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In recent years, there has been much
the fluctuations in nonequilibrium systems [ 11+
in this field has consisted of studying the
fluctuations for a given system through the Master
Fokker-Planck Equation or & Stochastic Differen
Recently, these methods have been applied to the study of thermal b
systems by Nicolis, Baras, and Malek Mansour (2}. 1In this papert, = ]
we review their analysis of the two reservoir model. We discuss a iy
computer simulation which has been developed to study this system e
and present a confirmation of their thermal fluctuation

predictions.
e}

1.  ANALYSIS
we essentially review the analysis for the “3
d in Nicolis, Baras, and Malek Mansour g

1 cpnsists of a system connected to two
We assume that the system
exchanging both particles and

In this sectiomn,
two reservoir model presente
[2]. The two regervoir mode
reserviors by Knudsen apertures.

interacts with the two reservoirs,
energy. We assume that the system is spatially homogeneous and _
“

that the time scale for thermalization is gmall compared to the
time scale for the flow so that the system is almost always in a
state of thermal equilibrium. With this condition we may define a

librium temperature and may

temperature analogous to the equi
istribution is Maxwe 11-Boltzmann. If we RS
-gection, 0, then we et

assume that the velocity di
assume Knudsen flow through a hole of cross
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may write the macroscopic equations for the number density n, apq
the energy density e,

in_ o & 1/2 1/2 =1/2
dn _o - onT
dat -~ VVom [anl + Hyly i

ds 3 ’k3 3/2 3/2 . =3/2
= G0 il - onT
i - vV¥oim [anl +n,T) 2

where T is the temperature, m the molecular mass, V the systep
volume, and k is Boltzmann's constant. We solve'Eq. (1) for the
steady-state number density and temperature,ré and %,

(1)

3/2 3/2 1/2 1/2
§= 1'11T1 + nzT2 ns= anl + nzT2 -
’ T1/2 " T1/2 2,-1:1/2
1 Ry s

In order to write the Master Equation for the two reservoir
system we need the transition rate between the state (particle
number N, total energy E) and the state (N+r, E+€). We know that
the rate at which particles reach the hole is proportional to their
velocity, and that we have a Maxwell-Boltzmann velocity

distribution. From this we may write that the transition rate,
W(N,E,N+r,E+ €), is,

NlTI3/2exp(—e/le) r=1, e>0
3/2
-3/2
W(N,E,N+r,E+e) = égg- E%E lel + N2T2 / exp(—e/sz) (3)
mV
2NT ™ exp(e/kT) r=-1, e<0

where T is the fluctua
Master Equation as,

1 o
d = — -— — —_
TS P(N,E) = E /dg: W(N-r,E-¢,N,E) P(N-r,E-¢) ta

] -W(N,E,N+r,E+e) P(N,E)

ting temperature and so we may write the

We now wish to take the thermodynamic limit of our Master
Equation. 1In this limit the realizations for our Markov process
tend to continuous paths. If the first two truncated differential
moments exist then the Markov process is said to be a diffusion
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process. The general definition for the (1,k)th differential

moment is,
1 [ee]
m* e ¢ (5)
E de (V) (V) W(N, E, N+r, E+e)
r=—1 —00

We define for convenience f and G2 as,

"

Ak’k(n,e)

A A A
1,0 2 _ 2,0 71,1
G~ = V| ‘ (6)

80,1 8,1 %9,2

H
"

It can be demonstrated that under some weak conditions of f and G2
the transition probability density obeys a Fokker-Planck Equation
of the form,

2 T
WPe) = -3 (18) + 35 (30 [0 (%) 7

Horsthemke and Brenig [ 3 ]stress a very important point about this
analysis; since a continuous Markov process is completely
characterized by its first two differential moments it is
unnecessary to consider the asymptotic behavior of the higher
order differential moments.

At this point, we assert that from physical considerations we
can assume that the state-dependent diffusion term, G(n,e), can be
replaced by the state-independent diffusion, G(n,%), since the
system, in the thermodynamic limit, will almost always be near the
steady state. Malek Mansour, et.al. [4 ] demonstrated that this
replacement was valid for a large class of chemical systems. If we
switch from the independent variables (n,e) to (n,T), integrate
the Fokker-Planck Equation, expanding f about the steady state, we
obtain,

=2
T

<(6n)2> = ns[l —‘%] , <6néT> = %—A, <(<ST)2 > = 3@?2 [1—14A/5] (8)

where
L% @1
2 7
s
We notice that the departure from the equilibrium values appears

quadratically and that it is most prominent for the thermal
fluctuations.

(9

heollfi
Ik i

i}

SR




e A A s B S LAt B

R

-

Dt T

b i v
P e i

N T R 1 S e s e ek SO T

192 A.L.GARCIA AND J. S. TURNER

ITI. SIMULATIONS

In developing the simulation for the two reservoir system we
tried to meet two important criteria. First, the simulation had to
be fast. Since we were interested in measuring fluctuations in a
large system we required very accurate statistics, at least
millions of events. Secondly, we tried to keep an eye towards
developing simulations for the next generation of thermal
fluctuation problems, those with exothermic chemistry and spatial
extent.

In deciding what type of code to use, we had several
frameworks to chose from. Almost immediately, we rejected using a
molecular dynamics code [ 5 lbecause of our first criterion; also a
molecular dynamics code would contain much more detail than we
were really interested in. Our second choice was to use a
collisionless Monte Carlo code [ 6 I, In this context, by a
collisionless code we mean one in which the collisions in the
system were not explicitly calculated but rather were assumed to
always keep the system in a Maxwell-Boltzmann distribution. This
would certainly meet our first criterion but we were not certain
whether it would provide enough microscopic detail for more
complex systems. For the two reservoir system though it was
certainly adequate. A collisional Monte Carlo algorythm was our
third choice[ 7]. It seemed to best meet our criteria, however
since most such codes are concerned with flow problems and not with
the careful modeling of thermal fluctuations or of sensitive
chemical reactions, we had to make some modifications. In
conclusion, we wrote three codes, one collisionless and two
collisional Monte Carlo codes. Only the collisionless code will
be discussed in any detail in this paper.

In the collisionless code, we monitor only the total number
of particles and the total energy. We assume that the particles
are always thermalized to a Maxwell-Boltzmann distribution by
collisions in the system. 1In the code, three fundamental events
may occur. A particle may leave the system, a particle may enter
the system from reservoir 1, or one may enter from reservoir 2. We
compute these rates, W, from the macroscopic equation, Eq. (1),
so,

1/2 _ 1/2
Wo = 2RaT""%, Wy , = Kny 5 T)'5
(10)
_ 0 k -
K= gl W= Wy + W, + W,
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The time till the next event, T, is chosen in the appropriate
Monte Carlo way as,

T = —1n(R)/wS (11)

and R is a random number in (0,1). The type of the next event, £,
is chosen as,

2-1 )
W, <RW_ < W, 2=0,1,2
* s - (12)
i=0 i=0

\

All that is left is to determine the energy of the particle which
enters or leaves. From the transition rate of the Master Equation,
Eq. (3), we can write that the probability of a particle of energy
€ leaving the system is,

P(e)de = —= 5 exp(-e/kT)de (13)
(kT)
Then we can make the appropriate Monte Carlo choice as to the

particle's energy € as,

e = -kT ln(Rle) (14)

A similar analysis can be done for particles entering the
system. We have now entirely specified the dynamics of the process
and the code simply has to successively choose an event and update
the system given this event.

The collisionless Monte Carlo code has been very successful
for the two reservoir system. It is small and can do ten million
events in about one hour on a VAX 11/780 computer. For systems of
some 500 and 1000 particles, we have made runs at several
temperatures. Figure 1 summarizes our results so far for the
temperature fluctuations and we are pleased at the agreement with
the values predicted by Eq. (8). Though statistics were taken for
the other fluctuations, the number fluctuations and the
number-temperature correlations will not differ substantially from
the equilibrium values and so are not conclusive.

The only results we have for the collisional Monte Carlo
codes are timing comparisons with the collisionless code. In the
collisional codes, the state of the system is fixed by the velocity
distribution of the system. A collisional code which uses the
average energy per particle to approximate the collision frequency
is virtually as fast as the collisionless code when considering
the number of events processed, however, the collisionless code is
actually considerably faster since most of the events in the
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Figure 1

Thermal Fluctuations, Normalized at Equilibrium

Nl = N2; Tl = 200; NOE = Number of Events
+ N1 = 500, NOE = 20 Million
X N1 = 1000, NOE = 40 Million
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collisional code are elastic thermalizing collisions. A
collisional code which computes the collision frequency exactly
spends about 90-95% of its time in that calculation and is thus
considerably slower than the other two codes.
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