of slip at the bou
aries is bypassed, but the calculated profiles at the bou
aries allow us to compare the predicted slip with the DSM
data.

Finally, the values of the coefficients are

v151.0143
4

3 S 7

2
2

1

2D , v25231.014,

v35330.806, v450.681, v55
3

2
30.80620.99,

~19!

v65830.928, u3523.09, u452.418,

u558.3855.
n
,
e-
,

or
-

r

l

em
ts

-
d-

Notice thatu ’s are not needed for solving the differenti
equations, but are used to evaluate the heat flux; alsou1 and
u2 do not appear in the expressions for the fluxes given
Eqs. ~13!. The Navier-Stokes equations result from taki
F350 andF650 in Eqs.~17!.

V. BURNETT DESCRIPTION FOR THE FLUXES

In Sec. IV we saw that, unlike the Navier-Stokes equ
tions, the Burnett description predicts a heat flow along thx
direction that has no effect on the temperature profile. Si
the computer experiments can measure momentum and
flux, it is useful to evaluate the Burnett expressions explic
for the various components of these fluxes.

First consider the expression of thex component of the
heat flux; from Eqs.~13!, we have

qx
(2)5

1

2

u3m2

r~y!p~y!

dp

dy

du

dy
1

1

2

u4m2

r~y!

d2u

dy2 1
3

2

u5m2

r~y!T~y!

3
dT

dy

du

dy
. ~20!

The second derivative of the velocity can be evaluated fr
the Navier-Stokes results and the mass density can be e
nated from the equation of state, giving

qx
(2)5

25

512

u3cm
2 k2T~y!2

ps4p~y!2

dp

dy

du

dy
2

25

1024

u4cm
2 k2T~y!

ps4p~y!2

3
dT

dy

du

dy
2

5

32

u4cma~mkT~y!!1/2

Aps4

1
75

512

u5cm
2 k2T~y!2

ps4p~y!

dT

dy

du

dy
. ~21!

In terms of the notation used for the dynamical syste
the reduced form of thex component of the heat flow read

qx
(2)* [

qx
(2)

2A2~kTR /m!3/2

s3/m

5
d1Y2

2Y4Y6

Y3
2 1

d2Y2Y4Y5

Y3

1d3AY21
d4Y2Y4Y5

Y3
2 , ~22!

where

d15
25

1024

kTRu3cm
2

spp~0!L2 , d252
25

2048

kTRu4cm
2

spp~0!L2 ,

d352
5

128

sA2u4cmam

kTRAp
, d451

75

1024

kTRu5cm
2

spp~0!L2 .

Since according to Eq.~7! there is nox component of the
heat flux at the Navier-Stokes regime, we conclude that thx
component of the total heat flux (qx

T), meaning the Navier-
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Stokes plus the Burnett contributions, is given byqx
T5qx

NS

1qx
(2)5qx

(2) . Similarly we obtain that

qy
T* [

qy
T

2A2~kTR /m!3/2

s3/m

5d5AY2Y5 ,

~23!
qz

T* 50,

where

d552
75

256

clsA2

LAp
. ~24!

Several components of the pressure tensor can be tre
in a similar way to obtain

Pzx
T* [

Pzx
NS1Pzx

(2)

p~0!
50, Pzy

T* [
Pzy

NS1Pzy
(2)

p~0!
50,

Pyx
T* [

Pyx
NS1Pyx

(2)

p~0!
5d6AY2Y4 , Pyy

T* [
Pyy

NS1Pyy
(2)

p~0!
5d7 ,

~25!

Pxx
T* [

Pxx
NS1Pxx

(2)

p~0!
5

3

2
Y32

1

2
1d81

d9Y2

Y3
Y4

2 ,

Pzz
T* [

Pzz
NS1Pzz

(2)

p~0!
53Y32d72Pxx

T* ,

where

d652
5

16

A2cmkTR

Aps2Lp~0!
, d7512

25

384

v2cm
2 b2TR

2k2

L2p~0!2ps4 ,

~26!

d85
25

768

v2cm
2 b2TR

2k2

L2p~0!2ps4 , d95
25

1024

cm
2 k2TR

2v6v2

ps4p~0!2L2 ,

andb2 is given by eq.~16!.

VI. DIRECT SIMULATION MONTE CARLO METHOD

The DSMC method is a well-established algorithm f
computing gas dynamics at the level of kinetic theory. F
completeness, this section presents a brief summary of
method; it is described in detail in Ref.@11#; see Ref.@12# for
a tutorial, and Refs.@13,14# for reviews. Wagner@15# proved
that the DSMC method is equivalent to a stochastic eva
tion of the Boltzmann equation.

In the DSMC method, the state of the system is given
the positions and velocities of particles,$r i ,vi%. First, the
particles are moved as if they did not interact; that is, th
positions are updated tor i1viDt1 1

2 aDt2, whereDt is the
time step. A particle that strikes the thermal walls
y56L/2 has its velocity replaced with a random value ge
erated from the biased Maxwell-Boltzmann distribution; t
ted

r
he

a-

y

ir

t
-

system is periodic in thex andz directions. Second, after a
particles have moved, a given number are randomly sele
for collisions. This splitting of the evolution between stream
ing and collisions is accurate if the time step,Dt!t, wheret
is the mean collision time for a particle.

The concept of ‘‘collision’’ implies that the interaction
potential between particles is short ranged. In the simulati
presented here the particles are taken to be rigid sphere
diameters, so t5m/rps2^v r& where ^v r& is the average
relative speed among the particles. The number of collisi
amongN particles during a time step isM5 1

2 NDt/t. We use
Bird’s ‘‘no time counter’’ method@11# for determiningM,
since it avoids the explicit evaluation of^v r&.

Particles are randomly selected as collision partners w
the restriction that their mean separation be a fraction o
mean free pathl 5^v&t @16#. This restriction is typically en-
forced by sorting the particles into cells whose dimensio
are smaller than a mean free path. For hard spheres,
probability of selecting a given pair is proportional to th
relative speed between the particles. DSMC evaluates i
vidual collisions stochastically, conserving momentum a
energy and selecting the post-collision angles from their
netic theory distributions. For hard spheres, the center
mass velocity and relative speed are conserved in the c
sion with the direction of the relative velocity uniformly dis
tributed in the unit sphere. This Markov approximation
the collision process is statistically accurate so long as
number of particles in a collision cell is sufficiently larg
typically over 20@17,18#.

We define the average density off (v) as

^ f ~v!&y5
1

Nt
(

t

Nt 1

Vc
(
i Pc

f „vi~ t !…, ~27!

wherevi is the velocity of particlei, andNt is the number of
time steps over which samples are taken. The inner sum
over all particles within cellc, which has volumeVc and is
centered at positiony. The hydrodynamic variables are de
fined as

r~y!5^m&y , ~28!

u~y!5^mv&y /r, ~29!

T~y!5
2m

3kr S 1

2
^mv2&y2

1

2
ru2D , ~30!

andp5rkT/m. The fluxes are defined as

Pab~y!5^m~va2ua!~vb2ub!&y5^mvavb&y2ruaub ,
~31!

qa~y!5 1
2 ^m~va2ua!uv2uu2&y

5 1
2 ^mvav2&y2^mvavg&yug1ruau22 1

2 ua^mv2&y ,

~32!
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where a, b, and g are x, y, or z with implied summation
over g.

VII. SIMULATION RESULTS

To simplify comparison with the DSMC data in Ref.@5#,
for all the simulationsm5s5TR51 andk5 1

2 . The sound
speed at equilibrium isA5kTR/3m51.29. The equilibrium
density isr051.2131023, giving a mean free path ofl 0
5186.

A. Ten mean free path case

To simplify comparison with the DSMC data in Ref.@5#,
the pressure is normalized by (7.1339431024)2kTR /s3 to
makep* (0)51. The simulations were done for an accele
tion of a51.6310242kTR /ms and a system size ofL
51860s510l 0. Using these values, we obtain

b0526.235007643, b152162.3309911,

d1520.5022035831025,

d2520.196493245431025,

d3520.245027377631024,
~33!

d4510.40885709931024,

d5520.128833970831023,

d6520.09546098954,

d950.008456678889.

The coefficientb2 was determined in such a way that th
solution to the differential equations reproduced the qual
tive behavior for the DSMC pressure profiles. The expli
value used is

b250.75, ~34!

from which we obtain

d750.9953798101, d850.002310094933. ~35!

Finally the initial conditions used are

u* ~0!50.90287, T* ~0!51.2052, p* ~0!51.0,
~36!

with the derivatives at the center of the channel equal to z
The simulation contained 2.53104 particles, and evaluate
2.53108 collisions with statistical samples taken during t
latter 1.23108 collisions. The results for the profiles of th
normal variables and some moments are given in Figs. 1–

B. 20 mean free path case

For comparison with the DSMC data in Ref.@5#, the pres-
sure is normalized by (6.72731024)32kTR/s3 to make
p* (0)51. The simulations were done for an acceleration
a54.03102532kTR/ms and a system size ofL53720
3s520l 0. Using these values, we obtain
-

-
t

o.

4.

f

b0525.879345273, b152577.3582581,

d1520.133145912331025,

d2520.520949540631026,

d3520.612568444131025,
~37!

d4510.108397577531024,

d5520.644165353631024,

d6520.05061788107,

d950.002377693652.

FIG. 1. Reduced velocity profile for thex component of the
velocity vectorux* vs s for the L510l 0 system. Circles: DSMC;
the error bars are smaller than the size of the symbols. Solid l
Burnett.

FIG. 2. Reduced velocity profile for they component of the
velocity vectoruy* vs s for the L510l 0 system. Circles: DSMC.
Solid line: assumption for plane Poiseuille flow.
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The coefficientb2 was determined in such a way that th
solution to the differential equations reproduced the qual
tive behavior for the DSMC pressure profiles. The expli
value used is

b250.2047, ~38!

from which we obtain,

d750.9996454541, d850.0001772729471. ~39!

Finally the initial conditions used are:

u* ~0!50.7575, T* ~0!51.1293, p* ~0!51.0,
~40!

FIG. 3. Reduced velocity profile for thez component of the
velocity vectoruz* vs s for the L510l 0 system. Circles: DSMC.
Solid line: assumption for plane Poiseuille flow.

FIG. 4. Reduced temperature profileT* vs s for the L510l 0

system. Circles: DSMC; the error bars are of approximately
same size as the symbols. Solid line: Burnett.
-
t

with the derivatives at the center of the channel equal to z
The simulation contained 5.03104 particles and evaluated
5.03108 collisions with statistical samples taken durin
the latter 2.53108 collisions. The results for the profiles o
the normal variables and some moments are given in F
15-25.

C. 40 mean free path case

For comparison with the DSMC data in Ref.@5#, the pres-
sure is normalized by (6.55531024)32kTRs3 to make
p* (0)51. The simulations were done for an acceleration
a51.03102532kTR/ms and a system size ofL57440
3s540l 0. Using these values, we obtain

e

FIG. 5. Reduced pressure profilep* vs s for the L510l 0 sys-
tem. Circles: DSMC; the error bars are of approximately the sa
size as the symbols. Solid line: Burnett.

FIG. 6. Reducedx component of the heat flux,qx* , vs s for the
L510l 0 system. Circles: DSMC. Solid line: the error bars are a
proximately three-fourths of the size of the symbols.~Burnett! Long
dashed line: Navier-Stokes.
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b0525.729018622, b1522192.8448741,

d1520.341598990131026,

d2520.133654750531026,

d3520.15314211131025,
~41!

d4510.278104692431025,

d5520.00003220826771,

d6520.02597303478,

d950.000626027441.

The coefficientb2 was determined in such a way that th

FIG. 7. Reducedy component of the heat flux,qy* , vs s for the
L510l 0 system. Circles: DSMC; the error bars are approximat
half of the size of the symbols. Solid line: Burnett.

FIG. 8. Reducedz component of the heat flux,qz* , vs s for the
L510l 0 system. Circles: DSMC. Solid line: Burnett and Navie
Stokes.
solution to the differential equations reproduced the qual
tive behavior for the DSMC pressure profiles. The expli
value used is

b2510.051335336, ~42!

from which we obtain

d750.9999765896, d850.00001170519095. ~43!

Finally the initial conditions used are

u* ~0!50.689452, T* ~0!51.09814, p* ~0!51.0,
~44!

with the derivatives at the center of the channel equal to z
The simulation contained 6.03104 particles and evaluated
9.03108 collisions with statistical samples taken during t

y
FIG. 9. Reducedyy component of the pressure tensor,Pyy* , vs s

for the L510l 0 system. Circles: DSMC. Solid line: Burnett.

FIG. 10. Reducedxx component of the pressure tensor,Pxx* , vs
s for the L510l 0 system. Circles: DSMC; the error bars are
approximately the same size as the symbols. Solid line: Burnet
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PRE 60 4071BURNETT DESCRIPTION FOR PLANE POISEUILLE FLOW
latter 3.03108 collisions. The results for the profiles of th
normal variables and some moments are given in Figs.
36.

VIII. ANALYSIS OF THE RESULTS

This section discusses the general features observed i
above DSMC data and the comparison with the continu
equations. In some cases the effects are subtle, which is
reason we provide numerous graphs where the reader
obtain a more detailed picture. In several cases~e.g.,ux , T,
Pyx , and qy! the profiles obtained from the Navier-Stok
equations and Burnett equations are practically indistingu
able so only the latter are shown.

From Figs. 1, 15, and 26, we conclude that the profile
the x component of the velocity is in reasonable agreem
with the Burnett equations. The largest difference is o
served at the highest Knudsen number,K5 l 0 /L51/10,
where the discrepancy in the slip at the boundary is the m

FIG. 11. Reducedzz component of the pressure tensor,Pzz* , vs
s for the L510l 0 system. Circles: DSMC. Solid line: Burnett.

FIG. 12. Reducedzx component of the pressure tensor,Pzx* , vs
s for the L510l 0 system. Circles: DSMC. Solid line: Burnett.
–
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significant, in agreement with previous DSMC an
molecular-dynamics~MD! results@19#. The ux profiles pre-
dicted by the Burnett and Navier-Stokes equations are ne
identical, so the latter are omitted in Figs. 1, 15, and 26.

For plane Poiseuille flow we assumed that the other co
ponents of the hydrodynamic velocity to be zero, and
measured profiles foruy anduz are shown in Figs. 2, 3, 16
17, 27, and 28. For the velocity component perpendicula
the walls the DSMC data are consistent with the assump
that uy50. For the parallel componentuz , there is notice-
able variation, especially in theL540l 0 system~Fig. 28!,
because the long wavelength fluctuations in the periodic
rections are very long lived. A similar effect is expected
ux , but is masked by the mean flow, which is nearly fo
orders of magnitude larger. Though it is possible that

FIG. 13. Reducedyz component of the pressure tensor,Pyz* , vs
s for the L510l 0 system. Circles: DSMC. Solid line: Burnett an
Navier-Stokes.

FIG. 14. Reducedyx component of the pressure tensor,Pyx* , vs
s for theL510l 0 system. Circles: DSMC; the error bars are a sm
fraction of the size of the symbols. Solid line: Burnett.
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4072 PRE 60F. J. URIBE AND ALEJANDRO L. GARCIA
stationary situation has not been established, this explana
seems unlikely since the DSMC data are assembled fro
sequence of simulation runs, discarding any runs exhibi
remnants of the initial transient.

The most striking feature in the DSMC temperature p
files ~Figs. 4, 18, and 29! is the appearance of two loca
maxima, which is quite noticeable for the ten mean free p
case. The Burnett and Navier-Stokes equations give ne
identical predictions~the latter is omitted from Figs. 4, 1
and 29!, and fail to capture this bimodal behavior. Howeve
the maximum difference between the DSMC data and
Burnett prediction is about 1% for the ten mean free p
case and the agreement improves with decreasing Knu
number. This bimodal behavior is predicted in analyses us

FIG. 15. Reduced velocity profile for thex component of the
velocity vector,ux* , vs s for the L520l 0 system. Circles: DSMC;
the error bars are a small fraction of the size of the symbols. S
line: Burnett.

FIG. 16. Reduced velocity profile for they component of the
velocity vector,uy* , vs s for the L520l 0 system. Circles: DSMC.
Solid line: assumption for plane Poiseulle flow.
on
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the BGK model@4# and Grad’s expansion@26#. The central
minimum in the temperature profile is well accounted for
a 19-moment-equations approximation to the Boltzm
equation as presented by Hess and Malek Mansour@44#.

The pressure profiles~Figs. 5, 19, and 30!, all show good
agreement between the DSMC data and the Burnett e
tions. This agreement, however, is constructed becaus
lieu of determining the initial conditions the coefficientb2 is
selected so as to fit the data. This coefficient depends on
second derivative ofp at s50 but the DSMC data are no
sufficiently accurate to extract its value. It turns out that t
pressure profile obtained with the Burnett equations is se
tive to the value ofb2 but the velocity and temperature pro
files are not affected. The Navier-Stokes equations pre
that p* (s)51.

Next we examine the components of the heat flux and

id

FIG. 17. Reduced velocity profile for thez component of the
velocity vector,uz* , vs s for the L520l 0 system. Circles: DSMC.
Solid line: assumption for plane Poiseuille flow.

FIG. 18. Reduced temperature profileT* vs s for the L520l 0

system. Circles: DSMC. Solid line: the error bars are about the t
part of the symbols~Burnett!.
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PRE 60 4073BURNETT DESCRIPTION FOR PLANE POISEUILLE FLOW
complete pressure tensor. One goal is to infer, if possible,
origin of the bimodal temperature profile. From the gene
assumptions for plane Poiseuille flow (uy5uz50 and Land-
au’s symmetry argument! the velocity, temperature, an
pressure profiles can depend only onqy , Pyx , and Pyy .
However, to have a better understanding of the problem
useful to examine all the components ofq and P to obtain
the leading moments of the distribution function. Furth
more, the three assumptions given in Sec. II need to
tested.

Thex component of the heat flux is zero according to t
Navier-Stokes equations, but is different from zero accord
to Burnett. Figures 6, 20, and 31 compare the Burnett p
diction with the results from the DSMC method. The qua
tative behavior ofqx is very similar, in particular the chang
in sign of the heat flux, and the agreement between Bur
and the DSMC method is better at a lower Knudsen num

FIG. 19. Reduced pressure profilep* vs s for the L520l 0 sys-
tem. Circles: DSMC. Solid line: Burnett.

FIG. 20. Reducedx component of the heat flux,qx* , vs s for the
L520l 0 system. Circles: DSMC; the error bars are of the same
as the symbols. Solid line: Burnett. Long-dashed line: Nav
Stokes.
e
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The discrepancy is greatest at the boundaries where la
gradients are present. Notice that even at the lowest Knud
number the DSMC data clearly indicate thatqxÞ0. A non-
zero parallel heat flux is also predicted in the BGK model@4#
and Grad’s expansion@26#.

Figures 7, 21, and 32 show thaty component of the hea
flux, as predicted by Burnett and Navier-Stokes, is in go
agreement with the DSMC data, the differences being gr
est at large Knudsen numbers and near the boundaries w
larger gradients are present. However, near the center o
system, where the bimodal behavior of the temperature
observed, the heat flow given by the DSMC method a
Burnett are in good agreement, which indicates that the
crepancy in the temperature profiles probably cannot be
plained in terms of the differences forqy . The DSMC results
confirm that thez component of the heat flux is zero; resu
from the ten mean free path system are shown in Fig. 8

e
-

FIG. 21. Reducedy component of the heat flux,qy* , vs s for the
L520l 0 system. Circles: DSMC; the error bars are approxima
one fourth of the size of the symbols. Solid line: Burnett.

FIG. 22. Reducedyy component of the pressure tensor,Pyy* , vs
s for the L520l 0 system. Circles: DSMC. Solid line: Burnett.
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4074 PRE 60F. J. URIBE AND ALEJANDRO L. GARCIA
the data from the other cases is similar.
From Landau’s symmetry argument and given thatuy

5uz50 it follows from the conservation equations thatPyy
must be a constant. Figure 9 shows that the DSMC data
the L510l 0 system exhibit a weak nonconstant behavi
and are about 0.2% below the Burnett prediction. This co
be an explanation for the discrepancy for the tempera
profile, though forL520l 0 the DSMC temperature profile
exhibits a bimodal behavior whilePyy is, within statistical
error, a constant function~see Figs. 22 and 33!. A possible
explanation forPyy not being exactly constant in theL
510l 0 system is that while, on average,uy5uz50, these
components of velocity fluctuate and these non-equilibri
fluctuations have long-range spatial correlations@20#. The
other diagonal components of the pressure tensor are
zero; the DSMC data and Burnett predictions forPxx ~Figs.
10, 23, and 34! andPzz ~Figs. 11, 24, and 35! are in qualita-
tive agreement.

FIG. 23. Reducedxx component of the pressure tensor,Pxx* , vs
s for the L520l 0 system. Circles: DSMC. Solid line: Burnett.

FIG. 24. Reducedzz component of the pressure tensor,Pzz* , vs
s for the L520l 0 system. Circles: DSMC. Solid line: Burnett.
or
,
d
re

ot

Finally, we turn our attention to the off-diagonal elemen
of P. The DSMC data confirm the Burnett and Navier-Stok
predictions that the componentsPxz andPyz are zero, as seen
in Figs. 12 and 13 for theL510l 0 system with similar results
for the other cases. From Figs. 14, 25, and 36, we see
Pyx is basically a linear function ofs for both the DSMC data
and the Burnett equations. The slopes differ slightly, a
while we do not expect that this explains the bimodal te
perature profile and a more detailed analysis is needed.

IX. FINAL REMARKS

From our results we conclude that the bimodal tempe
ture profile observed by the DSMC method cannot be
plained with the Burnett equations, but that the noncons

FIG. 25. Reducedyx component of the pressure tensor,Pyx* , vs
s for the L520l 0 system. Circles: DSMC; the error bars are a
proximately one-fifth of the size of the symbols. Solid line: Burne

FIG. 26. Reduced velocity profile for thex component of the
velocity vector,ux* , vs s for the L540l 0 system. Circles: DSMC;
the error bars are a small fraction of the size of the symbols. S
line: Burnett.
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PRE 60 4075BURNETT DESCRIPTION FOR PLANE POISEUILLE FLOW
pressure profile is a second order Knudsen effect. This c
clusion is consistent with the fact that as the Knudsen nu
ber is lowered the bimodality in the temperature profile b
comes unobservable, while a significant nonconst
pressure is still measured by the DSMC method@5#. The
bimodal character of the temperature profiles is perhap
super-Burnett effect; however, it should be pointed out t
the higher order Chapman-Cowling@7# gradient expansions
are very complicated. While some work has been done w
the super-Burnett equations@21#, this work is restricted to
linearized corrections to the fluxes. For these reason
seems more promising to look for alternatives such as
regularization given by Rosenau@22# or the partial summa-
tion to the Chapman-Enskog method given by Gorban
Karlin @23#. These methods, however, have some rest
tions, such as the use of a linearized collision operator.

Tij et al. @24# investigated the present problem using m

FIG. 27. Reduced velocity profile for they component of the
velocity vectoruy* , vs s for the L540l 0 system. Circles: DSMC.
Solid line: assumption for plane Poiseulle flow.

FIG. 28. Reduced velocity profile for thez component of the
velocity vector,uz* , vs s for the L540l 0 system. Circles: DSMC.
Solid line: assumption for plane Poiseuille flow.
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ment methods for Maxwellian molecules, and obtained
bimodal behavior for the temperature profiles. Unfortunat
simulations of Poiseuille flow using Maxwellian molecule
are still lacking, so it is not known whether their prediction
quantitative. For the model used by Tijet al., Ikenberry and
Truesdell@25# evaluated a broad set of kinetic quantities th
allow one to compute many moments, but a similar analy
has not been performed for other potentials, such as r
spheres. Tijet al. predicted a heat flux in thex direction, in
qualitative agreement with the DSMC data and the Burn
results presented here. As we pointed out, this heat flux
no effect on the conservation equations, which are use
obtain the profiles. Recently Risso and Cordero@26# used
MD simulations and Grad’s expansion method to reach so
of the same conclusions as in this work. There ex
molecular-dynamics calculations for dense systems in wh
the inadequacy of the Navier-Stokes equations has also

FIG. 29. Reduced temperature profileT* vs s for the L540l 0

system. Circles: DSMC; the error bars are about a third of the
of the symbols. Solid line: Burnett.

FIG. 30. Reduced pressure profilep* vs s for the L540l 0 sys-
tem. Circles: DSMC. Solid line: Burnett.
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4076 PRE 60F. J. URIBE AND ALEJANDRO L. GARCIA
pointed out@27#, in particular for plane Poiseuille flow@28#.
Although these works are somewhat inapplicable to
present research for dilute gases, they support the conclu
that there exist simple flows for which the Navier-Stok
method is capable of improvement.

While moment methods recover many of the qualitat
features observed in Poiseiulle flow, their robustness
been criticized not only for the closure problem but also
evaluating shock waves. As Weiss@29# stated~we have con-
sistently changed the numbering of the references!, ‘‘ the
shock structure in monatomic gases is not satisfactorily
scribed by the Navier-Stokes-Fourier theory, e.g., see
[30]. But Grad’s 13-moment theory is even worse; inde
Grad [31,32] himself found that no continuous shock stru
ture exists beyond Mach 1.65, which is the maximum sp
of propagation of the 13-moment theory.’’ Holway @33#
showed that no matter how many moments are taken

FIG. 31. Reducedx component of the heat flux,qx* , vs s for the
L540l 0 system. Circles: DSMC; the error bars are about the siz
the symbols. Solid line: Burnett. Long-dashed line: Navier-Stok

FIG. 32. Reducedy component of the heat flux,qy* , vs s for the
L540l 0 system. Circles: DSMC; the error bars are about one-fou
of the size of the symbols. Solid line: Burnett.
e
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account there is no continuous continuous shock struc
beyond Mach 1.85, though this result has been challenge
Weiss himself@34#. In contrast, Gilbarg and Paolucci@30#
remarked that, ‘‘while the evidence from kinetic theory an
the theory of nonlinear viscosity indicate that the Navie
Stokes equations yield values of the shock thickness tha
perhaps smaller than the actual one, there is nothing in
evidence to suggest that the classical theory is far wron’’
For shock waves there is indeed substantial evidence tha
Navier-Stokes theory is susceptible to improveme
@11,13,35,36#. However, the evidence provided by Fisck
and Chapman@37# that the Burnett equations give better pr
dictions than the Navier-Stokes equations, which was quo
in Refs.@13,36#, was flawed; an explanation of the errors a
further extension of this important work can be find in t
paper by Zhonget al. @38#. Two classical accounts of th
Burnett equations applied to shock waves are the works

f
.

h

FIG. 33. Reducedyy component of the pressure tensor,Pyy* , vs
s for the L540l 0 system. Circles: DSMC. Solid line: Burnett.

FIG. 34. Reducedxx component of the pressure tensor,Pxx* , vs
s for the L540l 0 system. Circles: DSMC. Solid line: Burnett.
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PRE 60 4077BURNETT DESCRIPTION FOR PLANE POISEUILLE FLOW
Wang-Chang and Uhlenbeck@21# and Foch@39#. The DSMC
calculations for the shock wave problem were done a lo
time ago~see Ref.@11# for references!, but the MD calcula-
tions are more recent@40# and in particular the first MD
calculations for a dilute gas of rigid spheres were made
1992 by Salomons and Mareschal@41#. Salomons and Mare
schal @41# provided strong evidence that the Burnett equ
tions can indeed provide a sustantial improvement over
Navier-Stokes equations at high Mach numbers, but c
ously enough a few months later a communication by th
authors and Holian’s group was published@42# leaving aside
the previous claim about the Burnett regime. Uribeet al. @6#
followed Salomons and Mareschal’s remark, and found
deed that Burnett equations provided an accurate descrip
for strong shock waves; however, in their qualitative analy
of the Burnett dynamical system they found a ‘‘Hopf-lik
bifurcation’’ at the upstream critical point, suggesting th
there may not be a heteroclinic trajectory for Mach numb
greater than about 2.69. Rather than continuing to list
points of view on this topic, let us conclude by stating tha
vigorous debate exists and that further experiments
simulations are needed to resolve these arguments.

FIG. 35. Reducedzz component of the pressure tensor,Pzz* , vs
s for the L540l 0 system. Circles: DSMC. Solid line: Burnett.
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DSMC simulations can provide detailed measurements
moments of the velocity distribution function but in the pa
such measurements were restricted to extremely nonequ
rium flows, such as strong shocks@11#; for shock waves
experimental information about the distribution function
also available@43#. This paper demonstrates that the he
flux and pressure tensor can differ measurably from th
Navier-Stokes predictions, and that the Burnett equations
do significantly better even in a simple, subsonic flow.
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FIG. 36. Reducedyx component of the pressure tensor,Pyx* , vs
s for the L540l 0 system. Circles: DSMC; the error bars are abo
one fifth the size of the symbols. Solid line: Burnett.
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