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Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation
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In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann
equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann
case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by
demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number
of simulation particles and to the discretization of the velocity space, when approximating the steady-state

distribution.
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[. INTRODUCTION ered recently in Ref.3]. The kinetics of quantum systems in

the mean field approximation has been extensively studied in
The recent landmark experiments of Bose-Einstein conthe literature. We refer to Ref4] for a general discussion on
densation have generated significant interest in quantunhe nonlinearities originated from the quantum nature of the
ideal gasegsee Ref.[1], and references therginKinetic  particles in Boltzmann-like evolution equations.
theory is useful in the study of a quantum gas, especially Direct simulation Monte CarldDSMC) has been the
when the particle dynamics can be decomposed into twomost widely used numerical algorithm for the classical Bolt-
body collisions and a mean field potential. For this regimezmann equatiori5]. Stochastic particle algorithms for the
Uehling and Uhlenbeck2] extended the Boltzmann equation Uehling-Uhlenbeck-BoltzmanfUUB) equation were first
to quantum systems by including the Pauli factor. In the spageveloped to simulate the Fermi-Dirac dynamics of nucleons
tially homogeneous case, this equation takes the form  qyring heavy ion collision§6—8]. These numerical methods
were later reformulated into a DSMC-based framework by
J Lang et al. [9]. Similar Monte Carlo algorithms have been
Ef(t,v)= J 3dWJ 2de Blv,w,e){[1+ 6f(t,v)] used to study the dynamics of coolifitQ] and trapping11]
i S in Bose-Einstein condensation. These quantum kinetic com-
X[1+ 6f(t,w)]f(t,o*)f(t,w*)—[1+ 0f(t,0*)] putations have been combined with numerical solutions of
the generalized Gross-Pitaevskii equation to model the ther-
X[1+of(t,w*)]f(t,v)f(t,w)}, (1.))  mal cloud and its interaction with the condensate wave func-
tion at a finite temperaturfgl2,13. Dense gas corrections to
with initial condition f(O.v)=fo(v). The postcollision ve- the UUB equation have been modeled using the consistent

locities corresponding to,w e R® are Boltzmann algorithm[14], a dense gas variant of DSMC.
This algorithm has been used to include virial corrections to
v*(v,W,e)=v+e(e,w—u), UUB simulations[15,16. Its asymptotic properties in the

Boltzmann case have been studied in R&7].
In this paper we describe a DSMC algorithm for the
w*(v,w,e)=w—e(e,w-v), eeS? (1.2 Uehling-Uhlenbeck-Boltzmann equation in terms of Markov
processes. This provides a unifying framework for both the
whereS?CR? is the unit sphere an@l,.) denotes the scalar classical Boltzmann case as well as the Fermi-Dirac and
product in the Euclidean spad¢®. The functionB is the  Bose-Einstein cases. We establish the foundation of the algo-
collision kernel, which, in case of hard sphere moleculesrithm by demonstrating its link to Eq1.1). Using numerical
takes the formB(v,w,e)=consix|(e,w—uv)|. Note thatn experiments we study its sensitivity to the number of simu-
= [rsfo(v) dv is the average number of physical particleslation particles and to the discretization of the velocity space,
per unit volume in position space. Equati¢hl) includes  when approximating the steady-state distribution.
(namely, for6=0) the Boltzmann equation of classical sta- The paper is organized as follows. In Sec. Il we give a
tistics as a special case. It differs from the latter in the case ddetailed description of the DSMC algorithm starting from a
Bose-Einstein statisticsg +1) and in the case of Fermi- corresponding Markov jump process. Section Ill provides a
Dirac statistics §=—1). The cas&= + 1 has been consid- heuristic derivation of the limiting equation when the num-
ber of simulation particles tends to infinity. In Sec. IV we
study the equilibrium behavior of the solution to the UUB
*Permanent address: Department of Physics, San Jose Staguation. Finally, Sec. V contains results of numerical ex-
University, San Jose, CA, USA. periments. We calculate approximations to the equilibrium
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solution using the particle algorithm. We study the error de- | . n
pending on the numerical parameters such as particle number Q(Z,d2)=m ;t N f RETCARD 0(d2)Q(zi j,e)
or number of cells in the velocity space. I=

+8,(d2)[Y(2)B(2) - Q(zi,j,e)]}de (2.7
II. DESCRIPTION OF THE ALGORITHM

and & denotes the Dirac measure. The functi@handY are

We introduce a Markov process
P such thafcf. Eq. (2.5)]

Z(t)=(V4(t), ... Vy(1), t=0, (2.2 N
2 90" (00,0 00y 2 gW* (v;,v},€),01)

ZI:

defined by the infinitesimal generator
] <Y(z) V zeZz (2.9
A D=5y > f Qzi.j.e) and

><{<D[J(z,i,j,e)]—d>(z)}de, (2.2
B(vi,v;,)<B(2) V 1<i#j<N, ecS? zeZz
where (2.9

3N Thus, the pathwise behavior of the process is as follows.
z=(vy, ... won) e (RY)7= (2.3 Coming to a stat¢2.3), the process stays there for a random

waiting time, which has an exponential distribution with the
andN is the number of simulation particles. The jump trans'paramete[cf Eq. (2.7)]

formation is[cf. Eq. (1.2)]

m(2)=0(z,2)=27nY(2)B(2)(N-1). (2.10

. it ki
[J(z,i,je)]=4 v*(vi,vj.e) if k=i (2.4 Then the process jumps into a statewhich is distributed
w*(v;,v;,e) if k=j. according to the jump distribution

The intensity function has the form

7(2)"*0(z,dz)

0 1 g ([, soaiie
Q(z,i,j,e)=Y N 2 g(v*(vi,vj,e),vk), N(N—1) 1< ; 47Tf32 6‘](Z’I’J’e)(d2) ?(Z)E(Z)
k=1
)N [ Qaije)
XN kzl g(W*(vi!Uj!e)lvk)) B(vi!vj!e)v +5Z(dz)|:l ( ) ( )

(2.9 Consequently, first the parametearg, and e are generated
uniformly. Giveni, j ande, the jump is fictitious, i.e., the

whereg is some mollitying kemel, new state ig=z, with probability

= = =
g(v,w)=g(w,v)=0, fwg(v,w)dw 1, (2.9 1- ?(Z’Iij ,e). (2.12
Y(2)B(2)
intended for approximating Dirac’é-function. The concrete o
form of g as well as of the non-negative functidhwill be  Otherwise, the new state is=J(z,i,j,e).
specified later. For calculating quantity2.11), one needs to evaluate the
For numerical purposes, we rewrite generd®p) in the  empirical densitycf. Eq. (2.5)]
form
n N
fzo)=5 2 9w, (2.12
k=1

A<<1>><2>=fz[d><?>—<b<z>]é<z,d?>,

for v=v*(vi,v;,e) and v=w*(v;,v;,e). Note that Eq.
where (2.6) implies
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J]Rsf(z,v)dv=n V 7e 2. Y(x,y)=(1+60x)(1+0y), X,yeR. (2.195

The derivation of this result is presented in the following

For numerical purposes, it is convenient to introduce som&€ction:
partition V,,1=1, ... M, of the velocity space and to use
the function IIl. DERIVATION OF THE LIMITING EQUATION
The Markov proces$§2.1) satisfies
W
g(v,w)= 2, (W), (2.13 t
=11 (I)(Z(t))=<D(Z(O))+J A(P)[Z(s)]ds+M(t), t=0,
0
where x denotes the indicator function. LefN|,l (3.1
=1,... M, be the number of particles with velocities in cell ) ) )
V. Then the empirical densit{2.12) takes the form \(/vhe)aeM(t) is some martingale term. We considef. Eq.
2.3
A n N|(U) N
f(zv)= , veRsd (2.14 n
( NViw)| <I>(Z)=N2 e(vi), zeZ,
=1

wherel(v) denotes the number of the cell to whiohbe- . ,
longs. Note that functiori2.14) is constant in each cell. for appropriate test functions. Note that
The following algorithm is obtained.

(a) Generate the initial stateso that Eq.(2.12 approxi- nXN
matesf, for large N. D)=y 2 ‘P(Vi(t)):=f @) rM(t,dv),
(b) Given z calculate the time step =1 K
(3.2
1 where vV is the empirical measure of the particle system

(2.1). According to Eqs(2.2—(2.5), one obtains

27nY(2)B(z)(N—1)

2

N
according to Eq(2.10. :n_ f n * (0 0.
(c) Generatd j,e uniformly and calculate AP 2N2 1<i;j<N 52Y N kzl 90™ (vi;.€). 0,

vi =v*(vi,vj,8), vj=w(v;,j,e)

n
N I(Zl g(W*(Ui 1Uj !e)rvk))

according to Eq(2.4).

(d) With probability (2.11), i.e., if XB(vj,vj,e)[e@*(vi,vj,e))

+e(W* (vi,vj,€))—¢(v))—¢(vj)]de

Y(f(Z,vi‘),f(Z,vr)) B(vj,vj,e)$RAND, and
Y(z) B(z)
1

go to 1. A(@)[Z(s)]zif J J 2Y(f3g(v*,u)v(N)(s,du),

(e) Replacev; ,v; by v¥ v} . EIRTSS i

(f) UpdateB,,Y and go to 1. .

Some remarks: First, in the Boltzmann ca¢e 1, the R3g(w ) (s,du)
procedure differs slightly from standard DSMC. This is due
to the fact that, in general depends ore so that this pa- XB(v,w,e)[ ¢(v*)+ e(w*)

rameter also must be generated before the rejection. Second,

note that the functiorY in Eq. (2.8) can be adapted during
the process of computation, similar to the adaption of the +O(N™Y), (3.3
function B in Eq. (2.9) depending on the maximum relative )

velocity. Third, even ifM =%, sum (2.13 remains finite. Where the functions*,w* depend on the argumentsw,e
Alternatively, one considers the set outside sdhig) ballin @S defined in Eq(1.2). _ _ _

the velocity space as the last cell. The empirical density is SuPpose that the following relations are fulfilled s
there approximated by zero. Finally, the limiting equatias ~ — -

N—o0) for this Markov process is the UUB equatioh.1),

for the choice N =F(t), MN(t)—0 V t=0,

—o(v)— p(w)]derN(s,dv) M (s,dw)
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for some deterministic measure-valued functig(t). Under

certain assumptions concerning this convergence, one
conclude from Eq(3.1) and(3.3) that the limitF(t) satisfies

the equation

LSQD(U) F(t,dv)

:f‘lqgﬁp(U)Fo(dU)

i ;f;ﬁ@J'PPLZY( \HSQ(U* JU)F(s,du),

3g(w*,u)F(s,du)

R
XB(v,w,e)[e(v*)+e(W*)—¢(v)—p(w)]de
X F(s,dv)F(s,dw)ds.

The differential form with respect tbis
d 1
at st(v)F(t,dv)=§f‘P3J‘R3 Szﬁ(t,v*,w*)B(v,W,e)

X[e(v*)+e(W*)—¢(v)—@(w)]de

X F(t,dv)F(t,dw), (3.9
with the initial condition
Fo= lim v(M(0), (3.5

N— o

where we denote

B(t.x,y)—Y( Lag(x,U)F(t,dU), 3g(y,U)F(t,du)).

(3.6

R

Note that, in case of Eq2.13),

6’% * Fermi-Dirac Dist.
O Max.—Boliz. Dist.

0 0.5 1 15 2 25

1
can ‘HBQ(U,U)F(t,dU): ~TF (Vi)

FIG. 1. Steady-state speed distribution in a
Fermi-Dirac gas. Data from a simulation wilth
=10* particles andM =10* cells are shown as
histogram bars; expected distribution shown by
asterisks. The Maxwell-Boltzmann distribution
for a gas with the same kinetic energy is shown
by open circles for comparison.

45

V veR?
Vil

and that Eq(3.5) implies[cf. Eq. (3.2)]

Fo(R%) = lim v™N(0,R%) =n.

N

Note that the conservation properties are derived from Eq.
(3.4), as in the Boltzmann cas¢=1, for ¢=1p,|v|>.
Assume the limiting measures have densities

F(t,dv)="1(t,v)dv,

the functionY is symmetric, and

B(v,w,e)=B(v*,w*,e)=B(w,v,e)=B(v,w,—e).

(3.7

Note that the hard sphere kernel satisfig@g). Applying the
substitution ¢*,w*)—(v,w), the terms at the right-hand
side of Eq.(3.4) transform according to

f 3] . 2,B(t,v*,w*)B(U,W,e)go(v"‘)
r3Jr3Js
x f(t,v)f(t,w)de dv dw

N fu‘@fﬂ@fgz'g(t’v’W)B(U’W’e)‘/’(v)f(t’v*)

X f(t,w*)de dv dw.

Removing the test functions, one obtains

056703-4
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X[B(t,o,w)f(t,v*)f(t,w*)
- Btv* wHf(to)f(t,w)]. (3.9

g(x,y)=gM(x,y)— 8(x—y) as N—oe,

then [cf. Eq. (3.6] B(t,x,y)=Y(f(t,x),f(t,y)), and Eq.

(3.8) takes the form

* Fermi-Dirac Dist.
O Max.—Boliz. Dist.
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FIG. 2. Same as Fig. 1 but for a simulation
with M = 10° velocity cells.

J
5f(t,u)=ﬁﬁ3dszzde B(v,w,e)

XLY(f(t,v),f(t,w)f(t,o*)f(t,w*)
=Y (t,0*),f(t,w*)f(t,v)f(t,w)]. (3.9

Equation(1.1) is obtained from Eq(3.9) for choice(2.15),
with the particular caseg=1 (Bose-Einsteii #=0 (Boltz-
mann, and #=—1 (Fermi-Dirag. Note that since the func-
tion Y should be non-negative, it is more accurate to define
Eq. (2.15 for 6<0 as

Normalized error
=
T

10*
Number of velocity cells

056703-5

FIG. 3. Normalized errorE(N,M) in the
steady-state Fermi-Dirac speed distribution as a
function of the number of velocity cells.
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FIG. 4. Normalized errorE(N,M) in the
steady-state Fermi-Dirac speed distribution as a
function of the number of particles.

Normalized error
=
T

10_2 2 IS I4 I5 ]
10 10 10 10 10
Number of particles
Y(x,y)=(1+6x)"(1+6y)*, d
gt ()= f\|3 Ef(t v)Inf(t, v)+ f(t,v)
wherea™ =a if a>0 anda® =0 otherwise. 9 d
— Ef(t,v)ln[l-i— of(t,v)]— Ef(t,v) dv
IV. EQUILIBRIUM BEHAVIOR f(to)
1%
First we recall the derivation of an H-theore(uf., e.g., =f f(t v)In 1+ 01(to) dv. (4.1
Ref.[18] Sec. 5.4.3 Letf be a solution to Eq.3.9) with Y as R?
in Eq. (2.19. Defining Note that the casé=0 is easily covered, but in the cage
<0 the condition
H(t)=f f(t,o)Inf(t,v) 1
RS
f(tiv)<-— 7 (4.2

1
—gli+ of(to)]in[1+o1(t,v)] dv, has to be assumed. Using H&.9) and the notatiors(t,v)

=1+6f(t,v), the right-hand side of Eq4.1) takes the
one obtains form

f(t,v)
s(t,v)

L dv Lsdwf de B(v,w,e)[s(t,v)s(t,w)f(t,o*)f(t,w*)—s(t,v*)s(t,w*)f(t,v)f(t,w)]In

(t,w)

s(t,w)

f 3dvf 3de' de B(v,w,e)[s(t,v) s(t,w) f(t,o*) f(t,w*)—s(t,v*) s(t,w*) f(t,v) f(t, w)]ln
R R

f(t,o*)
s(t,v™*)
f(t,w*)

s(t,w*)

—j 3va 3dWJ’ 2de B(v,w,e)[s(t,v) s(t,w) f(t,v*) f(t,w*)—s(t,v*) s(t,w*) f(t,v) f(t,w)]In
R R S

jksdvf dwf de B(v,w,e)[s(t,v) s(t,w) f(t,v*) f(t,w*)—s(t,o*) s(t,w*) f(t,v) f(t,w)]In

1
:ZJ defsdwf 2de B(v,w,e)[s(t,v) s(t,w) f(t,0*) f(t,w*)—s(t,v*) s(t,w*) f(t,v) f(t,w)]
R R S

f(t,v) f(t,w)s(t,v*) s(t,w*)
s(t,v) s(t,w) f(t,o*) f(t,w*)

4.3

056703-6
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Normallized error

Maxwell-Boltzmann

Slope = -1

3 104

Number of particles (N = M)

From (b—a)ln(a/b)<0 and from Eqs.(4.1) and (4.3) one
obtains

d

gHm=o.

PHYSICAL REVIEW E 68, 056703 (2003

FIG. 5. Normalized errorE(N,M) in the
steady-state Fermi-Dirac speed distribution as a
function of N=M. For comparison, the error for
a Maxwell-Boltzmann distribution(i.e., open
circles in Fig. 3 is shown as a dashed line.

p(v™) p(w*) p(v) p(w)

Y(p(o*).p(w*))  Y(P(v),p(w)) “-4
as a sufficient condition. Assuming
Y(x,y)=Y00) Y(y), (4.5

More details about the derivation of the H theorem can becondition(4.4) takes the form
found in Ref.[4]. The general nonlinear Boltzmann equation
considered in this reference, contains as a particular case the
Uehling-Uhlenbeck equatiofl.1).
Next we consider the problem of the steady siatef.
Ref.[19] Chap. 17.%). From Eq.(3.9) one obtains

1.4

1.2

0.8

0.6

Final Distribution (Averaged)

041

021

05

Velocity

T T
* Bose—Einstein Dist.
O Max.—Boltz. Dist.
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p(w*) p(v) p(wW)
N= =In= +In= .
Y(p(w*))  Y(pv))  Y(p(w))
(4.6)

FIG. 6. Steady-state speed distribution in a
Bose-Einstein simulation wittN=10* particles
andM =10" cells.
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Since ¢(v*)+(W*)=¢(v) +¢(w) implies (v)=c,
+¢,|lv—v|? for somec;,c,eR andveR®, we obtain

from Eq. (4.6),

p(v)=Y(p(v))exp c,+cyllv—v]?). 4.7

Function(2.15 satisfieg4.5), with V(X) =1+ 6x. Thus, Eq.
(4.7) implies

exp(c; + Collv —v|?)
1-6expci+cyllv—v|?)

p(v)=

1

exp(—c;—Colv—v[[?)— 6’

4.9

10 T T T

e " * Bose-Einstein Dist.
" J dgr% O Max.—Boltz. Dist.

FIG. 7. Steady-state speed distribution in a
Bose-Einstein simulation wittN=10 particles
andM =10° cells.

The parameters,, C,, andv have to be chosen to fit the
conserved quantities. Necessary conditigfe positivity
and integrability are

exp(—cq)>0, c,<O0. 4.9

Note that, in the casé<0, conditionp(v)<—1/6 [cf. Eq.
(4.2)] is satisfied.

Let v=0, ci=—InA, c,=—a so that the equilibrium
density(4.8) takes the form

P(v)=Pgao(v)= (4.10

Aexplallv]|?) -6’

Normalized error
s
T

-3 I I 1

FIG. 8. Normalized errorE(N,M) in the
steady-state Bose-Einstein speed distribution as a
function of the number of velocity cells.

10* 10
Number of velocity cells
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10‘ T T T

3 J—
DA FIG. 9. Normalized errorE(N,M) in the

4 M=10° steady-state Bose-Einstein speed distribution as a
function of the number of particles.

Normalized error

=l

A, A
10_2 2 I3 I4 I5 6
10 10 10 10 10
Number of particles
where, according to Eq4.9), where u=|jv||. Note that the speed distribution is merely

p(v) given in Eq.(4.10 integrated over angle.

A>max 0,00 and a>0. (4.11 A. Fermi-Dirac case

Figure 1 shows the steady-state speed distributiof)
measured in the simulation of a gas of Fermi-Dirac particles
Note that, in cas@>0 andA— 6, somed-like distribution (6= —1). The parameters in this case a#e0.01 anda
is obtained(Bose-Einstein condensatigrwhile in casef =1 [cf. (4.11], which correspond to a temperature of
<0 andA—0, an approximate uniform distribution is ob- 0.21Tg, whereTg is the Fermi temperatuf0]. The simu-
tained (Fermi leve). For A—« distributions in both cases lation usedN=10" particles andM=10* velocity cells,
are close to a Maxwelliawith mean~1/A). Finally, in  which were cubic with a width ofAv =0.452 Note that for
case#=0, a pure Maxwellian is obtained. In the Fermi- this choice of parameters we find good agreement with the
Dirac casef<0, the equilibrium density is bounded by expected equilibrium distribution.
—1/6. If the function f(t,v) exceeds this bound, the gain  To quantify this agreement, the square integrated differ-
term in Eg. (3.9 becomes zero so that the function de-ence between the measured and expected speed distribution
creases. One might expect that the correct equilibrium denwas evaluated as
sity is obtained even for initial densitiel, that are not
bounded by—1/6.
If the empirical density(2.14) exceeds the boune 1/6,
then no more particles will come to the corresponding cell,
but particles can leave that cell. So that, at steady state, the
empirical density will satisfy the necessary conditicat
least approximately al— o).

E(N,M>=f:[ﬁ(u)—BSw;N,M)]Zdu,

whereg is the estimated steady-state distribution from the

simulation. For the results shown in Fig. 1 this error was

0.031. For comparison, a similar simulation for a Maxwell-
V. NUMERICAL EXPERIMENTS Boltzmann gas(i.e., standard DSMC had an integrated
square difference of about 1B. As the value of also var-
ies with the paramete’s and«, we use the normalized error

defined a€(N,M)=E(N,M)/E(10%,10%).

Since the equilibrium density is isotropic, it will be useful
to consider the speed distribution defined as

A7u2 Actually the value ofM is rounded to the nearest cubic integer,
B(u): _— (5.1 e.g., forM=10° the number of velocity cells is actually 97 336
Aexplau?)—@ =46,

056703-9
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Slope = -1 o FIG. 10. Normalized erroE(N,M) in the

steady-state Bose-Einstein speed distribution as a
function of N=M. For comparison, the error for
102} o 4 a Maxwell-Boltzmann distribution(i.e., open
circles in Fig. 6 is shown as a dashed line.

Normalized error

-4 I I 1

10* 10 10
Number of particles (N = M)

Interestingly, increasing the number of velocity cells cannumber of particle cells untiM ~100N. On the other hand,

reducethe accuracy of the distribution, as seen in F|g 2,f0r a given number of Ce”E(N,M) is approximate'y con-
which is similar to the previous figure but with the number of stant in N, as shown in Fig. 9, whetN>M/10. Finally,

velocity cells increased tv = 10° (and the cel! size rg@uced graphing E(N,M) versusN=M (Fig. 10 shows that the
to Av=0.09). When the number of cells is significantly
larger than the number of particles, Fermi exclusion is no
accurately modeled.

error decreases roughly advil/except for small simulations
%M<103). For those simulations the error plateaus at ap-

. ) . - . proximately that of a DSMC simulation for a Maxwell-
This effect is confirmed in Fig. 3, which shows the nor- Boltzmann gas(i.e., 6=0), though the distribution isiot

malized error as a function of the number of cells for VariousMaxwellian Again, all of the Bose-Einstein simulations used

values ofN. On the other hand, for a given number of cells - L .
the error plateaus whe=M, as shown in Fig. 4. Roughly the parameter8=1.01 anda=1; for different values of the

speaking, the error is minimum whéi=M and when we Parameters we expect quantitative_zly _differer_lt grr(mr.g.,E
take the number of particles equal to the number of cells wélecreases a# increasep but qualitatively similar depen-
find that E~1/M, as shown in Fig. 5. One also finds that 9€nce orN andM.

even whenN=M~300 the distribution retains a strong

guantum signature, when compared with the corresponding

Maxwell-Boltzmann distribution(dashed line in Fig. b

Note that all of these results are for simulations using the VI. CONCLUSION

parametersA=0.01 anda=1; for different values of the

parameters we expect quantitatively different err@s., E The purpose of this paper was twofold. In the first part we
decreases a# increasep but qualitatively similar depen- have described a DSMC algorithm for the Uehling-
dence orN and M. Uhlenbeck-Boltzmann equation in terms of Markov pro-

cesses. This approach provided a unifying framework for

both the classical Boltzmann case as well as the Fermi-Dirac

and Bose-Einstein cases. We have also established the foun-
B. Bose-Einstein case dation of the algorithm by demonstrating its link to the ki-

Figure 6 shows the steady-state speed distributioy ~ Netic equation.
measured in the simulation of a gas of Bose-Einstein par- The second part of the paper was devoted to numerical
ticles (¢=1). The parameters in this case #e1.01 and experiments. After recalling some known properties related
a=1 [cf. Eq. (4.11)], which correspond to a temperature of to the steady-state distribution, we have shown that the algo-
1.08T., whereT, is the critical temperaturg20]. The simu-  rithm produces correct results both in Fermi-Dirac and Bose-
lation parameters ard=10%, M=10%, andAv=0.38. Al- Einstein cases. We have also studied the sensitivity of the
though the agreement with the expected distribution is poorlgorithm to the number of simulation particles and to the
Fig. 7 shows that the agreement is very good wNeandM  discretization of the velocity space. It turned out that the
are increased to fQandAv reduced to 0.08 number of velocity cells must be appropriately adapted to the

Figure 8 shows that in these simulations of a Bosenumber of simulation particles in order to obtain conver-
Einstein gas, the normalized error drops with increasingience.
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