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Non-equilibrium behaviour of equilibrium reservoirs
in molecular simulations
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SUMMARY

We explore two widely used algorithms for �uid reservoirs in molecular simulations and demonstrate
that they may induce non-physical non-equilibrium e�ects, even in systems that should be at equilibrium.
For example, correlations of momentum and density �uctuations lead to a bias in the mean �uid velocity
when measured as the mean over samples of instantaneous �uid velocity. The non-physical behaviour
is entirely computational in origin and is an instance of a more general issue in molecular simulations:
a failure to correctly model stochastic properties may induce non-equilibrium behaviour that does not
exist in the corresponding physical system. Finally, we demonstrate that simple algorithm corrections
eliminate this artifact. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Molecular simulations have proved useful in the study of a wide variety of problems in �uid
mechanics [1]. In simulations of an open system or a composite of two or more concurrent
simulations, it is common to employ particle reservoirs. One example is a molecular simula-
tion that mimics a ‘virtual wind tunnel’ with reservoirs maintaining the in�ow and out�ow
conditions [2, 3]; another is the use of a reservoir in a hybrid simulation to couple a partial
di�erential equation solver and a molecular computation [4, 5]. Although reservoirs are con-
ceptually straightforward and their basic algorithms are well-established [6], we have found
subtle, computationally induced non-equilibrium behaviour in equilibrium systems employing
two common reservoir algorithms. It is the purpose of this paper to point out the existence
of this non-physical e�ect, describe its origin, and present ways to avoid it.
Figure 1 illustrates a particularly simple system consisting of a dilute gas in a box with a

reservoir at the left boundary and a specular wall at the right. The state of the reservoir is
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Figure 1. Conceptual diagram of the system with a reservoir at the left boundary and a specular wall at
the right boundary. Boundaries are periodic in the y- and z-directions. Points represent individual �uid

molecules; simulations typically used thousands of particles.

maintained at thermodynamic equilibrium with a given density and temperature. Speci�cally,
at each time step a �xed number of molecules are randomly placed into the reservoir volume;
their velocities are randomly assigned from a Maxwell–Boltzmann distribution with zero mean
velocity. Particles move in and out of the reservoir, but any particles within the reservoir at
the end of a time step are discarded. The specular wall at the right boundary precludes any
net �uid �ow, so the system should yield a stationary �uid at equilibrium.
Figure 2 shows the results of the corresponding simulation of this simple system. Note that

a non-zero mean �uid velocity, 〈ux〉s, is clearly evident near the reservoir. This anomalous
velocity is obtained (after a lengthy relaxation time to remove possible initial transients) as
an average of samples of instantaneous �uid velocity. The e�ect is small but statistically
signi�cant; error bars are estimated using Reference [7].
Although we used the direct simulation Monte Carlo (DSMC) method [8, 9] for all simu-

lations presented here, the nature of the e�ect in Figure 2 is generic to molecular simulations.
The anomalous �uid velocity should also appear with other particle simulation methods like
molecular dynamics (MD) [10] or lattice gases (LG) [11]. Our use of DSMC allowed us the
luxury of decoupling the reservoir implementation from the main system, a simpli�cation that
is not entirely possible with MD because of its need to evaluate molecular interactions across
the interface between the reservoir and the system. For MD simulations, the phenomenon we
demonstrate is one more factor to consider in an already-delicate process of reservoir design
[12, 13].
We used sample averaging measurement (SAM) to measure the anomalous �uid velocity in

Figure 2. In the previous work [14] we determined that SAM is susceptible to bias under non-
equilibrium conditions. In that paper we also showed that the origin of the bias is a physically
occurring spatial correlation of non-equilibrium �uctuations in �uid density and momentum,
and that an alternative de�nition of the mean, i.e. cumulative average measurement (CAM),
is not susceptible to the bias. In contrast to SAM, which sums the samples of instantaneous
�uid velocity, CAM obtains the mean velocity, 〈ux〉c, by summing samples of instantaneous
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Figure 2. Equilibrium system at T =5 with a reservoir at the left boundary and a specular wall at the
right boundary. The x-axis in this and subsequent plots corresponds to Figure 1. Mean �uid velocity
is computed from 4× 108 samples by: (circles) sample averaging measurement (SAM), 〈ux〉s; and
(squares) cumulative average measurement (CAM), 〈ux〉c. See Equations (2) and (1), respectively, for
de�nitions. Note that SAM measures an anomalous �ow from the reservoir into the system, even though

the unbiased CAM shows there is no actual �ow.

�uid momentum divided by the cumulative mass over all samples. At equilibrium the SAM
and CAM de�nitions of mean �uid velocity are equivalent since there are, of course, no
non-equilibrium correlations of �uctuations.
Even though the boundary conditions imply an equilibrium system, Figure 2 shows distinct

di�erences between the SAM and CAM �uid velocity pro�les. The mass �ux is zero since it
depends on 〈ux〉c, yet the non-zero SAM velocity is indicative of a non-equilibrium system.
We will show that this arises from a subtle de�ciency in the reservoir algorithm: compared
to the true physical system, the reservoir algorithm induces an excessive correlation between
�uctuations in �uid density and momentum, which is revealed by the SAM velocity.
After giving necessary de�nitions and explaining important features of our simulation sys-

tem, we will consider two di�erent, practical reservoir algorithms and evaluate their perfor-
mance in correctly modelling a physical reservoir. We employ the SAM de�nition of �uid
velocity as a tool to reveal non-physical behaviour. The two algorithms or minor variants are
in common use and both can produce undesirable correlations. We will demonstrate that a
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minor change to each of them can eliminate these correlations without noticeably increasing
computation time.

2. BACKGROUND AND NOTATION

A perfect reservoir has in�nite capacity. That is, the addition or removal of a particle does not
a�ect the �uid density, momentum or temperature within the reservoir. In practice, e�cient
reservoir algorithms in molecular simulations employ a relatively small number of particles, so
the �uid within the reservoir will be susceptible to non-physical variations of these quantities
if two general requirements are not met. Broadly stated, the �uid in the reservoir must not in
any way respond to changes within the main system. Additionally, the density and velocity
distribution pro�le of particles leaving the reservoir must have the same mean and �uctuation
as would occur in a corresponding physical system.
For a dilute gas it is simple to meet the �rst requirement: whenever a particle in the system

reaches a boundary that is de�ned by a reservoir, it is simply eliminated (this is more subtle
in MD simulations; more on that later). This precludes any mechanism for the system to a�ect
the reservoir. The second requirement, ensuring that the �ux of particles leaving the reservoir
corresponds to what would occur in the physical system, is more subtle. Maintaining the
necessary mean density, temperature and �uid momentum is the �rst and most important step,
but issues also arise with respect to the instantaneous �uctuations of these same quantities, as
we will demonstrate.
We carry over the terminology and notation conventions, summarized below, from our

preceding work [14]. We assume a molecular simulation that partitions the system into K cells
of equal volume and gathers statistics separately for each cell. We identify a particular cell
with a subscript. Cell k has volume Vk ; during a time tj it contains Nk(tj) particles. For a single
species �uid all particles have mass m, so Mk =mNk is the instantaneous �uid mass in the
cell. The system evolves in discrete time steps of duration �, where � is the interval between
successive times tj and tj+1. Following an initial relaxation period to remove transient e�ects
from the initial conditions, a total of S samples of hydrodynamic and thermodynamic variables
like �uid momentum, temperature and particle number are taken, typically at successive time
steps.
Our present investigations focused on a one-dimensional system that was conceptually sim-

ilar to that shown in Figure 1. The right boundary along the primary axis (the x-axis) was a
specular wall; the left boundary was a reservoir, the construction of which depended on the
simulation. Boundaries were periodic in the y- and z-directions. The total number of particles
in the system, N�(tj)=

∑K
k=1 Nk(tj), varied with time because the reservoir created an open

system.
A typical simulation had the following characteristics. The gas was a single species of

molecular mass m=1, consisting of hard spheres of diameter d=7:5× 10−2. The mean num-
ber of particles in the system during a simulation was 〈N�〉=2000. The mean temperature was
constant over time and position; as in Reference [14] the reference temperature was T =1,
but for the present study T =5 was generally preferred because the higher molecular speeds
exaggerated the magnitude of the e�ect under study. The system contained K =20 cells dis-
tributed along a total length L=2:25, with a cell volume Vk ∼= 0:57. With these parameters
the number density was n=Nk=Vk ∼= 175, corresponding to a volume fraction of 3:4× 10−2;
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for the mean free path, � ∼= 0:23. Boltzmann’s constant was kB =0:5, so the most probable
molecular speed, vmp =

√
2kBT=m, was unity at T =1.

The typical simulation gathered statistics for each of at least S=5× 106 successive DSMC
time steps of duration �=(L=K)=5vmp. The initial system relaxation period was 5× 106 time
steps, corresponding to about 5:6× 108 collisions.
As mentioned in the Introduction, there are two common de�nitions of mean �uid velocity;

we denote these as CAM and SAM. The CAM de�nition for a single species �uid is

〈uk〉c =
(1=S)

∑S
j=1

∑Nk (tj)
i∈k mvi(tj)

(1=S)
∑S

j=1 Nk(tj)
=

〈Jk〉
〈Mk〉 (1)

where

〈Mk〉=m〈Nk〉= mS
S∑
j=1
Nk(tj)

and

〈Jk〉= 1S
S∑
j=1
Jk(tj)=

1
S

S∑
j=1

Nk (tj)∑
i∈k

mvi(tj)

are the mean �uid mass and momentum, respectively, in cell k. The notation i ∈ k denotes
the index i ranging over the particles within cell k. The SAM de�nition is the mean over all
samples of the average particle velocity in a cell at each sample, vk(tj):

〈uk〉s = 1S
S∑
j=1
vk(tj)=

1
S

S∑
j=1

1
Nk(tj)

Nk (tj)∑
i∈k

vi(tj)=
〈
Jk
Mk

〉
(2)

=
〈 〈Jk〉+ �Jk

〈Nk〉+ �Nk

〉
= 〈uk〉c

(
1 +

〈(�Nk)2〉
〈Nk〉2

)
− 〈�Jk �Nk〉

m〈Nk〉2 +O([�X ]3) (3)

where O([�X ]3) are terms of cubic order in the �uctuations. Note that the average particle
velocity vk(tj) within the cell at time tj is equivalent to the instantaneous �uid velocity
uk(tj). Since Jk =mNkuk and thus �Jk =m〈Nk〉�uk + m〈uk〉c�Nk , the expression for �Jk can
be substituted into the right side of Equation (3) to give

〈uk〉s = 〈uk〉c − 〈�uk�Nk〉
〈Nk〉 +O([�X ]3) (4)

The covariance 〈�uk�Nk〉 is zero at equilibrium [15], but at non-equilibrium it evidently bi-
ases 〈uk〉s; the CAM de�nition remains unbiased under all conditions. Thus, the statistically
signi�cant di�erence between 〈uk〉s and 〈uk〉c in Figure 2 strongly indicates that the constant
temperature, steady state system was not truly at equilibrium.
In the next sections we consider two di�erent, practical reservoir algorithms that are prob-

ably the most commonly used. Although all discussion is for one-dimensional systems (i.e.
periodic in y and z), the generalization to two or three-dimensional systems is straightfor-
ward. We employ the SAM de�nition of �uid velocity to help evaluate the performance of
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these various algorithms in modelling a physical reservoir, in particular to detect an erroneous,
computationally induced correlation of �uctuations.

3. VOLUME GENERATION RESERVOIRS

The volume generation reservoir algorithm �lls a �xed volume at the beginning of each
time step by random placement of particles with randomly assigned, appropriately distributed
velocities (see Figure 1). We only consider the case where the mean �uid velocity in the
reservoir is zero; extension to the case of a bulk �ow is straightforward and outlined in
Reference [6], which calls volume generation reservoirs the alternative method for stream
boundary conditions. Those particles that reach the system within the time step become part
of it; the remainder are discarded. Refreshing the reservoir with an entirely new set of particles
at each time is necessary to mimic a reservoir of in�nite capacity. The only subtlety is ensuring
that the reservoir depth LR = vxmax� is su�cient so that it is extremely improbable that any
particle could travel more than the length of the reservoir within a single time step; otherwise
the �niteness of the reservoir will bias the velocity distribution of particles entering the system
by cutting o� the high velocity tail of the distribution [6]. We found that setting vxmax to six
standard deviations above the most probable speed vmp was insu�cient, but that 13 standard
deviations (vxmax� of two cell widths in our system) was more than adequate.
To simulate an equilibrium reservoir of volume VR at number density nR and temperature

TR, the volume generation algorithm proceeds as follows:

0. Determine the number of particles to be generated within the reservoir as NR = nRVR.
This is the constant-NR variant of the algorithm.

1. Assign each particle a random, uniformly distributed position within the reservoir volume.
2. Randomly assign the velocity components of each particle by the Maxwell–Boltzmann
distribution [8]

P(v)=
√

m
2�kBTR

e−mv
2=2kBTR (5)

3. Move the particles and discard any that do not enter the system during the time step.

Three technical points bear mention. First, the number of reservoir particles, NR, is neces-
sarily discrete though the expected mean, nRVR is not, in general, an integer. Simple rounding
may create an undesirable bias; the correct mean is reliably obtained by ‘random rounding,’
NR =�oor(nRVR +R) were R is a uniformly distributed random deviate. Second, a possible
optimization is to recognize that, on average, half the particles in the reservoir volume are
moving away from the reservoir interface and will automatically be discarded. For the ge-
ometry shown in Figure 1, e�ciency improves if NR is halved (before rounding) and vx is
taken as positive. Third, for dilute gas simulations, for example our DSMC computations, the
particles move independently and thus may be generated and moved one by one instead of
generating all NR at once.
We used the above procedure in the simulation of Figure 2. From continuity arguments, the

presence of a specular wall at the end of the system opposite the reservoir precluded any mean
�ow within the system, and the CAM �uid velocity pro�le in Figure 2 con�rms its absence.
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Figure 3. SAM �uid velocity, 〈ux〉s, from Figure 2 (circles) and the measured 〈�J �N 〉 co-
variance term in Equation (3) (asterisks), versus position. Their close match indicates that
the anomalous mean �uid velocity is entirely due to correlations of non-equilibrium �uctu-
ations. Evidently, lengthening the reservoir from LR =0:225 to 1.0 reduces the magnitude

of the e�ect (〈ux〉s: squares; Equation (3): x-marks).

Furthermore, the reservoir was at constant temperature and it maintained the system at the
steady state. These considerations indicate that the system should be at equilibrium, and yet
the simulation results showing a non-zero SAM �uid velocity are those of a non-equilibrium
system.
Interestingly, the anomalous �ow 〈u〉s measured by SAM is indicative of the kinds of corre-

lations of non-equilibrium �uctuations observed in systems with a strong temperature gradient
[14]. To test this hypothesis, we measured the 〈�J �N 〉 covariance term in Equation (3);
because 〈u〉c = 0 in our simulations the 〈(�N )2〉 term did not contribute. The plot of the co-
variance term in Figure 3 matches the 〈u〉s pro�le very closely, implying non-equilibrium
conditions.
An independent measurement provides further evidence that the constant-NR variant of the

volume generation algorithm leads to non-equilibrium behaviour. From equilibrium statistical
mechanics [15] we expect the number of particles N→, leaving a reservoir at equilibrium
during a �xed time interval, to be Poisson-distributed, and similarly for the number of particles
leaving the system, N←. Figure 4 shows the relevant histograms of N→ and N← for the
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Figure 4. Histograms of N→ (left �gure) and N← (right), the number of particles leaving the reservoir
and leaving the system, respectively, during a time step. For the simulation

∑S
j=1[N→(tj)−N←(tj)]= 43;

the total number of particles,
∑S

j=1 N→(tj) and
∑S

j=1 N←(tj), di�er by about two parts in 10
8. The

number of particles NR generated in the reservoir at each time was constant, with TR =5 and density
nR yielding 〈N�〉=2000. Apparently, the distribution of N→ was not Poisson, in contrast to N←, as a

comparison with the Poisson distribution stair-step plot shows.

simulation of Figure 2. The corresponding Poisson distribution is also plotted for comparison
with theory. The distribution of N← closely follows Poisson statistics, but there are noticeable
deviations in the distribution for particles leaving the reservoir. Although the reservoir main-
tained a constant density and temperature and its particles had a Maxwell–Boltzmann speed
distribution, it evidently does not model an equilibrium reservoir. Since there was no way for
the system to a�ect the reservoir, the source of the non-equilibrium behaviour must lie in the
reservoir algorithm itself.
The deviation from Poisson statistics suggests one way to improve the algorithm. By replac-

ing the calculation of NR in step (0) with a Poisson-distributed random number about the mean
value 〈NR〉= nRVR, the algorithm generates the distribution of NR given by the grand canon-
ical ensemble [15]. This modi�cation yields the Poisson-NR variant of the volume generation
algorithm. The SAM �uid velocity pro�le in Figure 5 shows that the modi�cation eliminated
the SAM velocity bias entirely. An examination of the corresponding histogram (not shown)
demonstrated that particles now entered the system according to the same Poisson statistics
as those leaving the system. Given that the reservoir depths, temperatures and other reservoir
physical parameters were the same for the simulations of both Figures 3 and 5 it indicates
that the anomalous SAM velocity was not caused by the reservoir being too shallow (i.e.
insu�ciently large vxmax).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)



NON-EQUILIBRIUM BEHAVIOUR OF EQUILIBRIUM RESERVOIRS

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10-5

Position (mean free paths)

F
lu

id
 v

el
oc

ity
 〈u

〉 s
 

〈u〉s : Volume Poisson-NR, LR = 0.225

Reference: CAM velocity, 〈u〉c

Figure 5. Sample averaged measurement of mean �uid velocity, 〈uxk〉s, using the Poisson-NR variant of
the volume generation algorithm for the system of Figure 2, obtained over S =108 samples. Comparison
with that �gure shows that this modi�cation to the reservoir algorithm entirely eliminated the anomalous

�uid �ow, fully consistent with expectations for a system at equilibrium.

A �nal observation is relevant to the non-equilibrium behaviour of the constant-NR variant.
Although the Poisson-NR variant corrected the algorithm by introducing a simple change
in how NR is computed in step (0), any change that reduces the time correlation of the
number of particles entering the system should improve the original constant-NR variant. For
example, using simulations we found that reducing the time step proportionately reduced the
anomalous SAM �uid velocity. Making the reservoir deeper had a similar proportional e�ect;
in fact when the reservoir depth equalled the system length, the SAM and CAM velocity
pro�les were statistically indistinguishable with S=5× 106 samples, although there was a
slight deviation from Poisson statistics in the histogram. Even eliminating the initial division
by two of NR, so that particles were generated with either positive or negative vx, reduced
the magnitude of 〈u〉s by a factor of two. Given that each of these changes increases the
computation time without entirely removing the non-equilibrium behaviour except in the limit
LR → ∞, the modi�cation to obtain the Poisson-NR algorithm seems optimal. In fact, the
simulation of Figure 5 employed the optimization of halving NR and generating all particles
with vx¿0, but no resulting non-equilibrium behaviour was evident.
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4. SURFACE GENERATION RESERVOIRS

A surface generation reservoir is essentially a surface that emits particles at a rate that
is determined by the required �uid density and temperature. As with thermal walls, the
velocity distribution is the one-sided (biased) Maxwell–Boltzmann distribution for the normal
component [8]:

P(vx)=
m
kBTR

vxe−m(v
x)2=2kBTR (6)

and the ordinary Maxwell–Boltzmann distribution Equation (5) for the parallel components.
As in the previous section, we only consider the case of an equilibrium reservoir of stationary
�uid; the extension to the case of a bulk �ow is straightforward and outlined in Reference [6],
which calls surface generation reservoirs the standard method for stream boundary conditions.
The surface generation algorithm di�ers from volume generation in two aspects. First,

all N→ particles are generated at the reservoir’s surface so the distance vx� that an emitted
particle travels during a time step must be scaled by a random deviate to correctly simulate its
origination at a random time from an in�nitely deep reservoir. Second, all generated particles
enter the system; this makes surface generation reservoirs computationally more e�cient than
volume generation when the mean velocity of the reservoir is zero.
To simulate an equilibrium reservoir at number density nR and temperature TR, the surface

generation algorithm proceeds as follows:

0. Determine the number of particles to be generated for the time interval �t= �, given
the expected mean [8]

〈N→〉= nRAR
√
kBTR
2�m

�t (7)

where AR is the surface area of the reservoir.
1. Assign each particle a random, uniformly distributed position on the surface (unnecessary
in one-dimensional systems).

2. Randomly assign the velocity components of each particle by the biased Maxwell–
Boltzmann distribution.

3. Move each particle at its assigned velocity. The �nal x-coordinate is scaled by a uniform
random deviate, i.e. x=Rvx�.

The algorithm has two variants that di�er only in step (0). Since a discrete value of N→ is
required one may take N→=�oor(〈N→〉+R), i.e. ‘random rounding;’ this is the constant-N→
variant. The Poisson-N→ variant generates a random value for N→ as a Poisson-distributed
number with the desired mean, 〈N→〉.
Figure 6 compares the two surface generation variants. While the Poisson-N→ case shows

no undesirable non-equilibrium correlations, constant-N→ clearly performs very poorly in that
regard, an order of magnitude worse than the constant-NR variant of the volume generation
algorithm. Relating this to their respective histograms, the constant-N→ case has at most
two non-zero points, corresponding to the two integers on either side of the mean, while the
histogram for the Poisson-N→ variant necessarily matches a Poisson distribution exactly.
As pointed out in Reference [6], the volume generation reservoir algorithm may be recast

in the form of surface generation by considering ‘accepted’ particles as having arrived at the
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Figure 6. Sample averaging measurement of mean �uid velocity, 〈uxk〉s, for two variants of the sur-
face generation reservoir algorithms simulating an equilibrium reservoir at temperature TR =5. The
constant-N→ variant (circles) is at non-equilibrium, evidenced by the close correspondence between
〈uxk〉s and the 〈�J �N 〉 correlation (asterisks). The Poisson-N→ variant (squares and x-marks) produces

equilibrium behaviour. Statistics were obtained from S =5× 106 samples.

surface with probability vx=vxmax. In this case, if the number of reservoir particles to be tested
is constant or the number of accepted particles �uxing from the surface is constant then the
reservoirs will exhibit a SAM velocity anomaly similar to that described above. However, if
either NR in the �rst case or N→ in the second are chosen from a Poisson distribution then
the methods should correctly model an equilibrium reservoir.

5. CONCLUDING REMARKS

In this paper we have examined two general reservoir algorithms that are most likely to �nd
practical use in molecular simulations: particle generation in a �xed volume and generation
on a surface. In our examples the construction and parameters of both reservoir and system
indicate equilibrium conditions, yet we demonstrated that variants of each algorithm induce
non-equilibrium behaviour due to non-physical, non-equilibrium correlations of �uctuations.
Variants of these algorithms which supply particles to the system at a Poisson-distributed rate,
on the other hand, showed no such non-equilibrium behaviour.
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Although we have focused on non-physical behaviour in equilibrium reservoir algorithms,
we want to emphasize that this is but one example of a more general problem that re-
searchers should be aware of: non-equilibrium behaviour can be computationally introduced
into a molecular simulation whenever the inherent stochasticity of �uctuations is not cor-
rectly modelled by an algorithm. These e�ects are subtle (e.g. sample averaging measurement
(SAM) velocity in our examples was typically three orders of magnitude smaller than the
sound speed) and admittedly unimportant in many cases. However, the e�ects may become
noticeable if physical conditions are extreme or the evolution of the system is sensitive to
minor perturbations. For example, if a particle simulation is intended to investigate the onset
of an instability [16], an undetected de�ciency in a stochastic algorithm could potentially give
misleading results. Another example is in simulations of Brownian mechanics [17], where
�uctuations are the driving force in the phenomena of interest and so a correct modelling
of the stochastic processes is essential. Even when �uctuations are not the topic of interest,
researchers working with particle simulations may be puzzled to discover the anomalous SAM
velocity when testing their programs by simulating an equilibrium system (which is how the
authors discovered this e�ect).
We have relied extensively on the SAM de�nition of mean �uid velocity to readily observe

anomalous non-equilibrium e�ects. When an equilibrium state is expected from the system
construction, the SAM and CAM de�nitions should be equivalent; then any statistically sig-
ni�cant di�erence between the SAM and CAM pro�les indicates undesirable, computationally
induced non-equilibrium conditions. When used this way, the SAM de�nition of mean �uid
velocity is a sensitive tool for detecting non-physical behaviour in a hydrodynamic system.
Furthermore, the SAM mean velocity 〈u〉s is an easy quantity to measure, and a visual com-
parison of the 〈u〉s and 〈u〉c pro�les can quickly reveal troublesome areas and assist in problem
diagnosis. We expect this tool will �nd many applications beyond evaluating reservoir per-
formance.
In the Introduction we noted that reservoirs in molecular dynamics (MD) simulations are

more complex and require greater �nesse in algorithm construction than their counterparts in
direct simulation Monte Carlo (DSMC) or lattice gases (LG). In particular, the reservoir can
no longer be entirely decoupled from the system; the physically exact nature of movement and
collisions in MD mean that certain marginal conditions that are ignored in DSMC or LG must
be handled in MD. For example, a particle may have only partly left the reservoir at the end of
a time step, so even if it is less than halfway into the system it can still collide with particles
in the system. In DSMC and LG, on the other hand, a particle is either inside or outside
the system, so this complication does not exist. Thus, in MD simulations the susceptibility of
some reservoir algorithms to non-physical non-equilibrium behaviour represents an additional
factor to consider in reservoir construction.
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