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Abstract. In this paper we describe a DSMC algorithm for the Uehling-Uhlenbeck-Boltzmann equation in
terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as
the Fermi-Dirac and Bose-Einstein cases. By numerical experiments we study the sensitivity of the algorithm
to the number of simulation particles and to the discretization of the velocity space, when approximating the
steady state distribution.

INTRODUCTION

The recent landmark experiments of Bose-Einstein condensation have generated significant interest in
quantum ideal gases (see [8] and references therein). Kinetic theory is useful in the study of a quantum
gas, especially when the particle dynamics can be decomposed into two-body collisions and a mean field
potential. For this regime, Uehling and Uhlenbeck [16] extended the Boltzmann equation to quantum systems
by including the Pauli factor. In the spatially homogeneous case, this equation takes the form

∂

∂t
f(t,v) =

∫
R3
dw

∫
S2
deB(v,w,e)

[
(1+θf(t,v))(1+θf(t,w))f(t,v∗)f(t,w∗)−

(1+θf(t,v∗))(1+θf(t,w∗))f(t,v)f(t,w)
]
, (1)

with initial condition f(0,v) = f0(v).
The postcollision velocities corresponding to v,w∈R3 are

v∗(v,w,e) = v+e(e,w−v) , w∗(v,w,e) = w−e(e,w−v) , e ∈ S2 , (2)

where S2⊂R3 is the unit sphere, and (., .) denotes the scalar product in the Euclidean space R3 . The function
B is the collision kernel, which, in case of hard sphere molecules, takes the form B(v,w,e) = const |(e,w−v)|.
Note that n =

∫
R3 f0(v)dv is the average number of physical particles per unit volume in position space.

Equation (1) includes (namely for θ = 0) the Boltzmann equation of classical statistics as a special case.
It differs from the latter in the case of Bose-Einstein statistics (θ = +1) and in the case of Fermi-Dirac
statistics (θ = −1). The case θ = +1 has been studied recently in [14].

Direct simulation Monte Carlo (DSMC) has been the most widely used numerical algorithm for the
classical Boltzmann equation [4]. Stochastic particle algorithms for the Uehling-Uhlenbeck-Boltzmann (UUB)
equation were first developed to simulate the Fermi-Dirac dynamics of nucleons during heavy ion collisions
[3], [2], [5]. These numerical methods were later reformulated into a DSMC-based framework by Lang, et al.
[12]. Similar Monte Carlo algorithms have been used to study the dynamics of cooling [17] and trapping [6]
in Bose-Einstein condensation. Dense gas corrections to the UUB equation have been modelled using the
Consistent Boltzmann Algorithm [1], a dense gas variant of DSMC. This algorithm has been used to include



virial corrections to UUB simulations [11], [15]. Its asymptotic properties in the Boltzmann case have been
studied in [9].

In this paper we describe a DSMC algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of
Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the
Fermi-Dirac and Bose-Einstein cases. Using numerical experiments we study the sensitivity of the algorithm
to the number of simulation particles and to the discretization of the velocity space, when approximating
the steady state distribution.

The paper is organized as follows. In Section 2 we give a detailed description of the DSMC algorithm
starting from a corresponding Markov jump process. Section 3 contains results of numerical experiments
for both the Fermi-Dirac and Bose-Einstein cases. We calculate approximations to the equilibrium solution
using the particle algorithm. We study the error depending on the numerical parameters like particle number
or number of cells in the velocity space.

DESCRIPTION OF THE ALGORITHM

We introduce a Markov process

Z(t) =
(
V1(t), . . . ,VN (t)

)
, t≥ 0 ,

defined by the infinitesimal generator

A(Φ)(z) =
n

2N

∑
1≤i�=j≤N

∫
S2
Q(z, i, j,e)

[
Φ(J(z, i, j,e))−Φ(z)

]
de, (3)

where

z = (v1, . . . ,vN ) ∈ (R3
)N

= Z (4)

and N is the number of simulation particles. The jump transformation is (cf. (2))

[J(z, i, j,e)]k =



vk , if k 
= i, j ,
v∗(vi,vj ,e) , if k = i ,
w∗(vi,vj ,e) , if k = j .

(5)

The intensity function has the form

Q(z, i, j,e) = Y

(
n

N

N∑
k=1

g(v∗(vi,vj ,e),vk),
n

N

N∑
k=1

g(w∗(vi,vj ,e),vk)

)
B(vi,vj ,e) , (6)

where g is some mollifying kernel,

g(v,w) = g(w,v) ≥ 0 ,
∫
R3
g(v,w)dw = 1 , (7)

intended for approximating Dirac’s delta-function. The concrete form of g as well as of the non-negative
function Y will be specified later (cf. (14), (16) below).

For numerical purposes, we rewrite the generator (3) in the form

A(Φ)(z) =
∫
Z

[
Φ(z̄)−Φ(z)

]
Q̂(z,dz̄) ,

where

Q̂(z,dz̄) = (8)
n

2N

∑
1≤i�=j≤N

∫
S2

{
δJ(z,i,j,e)(dz̄)Q(z, i, j,e)+ δz(dz̄)

[
Ŷ (z)B̂(z)−Q(z, i, j,e)

]}
de



and δ denotes the Dirac measure. The functions B̂ and Ŷ are such that (cf. (6))

Y

(
n

N

N∑
k=1

g(v∗(vi,vj ,e),vk),
n

N

N∑
k=1

g(w∗(vi,vj ,e),vk)

)
≤ Ŷ (z) , ∀ z ∈ Z , (9)

and

B(vi,vj ,e) ≤ B̂(z) , ∀ 1 ≤ i 
= j ≤N , e ∈ S2 , z ∈ Z . (10)

Thus, the pathwise behaviour of the process is as follows. Coming to a state (4), the process stays there for
a random waiting time, which has an exponential distribution with the parameter (cf. (8))

π̂(z) = Q̂(z,Z) = 2πnŶ (z)B̂(z)(N −1) . (11)

Then the process jumps into a state z̄ , which is distributed according to the jump distribution

π̂(z)−1 Q̂(z,dz̄) =

1
N (N −1)

∑
1≤i�=j≤N

1
4π

∫
S2

{
δJ(z,i,j,e)(dz̄)

Q(z, i, j,e)
Ŷ (z)B̂(z)

+ δz(dz̄)

[
1− Q(z, i, j,e)

Ŷ (z)B̂(z)

]}
.

Consequently, first the parameters i , j and e are generated uniformly. Given i , j and e, the jump is
fictitious, i.e. the new state is z̄ = z , with probability

1− Q(z, i, j,e)
Ŷ (z)B̂(z)

. (12)

Otherwise, the new state is z̄ = J(z, i, j,e) .
For calculating the quantity (12), one needs to evaluate the empirical density (cf. (6))

f̂(z,v) =
n

N

N∑
k=1

g(v,vk) , (13)

for v = v∗(vi,vj ,e) and v = w∗(vi,vj ,e) . Note that (7) implies∫
R3
f̂(z,v)dv = n, ∀z ∈ Z .

For numerical purposes, it is convenient to introduce some partition Vl , l = 1, ...,M , of the velocity space
and to use the function

g(v,w) =
M∑
l=1

1
|Vl| χVl

(v)χVl
(w) , (14)

where χ denotes the indicator function. Let Nl , l= 1, ...,M , be the number of particles with velocities in cell
Vl . Then the empirical density (13) takes the form

f̂(z,v) =
nNl(v)

N |Vl(v)| , v ∈R3 , (15)

where l(v) denotes the number of the cell to which v belongs. Note that the function (15) is constant in each
cell.

The following algorithm is obtained.

0. Generate the initial state z so that (13) approximates f0 for large N .



1. Given z calculate the time step
1

2πnŶ (z)B̂(z)(N −1)

according to (11).
2. Generate i , j , e uniformly and calculate

v∗i = v∗(vi,vj ,e) , v∗j = w∗(vi,vj ,e)

according to (5).
3. With probability (12), i.e. if

Y (f̂(z,v∗i ), f̂(z,v∗j ))

Ŷ (z)
B(vi,vj ,e)
B̂(z)

≤ RAND ,

go to 1.
4. Replace vi ,vj by v∗i ,v

∗
j .

5. Update B̂ , f̂ , Ŷ and go to 1.

Some remarks: First, in the Boltzmann case Y ≡ 1 , the procedure differs slightly from standard DSMC. This
is due to the fact that in general Y depends on e so that this parameter also must be generated before
the rejection. Second, note that the function Ŷ in (9) can be adapted during the process of computation,
similar to the adaption of the function B̂ in (10) depending on the maximum relative velocity. Third, even
if M = ∞ , the sum (14) remains finite. Alternatively, one considers the set outside some (big) ball in the
velocity space as the last cell. The empirical density is there approximated by zero. Finally, the limiting
equation (as N →∞) for this Markov process is the UUB equation (1), for the choice

Y (x,y) = (1+θx)(1+θy) , x,y ∈R . (16)

The derivation will be presented elsewhere.

NUMERICAL EXPERIMENTS

The equilibrium density for the UUB equation takes the form [7,Ch. 17.5]

p(v) =
1

A exp(α‖v‖2)−θ , (17)

where A>max(θ,0) and α > 0. Note that, in case θ > 0 and A→ θ , some delta-like distribution is obtained
(Bose-Einstein condensation), while in case θ < 0 and A→ 0 , an approximate uniform distribution is obtained
(Fermi level). For A→∞ distributions in both cases are close to a Maxwellian (with mean ∼A−1). Finally,
in case θ = 0 , a pure Maxwellian is obtained.

Since the equilibrium density is isotropic, it will be useful to consider the speed distribution, defined as

p̃(u) =
4πu2

A exp(αu2)−θ , (18)

where u= ‖v‖ . Note that the speed distribution is merely p(v) given in (17) integrated over angle.

Fermi-Dirac case

Figure 1 (left) shows the steady state speed distribution (18) measured in the simulation of a gas of
Fermi-Dirac particles (θ = −1). The parameters in this case are A= 0.01 and α= 1, which corresponds to a
temperature of 0.21TF where TF is the Fermi temperature [10]. The simulation used N = 104 particles and



M = 104 velocity cells1 , which were cubic with a width of ∆v = 0.45. Note that for this choice of parameters
we find good agreement with the expected equilibrium distribution.
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FIGURE 1. Steady-state speed distribution in a Fermi-Dirac gas. Data from a simulation with N = 104 particles
and M = 104 (left) or M = 106 (right) velocity cells is shown as histogram bars; expected distribution shown by
asterisks. The Maxwell-Boltzmann distribution for a gas with the same kinetic energy is shown, by open circles, for
comparison.

To quantify this agreement, the square integrated difference between the measured and expected speed
distribution was evaluated as,

E(N,M) =
∫ ∞

0

[p̃(u)− p̃s(u;N,M)]2 du

where p̃s is the estimated steady state distribution from the simulation. For the results shown in Fig. 1 this
error was 0.031 . For comparison, one finds an integrated square difference of about 10−5 in a comparable
simulation of a Maxwell-Boltzmann gas (i.e., standard DSMC).2 As the value of E also varies with the
parameters A and α, we use the normalized error defined as Ē(N,M) = E(N,M)/E(104,104).

Interestingly, increasing the number of velocity cells can reduce the accuracy of the distribution, as seen
in Figure 1 (right), which is similar to the left figure but with the number of velocity cells increased to
M = 106 (and the cell size reduced to ∆v = 0.09). When the number of cells is significantly larger than the
number of particles, Fermi exclusion is not accurately modelled.

This effect is confirmed in Figure 2 (left), which shows the normalized error as a function of the number
of cells for various values of N . On the other hand, for a given number of cells the error plateaus when N ≥M ,
as shown in Figure 2 (right). Roughly speaking, the error is minimum when N ≈M and when we take
the number of particles equal to the number of cells we find that the Ē ≈N−1, as shown in Figure 3. One
also finds that even when N =M ≈ 300 the distribution retains a strong quantum signature, when compared
with the corresponding Maxwell-Boltzmann distribution (dashed line in Figure 3). Note that all of these
results are for simulations using the parameters A= 0.01 and α= 1; for different values of the parameters we
expect quantitatively different errors (e.g., Ē decreases as A increases) but qualitatively similar dependence
on N and M .

Bose-Einstein case

Figure 4 (left) shows the steady state speed distribution (18) measured in the simulation of a gas of

1 Actually the value of M is rounded to the nearest cubic integer, e.g., for M = 105 the number of velocity cells is actually
97336 = 463.
2 The error goes to zero, independent of N (N > 1) as the number of samples goes to infinity, that is, standard DSMC exactly
reproduces the Maxwell-Boltzmann distribution.
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FIGURE 2. Normalized error, Ē(N,M), in the steady-state Fermi-Dirac speed distribution as a function of the
number of velocity cells (left) and as a function of the number of particles (right).
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FIGURE 3. Normalized error, Ē(N,M), in the steady-state Fermi-Dirac speed distribution as a function ofN = M .
For comparison, the error for a Maxwell-Boltzmann distribution (i.e., open circles in Fig. 1) is shown as a dashed
line.

Bose-Einstein particles (θ = 1). The parameters in this case are A = 1.01 and α = 1, which corresponds
to a temperature of 1.08Tc where Tc is the critical temperature [10]. The simulation parameters are
N = 104 , M = 104 and ∆v= 0.38 . Although the agreement with the expected distribution is poor, Figure 4
(right) shows that the agreement is very good when N and M are increased to 106 (and ∆v reduced to
0.08).
Figure 5 (left) shows that in these simulations of a Bose-Einstein gas, the normalized error drops with

increasing number of velocity cells until M ≈ 100N . On the other hand, for a given number of cells Ē(N,M)
is approximately constant in N , as shown in Figure 5 (right), when N >M/10. Finally, graphing Ē(N,M)
versus N = M (Figure 6) shows that the error decreases with N except for in the smallest simulations
(N ≤ 103). For those simulations the error plateaus at approximately that of a DSMC simulation for a
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FIGURE 4. Steady-state speed distribution in a Bose-Einstein simulation with N = 104 particles and M = 104

velocity cells (left) and with N = 106 particles and M = 106 cells.

Maxwell-Boltzmann gas (i.e., θ = 0), though the distribution is not Maxwellian. Again, all of the Bose-
Einstein simulations used the parameters A = 1.01 and α = 1; for different values of the parameters we
expect quantitatively different errors (e.g., Ē decreases as A increases) but qualitatively similar dependence
on N and M .
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FIGURE 5. Normalized error, Ē(N,M), in the steady-state Bose-Einstein speed distribution as a function of the
number of velocity cells (left) and as a function of the number of particles (right).
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