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Direct simulation Monte Carlo method for the Uehling-Uhlenbeck-Boltzmann equation
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In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann
equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann
case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by
demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number
of simulation particles and to the discretization of the velocity space, when approximating the steady-state
distribution.
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I. INTRODUCTION

The recent landmark experiments of Bose-Einstein c
densation have generated significant interest in quan
ideal gases~see Ref.@1#, and references therein!. Kinetic
theory is useful in the study of a quantum gas, especi
when the particle dynamics can be decomposed into t
body collisions and a mean field potential. For this regim
Uehling and Uhlenbeck@2# extended the Boltzmann equatio
to quantum systems by including the Pauli factor. In the s
tially homogeneous case, this equation takes the form

]

]t
f ~ t,v !5E

R3
dwE

S 2
de B~v,w,e!$@11u f ~ t,v !#

3@11u f ~ t,w!# f ~ t,v* ! f ~ t,w* !2@11u f ~ t,v* !#

3@11u f ~ t,w* !# f ~ t,v ! f ~ t,w!%, ~1.1!

with initial condition f (0,v)5 f 0(v). The postcollision ve-
locities corresponding tov,wPR3 are

v* ~v,w,e!5v1e~e,w2v !,

w* ~v,w,e!5w2e~e,w2v !, ePS 2, ~1.2!

whereS 2,R3 is the unit sphere and(.,.) denotes the scala
product in the Euclidean spaceR3. The functionB is the
collision kernel, which, in case of hard sphere molecul
takes the formB(v,w,e)5const3u(e,w2v)u. Note thatn
5*R3f 0(v) dv is the average number of physical particl
per unit volume in position space. Equation~1.1! includes
~namely, foru50) the Boltzmann equation of classical st
tistics as a special case. It differs from the latter in the cas
Bose-Einstein statistics (u511) and in the case of Fermi
Dirac statistics (u521). The caseu511 has been consid
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ered recently in Ref.@3#. The kinetics of quantum systems i
the mean field approximation has been extensively studie
the literature. We refer to Ref.@4# for a general discussion o
the nonlinearities originated from the quantum nature of
particles in Boltzmann-like evolution equations.

Direct simulation Monte Carlo~DSMC! has been the
most widely used numerical algorithm for the classical Bo
zmann equation@5#. Stochastic particle algorithms for th
Uehling-Uhlenbeck-Boltzmann~UUB! equation were first
developed to simulate the Fermi-Dirac dynamics of nucle
during heavy ion collisions@6–8#. These numerical method
were later reformulated into a DSMC-based framework
Lang et al. @9#. Similar Monte Carlo algorithms have bee
used to study the dynamics of cooling@10# and trapping@11#
in Bose-Einstein condensation. These quantum kinetic c
putations have been combined with numerical solutions
the generalized Gross-Pitaevskii equation to model the t
mal cloud and its interaction with the condensate wave fu
tion at a finite temperature@12,13#. Dense gas corrections t
the UUB equation have been modeled using the consis
Boltzmann algorithm@14#, a dense gas variant of DSMC
This algorithm has been used to include virial corrections
UUB simulations@15,16#. Its asymptotic properties in the
Boltzmann case have been studied in Ref.@17#.

In this paper we describe a DSMC algorithm for th
Uehling-Uhlenbeck-Boltzmann equation in terms of Mark
processes. This provides a unifying framework for both
classical Boltzmann case as well as the Fermi-Dirac
Bose-Einstein cases. We establish the foundation of the a
rithm by demonstrating its link to Eq.~1.1!. Using numerical
experiments we study its sensitivity to the number of sim
lation particles and to the discretization of the velocity spa
when approximating the steady-state distribution.

The paper is organized as follows. In Sec. II we give
detailed description of the DSMC algorithm starting from
corresponding Markov jump process. Section III provide
heuristic derivation of the limiting equation when the num
ber of simulation particles tends to infinity. In Sec. IV w
study the equilibrium behavior of the solution to the UU
equation. Finally, Sec. V contains results of numerical e
periments. We calculate approximations to the equilibriu

ate
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solution using the particle algorithm. We study the error d
pending on the numerical parameters such as particle num
or number of cells in the velocity space.

II. DESCRIPTION OF THE ALGORITHM

We introduce a Markov process

Z~ t !5„V1~ t !, . . . ,VN~ t !…, t>0, ~2.1!

defined by the infinitesimal generator

A~F!~z!5
n

2N (
1< iÞ j <N

E
S 2

Q~z,i , j ,e!

3$F@J~z,i , j ,e!#2F~z!%de, ~2.2!

where

z5~v1 , . . . ,vN!P~R3!N5Z ~2.3!

andN is the number of simulation particles. The jump tran
formation is@cf. Eq. ~1.2!#

@J~z,i , j ,e!#k5H vk if kÞ i , j

v* ~v i ,v j ,e! if k5 i

w* ~v i ,v j ,e! if k5 j .

~2.4!

The intensity function has the form

Q~z,i , j ,e!5YS n

N (
k51

N

g„v* ~v i ,v j ,e!,vk…,

3
n

N (
k51

N

g„w* ~v i ,v j ,e!,vk…DB~v i ,v j ,e!,

~2.5!

whereg is some mollifying kernel,

g~v,w!5g~w,v !>0, E
R3

g~v,w!dw51, ~2.6!

intended for approximating Dirac’sd-function. The concrete
form of g as well as of the non-negative functionY will be
specified later.

For numerical purposes, we rewrite generator~2.2! in the
form

A~F!~z!5E
Z
@F~ z̄!2F~z!#Q̂~z,dz̄!,

where
05670
-
er

-

Q̂~z,dz̄!5
n

2N (
1< iÞ j <N

E
S 2

$dJ(z,i , j ,e)~dz̄!Q~z,i , j ,e!

1dz~dz̄!@Ŷ~z!B̂~z!2Q~z,i , j ,e!#% de ~2.7!

andd denotes the Dirac measure. The functionsB̂ andŶ are
such that@cf. Eq. ~2.5!#

YS n

N (
k51

N

g„v* ~v i ,v j ,e!,vk…,
n

N (
k51

N

g„w* ~v i ,v j ,e!,vk…D
<Ŷ~z! ; zPZ ~2.8!

and

B~v i ,v j ,e!<B̂~z! ; 1< iÞ j <N, ePS 2, zPZ.
~2.9!

Thus, the pathwise behavior of the process is as follo
Coming to a state~2.3!, the process stays there for a rando
waiting time, which has an exponential distribution with th
parameter@cf. Eq. ~2.7!#

p̂~z!5Q̂~z,Z!52p n Ŷ~z!B̂~z!~N21!. ~2.10!

Then the process jumps into a statez̄, which is distributed
according to the jump distribution

p̂~z!21Q̂~z,dz̄!

5
1

N ~N21! (
1< iÞ j <N

1

4pES 2H dJ(z,i , j ,e)~dz̄!
Q~z,i , j ,e!

Ŷ~z!B̂~z!

1dz~dz̄!F12
Q~z,i , j ,e!

Ŷ~z!B̂~z!
G J .

Consequently, first the parametersi, j, and e are generated
uniformly. Given i, j and e, the jump is fictitious, i.e., the
new state isz̄5z, with probability

12
Q~z,i , j ,e!

Ŷ~z!B̂~z!
. ~2.11!

Otherwise, the new state isz̄5J(z,i , j ,e).
For calculating quantity~2.11!, one needs to evaluate th

empirical density@cf. Eq. ~2.5!#

f̂ ~z,v !5
n

N (
k51

N

g~v,vk!, ~2.12!

for v5v* (v i ,v j ,e) and v5w* (v i ,v j ,e). Note that Eq.
~2.6! implies
3-2



m
e

ll

ue

o
g
th
e

g

m

DIRECT SIMULATION MONTE CARLO METHOD FOR . . . PHYSICAL REVIEW E 68, 056703 ~2003!
E
R3

f̂ ~z,v ! dv5n ; zPZ.

For numerical purposes, it is convenient to introduce so
partition Vl ,l 51, . . . ,M , of the velocity space and to us
the function

g~v,w!5(
l 51

M
1

uVl u
xVl

~v !xVl
~w!, ~2.13!

where x denotes the indicator function. LetNl ,l
51, . . . ,M , be the number of particles with velocities in ce
Vl . Then the empirical density~2.12! takes the form

f̂ ~z,v !5
n Nl (v)

NuVl (v)u
, vPR3, ~2.14!

where l (v) denotes the number of the cell to whichv be-
longs. Note that function~2.14! is constant in each cell.

The following algorithm is obtained.
~a! Generate the initial statez so that Eq.~2.12! approxi-

matesf 0 for largeN.
~b! Given z calculate the time step

1

2p n Ŷ~z!B̂~z!~N21!

according to Eq.~2.10!.
~c! Generatei,j,e uniformly and calculate

v i* 5v* ~v i ,v j ,e!, v j* 5w* ~v i ,v j ,e!

according to Eq.~2.4!.
~d! With probability ~2.11!, i.e., if

Y„ f̂ ~z,v i* !, f̂ ~z,v j* !…

Ŷ~z!

B~v i ,v j ,e!

B̂~z!
<RAND,

go to 1.
~e! Replacev i ,v j by v i* ,v j* .

~f! UpdateB̂, f̂ ,Ŷ and go to 1.
Some remarks: First, in the Boltzmann caseY[1 , the

procedure differs slightly from standard DSMC. This is d
to the fact that, in general,Y depends one so that this pa-
rameter also must be generated before the rejection. Sec
note that the functionŶ in Eq. ~2.8! can be adapted durin
the process of computation, similar to the adaption of
function B̂ in Eq. ~2.9! depending on the maximum relativ
velocity. Third, even ifM5`, sum ~2.13! remains finite.
Alternatively, one considers the set outside some~big! ball in
the velocity space as the last cell. The empirical density
there approximated by zero. Finally, the limiting equation~as
N→`) for this Markov process is the UUB equation~1.1!,
for the choice
05670
e

nd,

e

is

Y~x,y!5~11u x!~11u y!, x,yPR. ~2.15!

The derivation of this result is presented in the followin
section.

III. DERIVATION OF THE LIMITING EQUATION

The Markov process~2.1! satisfies

F„Z~ t !…5F„Z~0!…1E
0

t

A~F!@Z~s!# ds1M ~ t !, t>0,

~3.1!

whereM (t) is some martingale term. We consider@cf. Eq.
~2.3!#

F~z!5
n

N (
i 51

N

w~v i !, zPZ,

for appropriate test functionsw. Note that

F„Z~ t !…5
n

N (
i 51

N

w„Vi~ t !…5..E
R3

w~v !n (N)~ t,dv !,

~3.2!

wheren (N) is the empirical measure of the particle syste
~2.1!. According to Eqs.~2.2!–~2.5!, one obtains

A~F!~z!5
n2

2N2 (
1< iÞ j <N

E
S 2

YS n

N (
k51

N

g„v* ~v i ,v j ,e!,vk…,

n

N (
k51

N

g„w* ~v i ,v j ,e!,vk…D
3B~v i ,v j ,e!@w„v* ~v i ,v j ,e!…

1w„w* ~v i ,v j ,e!…2w~v i !2w~v j !#de

and

A~F!@Z~s!#5
1

2ER3
E

R3
E

S 2
YS E

R3
g~v* ,u!n (N)~s,du!,

E
R3

g~w* ,u!n (N)~s,du! D
3B~v,w,e!@w~v* !1w~w* !

2w~v !2w~w!#den (N)~s,dv !n (N)~s,dw!

1O~N21!, ~3.3!

where the functionsv* ,w* depend on the argumentsv,w,e
as defined in Eq.~1.2!.

Suppose that the following relations are fulfilled asN
→`:

n (N)~ t !→F~ t !, M (N)~ t !→0 ; t>0,
3-3
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FIG. 1. Steady-state speed distribution in
Fermi-Dirac gas. Data from a simulation withN
5104 particles andM5104 cells are shown as
histogram bars; expected distribution shown
asterisks. The Maxwell-Boltzmann distributio
for a gas with the same kinetic energy is show
by open circles for comparison.
c

Eq.
for some deterministic measure-valued functionF(t). Under
certain assumptions concerning this convergence, one
conclude from Eq.~3.1! and~3.3! that the limitF(t) satisfies
the equation

E
R3

w~v ! F~ t,dv !

5E
R3

w~v ! F0~dv !

1
1

2E0

tE
R3
E

R3
E

S 2
YS E

R3
g~v* ,u!F~s,du!,

E
R3

g~w* ,u!F~s,du! D
3B~v,w,e!@w~v* !1w~w* !2w~v !2w~w!#de

3F~s,dv !F~s,dw!ds.

The differential form with respect tot is

d

dtER3
w~v !F~ t,dv !5

1

2ER3
E

R3
E

S 2
b~ t,v* ,w* !B~v,w,e!

3@w~v* !1w~w* !2w~v !2w~w!#de

3F~ t,dv !F~ t,dw!, ~3.4!

with the initial condition

F05 lim
N→`

n (N)~0!, ~3.5!

where we denote

b~ t,x,y!5YS E
R3

g~x,u!F~ t,du!,E
R3

g~y,u!F~ t,du! D .

~3.6!

Note that, in case of Eq.~2.13!,
05670
an E
R3

g~v,u!F~ t,du!5
1

uVl (v)u
F~ t,Vl (v)! ; vPR3,

and that Eq.~3.5! implies @cf. Eq. ~3.2!#

F0~R3!5 lim
N→`

n (N)~0,R3!5n.

Note that the conservation properties are derived from
~3.4!, as in the Boltzmann caseY[1, for w51,v,ivi2.

Assume the limiting measures have densities

F~ t,dv !5 f ~ t,v !dv,

the functionY is symmetric, and

B~v,w,e!5B~v* ,w* ,e!5B~w,v,e!5B~v,w,2e!.

~3.7!

Note that the hard sphere kernel satisfies~3.7!. Applying the
substitution (v* ,w* )→(v,w) , the terms at the right-hand
side of Eq.~3.4! transform according to

E
R3
E

R3
E

S 2
b~ t,v* ,w* !B~v,w,e!w~v* !

3 f ~ t,v ! f ~ t,w!de dv dw

5E
R3
E

R3
E

S 2
b~ t,v,w!B~v,w,e!w~v ! f ~ t,v* !

3 f ~ t,w* !de dv dw.

Removing the test functions, one obtains
3-4
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FIG. 2. Same as Fig. 1 but for a simulatio
with M5106 velocity cells.
-
ne
]

]t
f ~ t,v !5E

R3
dwE

S 2
de B~v,w,e!

3@b~ t,v,w! f ~ t,v* ! f ~ t,w* !

2b~ t,v* ,w* ! f ~ t,v ! f ~ t,w!#. ~3.8!

If

g~x,y!5g(N)~x,y!→d~x2y! as N→`,

then @cf. Eq. ~3.6!# b(t,x,y)5Y„f (t,x), f (t,y)…, and Eq.
~3.8! takes the form
05670
]

]t
f ~ t,v !5E

R3
dwE

S 2
de B~v,w,e!

3@Y„f ~ t,v !, f ~ t,w!…f ~ t,v* ! f ~ t,w* !

2Y„f ~ t,v* !, f ~ t,w* !…f ~ t,v ! f ~ t,w!#. ~3.9!

Equation~1.1! is obtained from Eq.~3.9! for choice~2.15!,
with the particular casesu51 ~Bose-Einstein!, u50 ~Boltz-
mann!, andu521 ~Fermi-Dirac!. Note that since the func
tion Y should be non-negative, it is more accurate to defi
Eq. ~2.15! for u,0 as
a

FIG. 3. Normalized errorĒ(N,M ) in the

steady-state Fermi-Dirac speed distribution as
function of the number of velocity cells.
3-5
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FIG. 4. Normalized errorĒ(N,M ) in the
steady-state Fermi-Dirac speed distribution as
function of the number of particles.
Y~x,y!5~11u x!1~11u y!1,

wherea15a if a.0 anda150 otherwise.

IV. EQUILIBRIUM BEHAVIOR

First we recall the derivation of an H-theorem~cf., e.g.,
Ref. @18# Sec. 5.4.3!. Let f be a solution to Eq.~3.9! with Y as
in Eq. ~2.15!. Defining

H~ t !5E
R3

F f ~ t,v !ln f ~ t,v !

2
1

u
@11u f ~ t,v !# ln@11u f ~ t,v !#Gdv,

one obtains
05670
d

dt
H~ t !5E

R3
F ]

]t
f ~ t,v !ln f ~ t,v !1

]

]t
f ~ t,v !

2
]

]t
f ~ t,v !ln@11u f ~ t,v !#2

]

]t
f ~ t,v !Gdv

5E
R3

F ]

]t
f ~ t,v !ln

f ~ t,v !

11u f ~ t,v !Gdv. ~4.1!

Note that the caseu50 is easily covered, but in the caseu
,0 the condition

f ~ t,v !,2
1

u
~4.2!

has to be assumed. Using Eq.~3.9! and the notations(t,v)
511u f (t,v), the right-hand side of Eq.~4.1! takes the
form
E
R3

dvE
R3

dwE
S 2

de B~v,w,e!@s~ t,v !s~ t,w! f ~ t,v* ! f ~ t,w* !2s~ t,v* !s~ t,w* ! f ~ t,v ! f ~ t,w!# ln
f ~ t,v !

s~ t,v !

5E
R3

dvE
R3

dwE
S 2

de B~v,w,e!@s~ t,v ! s~ t,w! f ~ t,v* ! f ~ t,w* !2s~ t,v* ! s~ t,w* ! f ~ t,v ! f ~ t,w!# ln
f ~ t,w!

s~ t,w!

52E
R3

dvE
R3

dwE
S 2

de B~v,w,e!@s~ t,v ! s~ t,w! f ~ t,v* ! f ~ t,w* !2s~ t,v* ! s~ t,w* ! f ~ t,v ! f ~ t,w!# ln
f ~ t,v* !

s~ t,v* !

52E
R3

dvE
R3

dwE
S 2

de B~v,w,e!@s~ t,v ! s~ t,w! f ~ t,v* ! f ~ t,w* !2s~ t,v* ! s~ t,w* ! f ~ t,v ! f ~ t,w!# ln
f ~ t,w* !

s~ t,w* !

5
1

4ER3
dvE

R3
dwE

S 2
de B~v,w,e!@s~ t,v ! s~ t,w! f ~ t,v* ! f ~ t,w* !2s~ t,v* ! s~ t,w* ! f ~ t,v ! f ~ t,w!#

3 ln
f ~ t,v ! f ~ t,w! s~ t,v* ! s~ t,w* !

s~ t,v ! s~ t,w! f ~ t,v* ! f ~ t,w* !
. ~4.3!
3-6
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FIG. 5. Normalized errorĒ(N,M ) in the
steady-state Fermi-Dirac speed distribution as
function of N5M . For comparison, the error fo
a Maxwell-Boltzmann distribution~i.e., open
circles in Fig. 1! is shown as a dashed line.
b
on
e

~4.6!
From (b2a)ln(a/b)<0 and from Eqs.~4.1! and ~4.3! one
obtains

d

dt
H~ t !<0.

More details about the derivation of the H theorem can
found in Ref.@4#. The general nonlinear Boltzmann equati
considered in this reference, contains as a particular cas
Uehling-Uhlenbeck equation~1.1!.

Next we consider the problem of the steady statep ~cf.
Ref. @19# Chap. 17.5#!. From Eq.~3.9! one obtains
05670
e

the

p~v* ! p~w* !

Y„p~v* !,p~w* !…
5

p~v ! p~w!

Y„p~v !,p~w!…
~4.4!

as a sufficient condition. Assuming

Y~x,y!5Ỹ~x! Ỹ~y!, ~4.5!

condition ~4.4! takes the form

ln
p~v* !

Ỹ„p~v* !…
1 ln

p~w* !

Ỹ„p~w* !…
5 ln

p~v !

Ỹ„p~v !…
1 ln

p~w!

Ỹ„p~w!…
.

a
FIG. 6. Steady-state speed distribution in
Bose-Einstein simulation withN5104 particles
andM5104 cells.
3-7
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FIG. 7. Steady-state speed distribution in
Bose-Einstein simulation withN5106 particles
andM5106 cells.
e
Since c(v* )1c(w* )5c(v)1c(w) implies c(v)5c1

1c2 iv2 v̄i2, for some c1 ,c2PR and v̄PR3, we obtain
from Eq. ~4.6!,

p~v !5Ỹ„p~v !…exp~c11c2iv2 v̄i2!. ~4.7!

Function~2.15! satisfies~4.5!, with Ỹ(x)511u x. Thus, Eq.
~4.7! implies

p~v !5
exp~c11c2iv2 v̄i2!

12u exp~c11c2iv2 v̄i2!

5
1

exp~2c12c2iv2 v̄i2!2u
. ~4.8!
05670
The parametersc1 , c2, and v̄ have to be chosen to fit th
conserved quantities. Necessary conditions~for positivity
and integrability! are

exp~2c1!.u, c2,0. ~4.9!

Note that, in the caseu,0, conditionp(v),21/u @cf. Eq.
~4.2!# is satisfied.

Let v̄50, c152 ln A, c252a so that the equilibrium
density~4.8! takes the form

p~v !5pa,A,u~v !5
1

A exp~aivi2!2u
, ~4.10!
s a

FIG. 8. Normalized errorĒ(N,M ) in the

steady-state Bose-Einstein speed distribution a
function of the number of velocity cells.
3-8
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FIG. 9. Normalized errorĒ(N,M ) in the
steady-state Bose-Einstein speed distribution a
function of the number of particles.
-
s
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r
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6

where, according to Eq.~4.9!,

A.max~u,0! and a.0. ~4.11!

Note that, in caseu.0 andA→u, somed-like distribution
is obtained~Bose-Einstein condensation!, while in caseu
,0 andA→0, an approximate uniform distribution is ob
tained ~Fermi level!. For A→` distributions in both case
are close to a Maxwellian~with mean;1/A). Finally, in
caseu50, a pure Maxwellian is obtained. In the Ferm
Dirac caseu,0, the equilibrium density is bounded by
21/u. If the function f (t,v) exceeds this bound, the ga
term in Eq. ~3.9! becomes zero so that the function d
creases. One might expect that the correct equilibrium d
sity is obtained even for initial densitiesf 0 that are not
bounded by21/u.

If the empirical density~2.14! exceeds the bound21/u,
then no more particles will come to the corresponding c
but particles can leave that cell. So that, at steady state
empirical density will satisfy the necessary condition~at
least approximately asN→`).

V. NUMERICAL EXPERIMENTS

Since the equilibrium density is isotropic, it will be usef
to consider the speed distribution defined as

p̃~u!5
4pu2

A exp~a u2!2u
, ~5.1!
05670
n-
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where u5ivi . Note that the speed distribution is mere
p(v) given in Eq.~4.10! integrated over angle.

A. Fermi-Dirac case

Figure 1 shows the steady-state speed distribution~5.1!
measured in the simulation of a gas of Fermi-Dirac partic
(u521). The parameters in this case areA50.01 anda
51 @cf. ~4.11!#, which correspond to a temperature
0.21TF , whereTF is the Fermi temperature@20#. The simu-
lation usedN5104 particles andM5104 velocity cells,
which were cubic with a width ofDv50.45.1 Note that for
this choice of parameters we find good agreement with
expected equilibrium distribution.

To quantify this agreement, the square integrated dif
ence between the measured and expected speed distrib
was evaluated as

E~N,M !5E
0

`

@ p̃~u!2 p̃s~u;N,M !#2 du,

where p̃s is the estimated steady-state distribution from t
simulation. For the results shown in Fig. 1 this error w
0.031. For comparison, a similar simulation for a Maxwe
Boltzmann gas~i.e., standard DSMC! had an integrated
square difference of about 1025. As the value ofE also var-
ies with the parametersA anda, we use the normalized erro
defined asĒ(N,M )5E(N,M )/E(104,104).

1Actually the value ofM is rounded to the nearest cubic intege
e.g., for M5105 the number of velocity cells is actually 97 33
5463.
3-9
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FIG. 10. Normalized errorĒ(N,M ) in the
steady-state Bose-Einstein speed distribution a
function of N5M . For comparison, the error fo
a Maxwell-Boltzmann distribution~i.e., open
circles in Fig. 6! is shown as a dashed line.
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Interestingly, increasing the number of velocity cells c
reduce the accuracy of the distribution, as seen in Fig.
which is similar to the previous figure but with the number
velocity cells increased toM5106 ~and the cell size reduce
to Dv50.09). When the number of cells is significant
larger than the number of particles, Fermi exclusion is
accurately modeled.

This effect is confirmed in Fig. 3, which shows the no
malized error as a function of the number of cells for vario
values ofN. On the other hand, for a given number of ce
the error plateaus whenN>M , as shown in Fig. 4. Roughly
speaking, the error is minimum whenN'M and when we
take the number of particles equal to the number of cells
find that Ē'1/M , as shown in Fig. 5. One also finds th
even whenN5M'300 the distribution retains a stron
quantum signature, when compared with the correspond
Maxwell-Boltzmann distribution~dashed line in Fig. 5!.
Note that all of these results are for simulations using
parametersA50.01 anda51; for different values of the
parameters we expect quantitatively different errors~e.g., Ē
decreases asA increases! but qualitatively similar depen
dence onN andM.

B. Bose-Einstein case

Figure 6 shows the steady-state speed distribution~5.1!
measured in the simulation of a gas of Bose-Einstein p
ticles (u51). The parameters in this case areA51.01 and
a51 @cf. Eq. ~4.11!#, which correspond to a temperature
1.08Tc , whereTc is the critical temperature@20#. The simu-
lation parameters areN5104, M5104, andDv50.38. Al-
though the agreement with the expected distribution is p
Fig. 7 shows that the agreement is very good whenN andM
are increased to 106 ~andDv reduced to 0.08!.

Figure 8 shows that in these simulations of a Bo
Einstein gas, the normalized error drops with increas
05670
,
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s
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e

r-

r,

-
g

number of particle cells untilM'100N. On the other hand

for a given number of cellsĒ(N,M ) is approximately con-
stant in N, as shown in Fig. 9, whenN.M /10. Finally,

graphing Ē(N,M ) versusN5M ~Fig. 10! shows that the
error decreases roughly as 1/M except for small simulations
(M,103). For those simulations the error plateaus at a
proximately that of a DSMC simulation for a Maxwel
Boltzmann gas~i.e., u50), though the distribution isnot
Maxwellian. Again, all of the Bose-Einstein simulations us
the parametersA51.01 anda51; for different values of the

parameters we expect quantitatively different errors~e.g., Ē
decreases asA increases! but qualitatively similar depen-
dence onN andM.

VI. CONCLUSION

The purpose of this paper was twofold. In the first part
have described a DSMC algorithm for the Uehlin
Uhlenbeck-Boltzmann equation in terms of Markov pr
cesses. This approach provided a unifying framework
both the classical Boltzmann case as well as the Fermi-D
and Bose-Einstein cases. We have also established the f
dation of the algorithm by demonstrating its link to the k
netic equation.

The second part of the paper was devoted to numer
experiments. After recalling some known properties rela
to the steady-state distribution, we have shown that the a
rithm produces correct results both in Fermi-Dirac and Bo
Einstein cases. We have also studied the sensitivity of
algorithm to the number of simulation particles and to t
discretization of the velocity space. It turned out that t
number of velocity cells must be appropriately adapted to
number of simulation particles in order to obtain conve
gence.
3-10
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