A simple model for nonequilibrium fluctuations in a fluid
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In equilibrium systems, thermal fluctuations are correlated in time (fluctuation—dissipation theorem)
yet their instantaneous values are uncorrelated in space over macroscopic distances. Out of
equilibrium, long range spatial correlations are predicted by theory and have been observed in both
laboratory experiments and computer simulations. In this paper, we present a simple model, called
the train model, that illustrates this phenomenon. The theoretical analysis of the model and its
connection with fluctuating hydrodynamics are outlined. © 1996 American Association of Physics

Teachers.

L. INTRODUCTION

Equilibrium systems are usually considered to be homoge-
neous, yet at small scales spontaneous fluctuations are ob-
served. This phenomenon is seen daily in the Rayleigh scat-
tering that makes the sky blue.! The Brownian motion of
large particles suspended in a fluid (e.g., pollen in water) and
the thermal noise found in electrical circuits (Johnson effect)
are examples of fluctuation phenomena that are easily ob-
served in the laboratory. Perhaps more important than the
effects produced by fluctuations is their role in the theoretical
development of statistical physics. By using a probabilistic
formulation, the connection between mechanics and thermo-
dynamics was established by Gibbs, Boltzmann, Maxwell,
and Einstein. The utility of their approach was the prediction
of macroscopic quantities as the average (or most probable
value) of a distribution function. Yet the validation of the
construction of this distribution came from the prediction of
its variance i.e., the fluctuation spectrum. For this reason, the
theory of equlhbrlum ﬂuctuatlons occupies a chapter in most
statistical mechanics textbooks.”

The key to the formulation of the equilibrium probability
distribution is the existence of thermodynamic potentials, for
example the free energy for a closed, noninsulated system.
Consider the thermodynamic variable g; let g, be its mac-
roscopic value at equilibrium. The probability o }observmg a
fluctuation 6g=q—q.q is given by

P(&q)oce_AF(aq)/kBT, (1)

where AF is the change in the free energy resulting from the
fluctuations Jq. Macroscopic variations in the free energy
are much larger than k3T so P(J8q) is sharply peaked, giving
us the good fortune of living in a deterministic (if sometimes
chaotic) world. There are, however, some exceptions to this
rule which occur whenever the system is close to a ‘‘phase
coexistence’’ region. A well known visible example is pro-
vided through the phenomenon of ‘‘critical opalescence’’
that illustrates the coexistence of liquid droplets with the
vapor phase.3 Except for such pathological situations, one
can expand AF around its minimum. To dominant order in
6q,P(8q) reduces to a Gauss1an distribution from which the
average square fluctuation, (8g®), can easily be obtained.
One may define local values of thermodynamic variables
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by dividing the system into a set of coupled, equilibrium
subsystems. Instantaneous fluctuations are uncorrelated at
different points in space; that is

(8g(r,1)6q(r' )y S(r—1'), )

where r is the location of a subsystem. Note that fluctuations
are, in general, not &-correlated in time; if a point is sponta-
neously hot (or dense), it takes time for the heat (or matter)
to diffuse.

Let us now consider a system maintained out of equilib-
rium through appropriate external constraints. Some ex-
amples are a fluid under a constant temperature gradient,
under a constant shear, and in the presence of a constant
external force (see Fig. 1). Much work has been done on the
generahzatlon of thermodynamics to nonequilibrium sys-
tems.* Extending the equ111br1um theory of fluctuations to
nonequilibrium steady states is not simple because, unfortu-
nately, there seems to be no general way to formulate a
“‘thermodynamic potential’’ for nonequilibrium systems.’

Among the many techniques used in the study of nonequi-
librium fluctuations, two commonly used methods are: the
extension of macroscopic theories using the separation of
fast and slow scales and the construction of simple models
for specific problems. An example of the first approach is the
formulation of the fluctuating Navier—Stokes equations of
fluid mechanics. In a fluid, conserved quantities (mass, mo-
mentum, and energy) can only change locally by fluxing
from one location to another. These fluxes have a reversible
component (inertia and pressure contributions) and an irre-
versible component (dissipative contributions such as viscos-
ity and thermal conductivity). The reversible component is
microscopically exact but the irreversible part of the flux is
estimated as a linear response. For example, the heat flux, Q,
is given by the Fourier law, Q=—«VT, where « is the ther-
mal conductivity; Newton’s law gives a similar relationship
between velocity gradients and the dissipative (viscous)
component of the momentum flux.

Landau realized that spontaneous fluctuations in a fluid
add a stochastic contribution to the dissipative component of
the fluxes. For example, consider two adjacent points, A and
B, in a fluid, with temperatures T, and Tp. If T, =Ty then
the Fourier law tells us that no heat will flow from A to B.
While this is true macroscopically, a fluctuation can cause
heat to spontaneously flow from A to B, even if T, <Tp. To
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Fig. 1. Illustration of nonequilibrium steady states for a fluid. On the left, a
fluid between parallel walls is subject to a constant shear (one wall is mov-
ing relative to the other). On the right, the fluid is subject to a constant
external force acting upwards. In the Couette system the velocity profile is
linear while it is parabolic in the Poiseuille system.

take this into account, Landau proposed modifying the Fou-
rier law to the form, Q=—«VT+Q%*, where Q* is a stochas-
tic process. Since Q is not a conserved quantity, its fluctuat-
ing component is short-lived, which, in turn, implies that it is
also short-ranged; Landau proposed that it takes the form of
a noise with zero mean and with variance,

(@ (r,NQf (' t")=4,8(r—r")8(t—t"), 3)

so Q* is ““white’” in space and time. The amplitude A;; of
the noise is found by matching the ﬂuctuatlon amphtude
given by equilibrium statistical mechanics;® the extension of
the theory to nonequilibrium problems was developed by
Keizer’ and others.

As we already stated, at thermodynamic equilibrium in-
stantaneous fluctuations of hydrodynamic quantities (density,
velocity, etc.) are uncorrelated at macroscopic length scales.
Some years ago, however, it was realized that this was not
true for nonequilibrium systems at steady states’ ' where
long-range correlations were predicted (for a review up to
1983, see Ref. 12; more advanced theories are reviewed in
Ref. 13). This property was measured, indirectly, in light
scattering experiments on fluids subject to a temperature gra-
dient in which modlﬁcatlons to the Brillouin and Rayleigh
lines are observed.!*!” It is also expected that the scattered
spectrum is modified in a fluid with a velocity gradient, yet
technologlcal limitations make the laboratory experiment
impractical.'® However, computer simulations of both the
velocity and temperature gradient scenarios show %ood
agreement with fluctuating hydrodynamics calculations.'’
Unfortunately, nonequilibrium fluctuations are rarely dis-
cussed in textbooks since theory, experiment, and simulation
are all difficult for realistic physical systems.

This brings us to another approach in the study of non-
equilibrium fluctuations: the formulation of simple models.
A useful model should contain those elements that must be
present for the existence of a phenomenon while shedding all
nonessential details. For equilibrium systems, the Ising
model of a ferromagnet is the classic paradigm in critical
phenomena. For nonequilibrium systems, some examples
would be the drunkard’s walk to model Brownian motion,
birth—death models for chemical reactions problems, and lat-
tice gas models of fluids. Simple models have the pedagogi-
cal advantage of being easy to understand from basic prin-
ciples.

In this paper, we present a simple stochastic model, called
the train model, to illustrate nonequilibrium fluctuations in a
fluid. In this model particles perform a random walk between
adjacent fluid layers (the caricature is that of passengers
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Fig. 2. Cartoon illustrating the train model. Passengers (indicated by filled
circles) are shown jumping from the left platform onto the first train, off the
last train onto the right platform and from train i to train i —1 (transferring
momentum mu;).

jumping between trains). The mechanism of momentum
transfer can be expressed in terms of elementary transitions
that are easily described and for which the physics is very
clear. The model contains many of the qualitative features of
a nonequilibrium fluid and it can easily be simulated on the
computer. We also present the model’s theoretical develop-
ment to illustrate its connection to fluctuating hydrodynamic
theory.

1I. THE STOCHASTIC TRAIN MODEL

Consider a set of n flat-car trains running on parallel
tracks between two platforms (see Fig. 2). The trains have no
engines, rather they roll down a frictionless inclined plane
tilted at angle 6, thus a =g sin 6 is the acceleration of a train
when it rolls freely downhill. Train i moves with velocity u;
and has N; travelers (of mass m) who jump, at random time
intervals At, onto the adjacent trains i+1 or i—1. Every
passenger on every train has an equal probability to jump
onto either of the adjacent trains (or platforms) regardless of
the relative positions of the trains (i.e., the travelers execute
a random walk process in the direction perpendicular to the
tracks). When a traveler moves from one train to another, the
total momentum and number of passengers change, in a dis-
continuous manner, for both trains. For simplicity, the mass
of a train’s cars is assumed to be negligible as compared to
the mass of its passengers (giving the train cars a nonzero
mass somewhat complicates the analysis yet adds no new
qualitative features to the model). Passengers remain at rest
in the frame of reference of their train (i.e., they do not run
up or down the length of their train). The numbers of trav-
elers on each platform, N, is constant so the platforms act as
reservoirs of passengers.

The above prescriptions lead to a very simple stochastic
model, based on Maxwell s original formulation of elemen-
tary kinetic theory.?>?! The stochasticity in the trains’ veloci-
ties arises from the random walk process of the passengers.
We assume that the probability of a jump occurring at some
given time ¢ is entirely determined by the state of the system
at that time ¢, i.e., the evolution of the system is governed by
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its present state and is totally independent of the past. Such a
stochastic process is traditionally referred to as a Markov
process. Given the Markov assumption, the waiting times Az
between successive jumps are exponentially distributed. Spe-
cifically, the probability for the waiting time At to be at least
equal to ¢,, is

P(At=t,)=exp(—t,/7), 4)
where
1
- 5)

D

No+2, Ni)
=

is the mean waiting time between jumps and the parameter D
stands for jump frequency of each passenger. The mean wait-
ing time would be inversely proportional to the total number
of passengers in the system except that the passengers on the
platforms jump half as frequently as passengers on the trains
since the former have only one direction to jump (off the
platform) instead of two. For this reason, the denominator in
Eq. (5) has the total number of passengers on the trains plus
half the total number of passengers on both platforms. Note
that when the trains and platforms are stationary (with a =0),
the model reduces to the Ehrenfest dog-flea model.?

III. COUETTE AND POISEUILLE FLOW

We consider two basic scenarios for the motion of the
trains. In the first, we set the incline angle to zero (so 2 =0)
but take the right platform to have constant velocity u, (like
a moving sidewalk). The left platform is stationary so the
boundary conditions are uy=0 and u,.,=u, (see Fig. 2). A
passenger jumping from a train (or platform) onto an adja-
cent train will change the velocity of the latter, thanks to the
conservation of linear momentum. For example, suppose the
trains are initially at rest with N passengers on each train;
when a passenger jumps off the moving right platform onto
the rightmost train #, that train acquires momentum mu,. and
starts to move with a velocity u.=u,/(N+1). The random
walk of the passengers leads thus to a perpetual exchange of
the linear momentum between adjacent trains or platforms.
As time passes, this process will eventually reach a station-
ary regime where the average velocity of each train will be
nearly equal to the average velocities of its nearest neighbor
trains. Given the boundary conditions, we expect an average
linear velocity profile, so the model mimics Couette flow
(see Fig. 1). Moreover, the rate at which the system ap-
proaches the stationary regime will clearly be governed by
the jump frequency D of passengers, i.c., the larger the jump
frequency, the sooner the linear profile will be established. In
the train model, the jump frequency D thus plays a role
similar to that of the viscosity in the corresponding ‘‘real”’
fluid. Maxwell presented a similar model to illustrate why a
dilute gas has nonzero viscosity.’

For our second flow scenario, we fix both platforms to be
at rest but have the system on an inclined plane (so 60 and
a#0). By the same mechanism of momentum transfer de-
scribed above, in time the system will reach a stationary
regime, but now the average velocity will be higher for trains
running near the center than for those running near the sides
(remember that in this case ug=u,.;=0). The average ve-
locity profile is thus expected to be parabolic and the model
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mimics Poiseuille flow (see Fig. 1). A rigorous derivation of
the above intuitive results will be presented in the later sec-
tions.

IV. NUMERICAL SIMULATION OF THE TRAIN
MODEL

One of the major attractions of the train model is that it
can be easily simulated on a computer. The outline of the
algorithm is as follows.

(1) Initialize the number of passengers N,, and the velocity
u;, of trains and platforms.

(2) Select a passenger at random as the next jumper; deter-
mine the jumper’s point of origin. Since the passengers
on the platforms jump half as frequently as those on the
trains, for the purpose of selecting a random jumper, take
the number of passengers on each platform to be Ny/2.

(3) Decrement N; on jumper’s train of origin; if the passen-
ger is jumping from a platform, add a replacement pas-
senger to the platform.

(4) If jumping from a train, select the jumper’s destination
(to the left or right of the point of origin) at random.

(5) Reset the N; and u; for the jumper’s destination. If a
passenger jumps to a platform, remove that passenger
from the system.

(6) Compute the time until the next jump as At=1—In(2)]
where 7 is the mean time between jumps, defined in E%
(5); and . is a uniformly distributed random number.

(7) Accelerate the trains to their new velocities as
ufew=u?1d+aAt, fori=1,...,n.

(8) Periodically measure the state of the system to accumu-
late statistical samples.

(9) Loop to step 2 until desired number of samples are
taken.

A FORTRAN program to simulate the train model is available
on request from the authors.

The average train velocity, as obtained by computer simu-
lation, is shown in Fig. 3 for the two flow scenarios (Couette
and Poiseuille) described in the previous section. The fluc-
tuations measured in the simulations are described at the end
of the next section.

V. THEORETICAL ANALYSIS OF THE TRAIN
MODEL

Let us now consider the theoretical analysis for fluctua-
tions in the stochastic train model. We first construct the
evolution equation for the probability distribution associated
with the state variables of the system. Suppose that at some
time ¢ the system is in the state {N;,J;;...;N, . J }={N,J}
where J,=mu;N,; is the momentum of the ith train. Obvi-
ously, the system will leave this state at the next jump so the
probability that the system is in the state {N,J} at time ¢+ d¢,
given that it was in that state at time ¢, is (1— the probability
of having a jump during dt). Now, the probability that a jump
occurs from train i during the time interval dt, equals DN ;dt
plus terms that vanish more rapidly as d¢—0. On the other
hand, suppose all the trains are in the state {N,J} at time ¢,
except for two adjacent trains that are in the state (N;
+1,J;+mu;) and (N;.{—1,J;.,—mu;). If a jump occurs
from the former to the latter train during dt, then the system
will reach {N,J} at t+d¢. Combining the above possibilities,
one finds that, in the limit dr—0,
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EP({NJ})= 2 2_:1 [—2NPUN, I} +(N;+ DPE..sN+ L T+ mu N — 1, Ty —mug;...})

+(N,+ 1)P({,Nl_1_1, Ji—l

23

maN P{N,J}).

The one-half factor comes from the fact that each traveler
has an equal probability to jump to the left or to the right and
the last term takes into account the ‘‘continuous’” change of
the trains’ velocities due to the acceleration field. In the ab-
sence of the acceleration field (a =0), this equation reduces
to the so-called birth and death Master equation; the corre-
sponding stochastic process is called a birth and death pro-
cess. For a#0, we have a combination of a birth and death
process and a time continuous deterministic process, which
is known as a Feller process.”*

In what follows, we shall be mainly interested in the as-
ymptotic behavior of the Master equation [Eq. (6)], in the
limit Ny—o0, known as the thermodynamic limit. To this end,
we first introduce the intensive variables,

I @)
pl N()’ pl N(]’

which correspond to number and momentum densities, re-
spectively. We also note that, by definition, the trains’ ve-
locities can be written as

D
uy=—-. (8)
mp;
It is now easy to check that in the thermodynamic limit the
solution of the Master equation (6), expressed in terms of
number and momentum densities, reduces to

40 T T T T ]
30 [ —
% 12

Fig. 3. Average train velocity (u;) for Couette and Poiseuille flows. Data
points are from a computer simulation of the train model with n=11 trains,
Ny=50 passengers per platform and jump frequency D =1. The simulations
were run for 107 jumps, which requires about a minute on a workstation.
Simulation results are in perfect agreement with Eqgs. (12) and (13). Filled
symbols: Couette flow (diamonds, y=1; circles, y=2); open symbols: Poi-
seuille flow (diamonds, a =0.5; circles, a =1.0).
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—mu;; N;+1,J;+mu;;...

D
D1+ 3 [NoP({N1—1,J;—muy;...})

-1, Jn_mun+1})_(N1+Nn)P({N’J})]

(6)

N; T,
Nlolinmp([ O | L T

if the initial probability is a &-function (i.e., the initial state is
uniquely specified). The ‘“macroscopic’’ variables, p; and p;
obey the following ‘‘deterministic’’ equations:

g _ D _ _ _
% PiT7 (Piv1+Pi—1—2pi), (10)
¢ _ D _ _ _ _

=7 (Piv1tPi—1—2p;)+map;. (1)

As t—x, p; and p; approach their steady-state values, p; and
p;. For Couette flow, a=0, uy=0, and u,,,=u.. The
steady-state solution of (10) is p;=1, that is, all trains have,
on average, the same number of passengers as the platforms.
The steady-state solution of (11) reads

. _Pi . U

Ui mﬁi -t n+1

=iv, (12)

so the Couette velocity profile is linear with gradient y (see
Figs. 1 and 3). For Poiseuille flow, uy=u,,,;=0 but the
acceleration a#0. As with Couette flow, the steady-state
density is constant. The steady-state solution of (11) gives

a
= i(n+1-0), (13)

so the velocity profile is parabolic (see Figs. 1 and 3).
Let us now consider the fluctuations about the macro-
scopic state, defined as

opi(t)=pi(t)—pi(t), (14)

opi(t)=pi(t) = pi(1). (15)

As mentioned above [cf. Eq. (9)], in the thermodynamic
limit the set of random variables {p;,p;} converges, in prob-
ability, to the corresponding macroscopic values {p;,p;}.
In other words, the probability for the fluctuations
{8p«(t),8p(¢)} to take on values other than zero, becomes
negligible as Ny—o. Extracting the form of the fluctuations
thus requires higher order corrections to the macroscopic be-
havior. The singular nature of the solution (9), however,
clearly indicates that any perturbative expansion in the in-
verse power of N, is bound to fail.”> To overcome this dif-

ficulty, we introduce the scaled variables, &;(t)=+/N,dp; and
7:(t)y=Nodp;. It is a matter of simple algebra to check
that, in the thermodynamic limit, Ny—oo, the Master equa-
tion, expressed in terms of the above scaled variables, re-
duces to the following Fokker—Planck equation:
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where
pp D r_[n =1 oKr
"_([2P1+P1+1+P1 l]alfj_[pi+l+pi]5l{<+l,j
_[5;‘—1"'5;']5{(:1,;),
£y ([2I7i+17i+1+17i—1]5f;‘[17i+1+I7i]3§:1,j
_[ﬁi—1+ﬁi]5f11,j)’ (17)

D - - oy - oy’ - r
Q?ju=_2— ([2P1‘2/Pi+Pi2+1/Pi+1+Pi2—1/Pi—1]5fj

- [ﬁ?ﬂ/ﬁiﬂ +I7i2/5i]81(<-:1,j~ [ﬁ?—l/ﬁi—l

+p i / Pi 5Krl J?

and 8,’(]’ is the Kronecker delta function. Now, the Fokker—
Planck equation governs the evolution of the probability den-
sity of Markov processes with continuous realizations, which
are known as diffusion processes. The scaled variables
{&(), n;(¢)} thus converge, in the thermodynamic limit, to a
diffusion process.?®

Thanks to its linearity, the Fokker—Planck equation (16)
can be solved exactly and the result is a propagating multi-
Gaussian distribution around the macroscopic path. The ex-
plicit form of the solution, however, is quite involved and
thus is not presented here. Instead, we concentrate on the
stationary regime of the system, which can be completely
specified in terms of the covariance matrices of the associ-
ated time- independent multi-Gaussian distribution. To do so,
all we need is to compute the ‘static’’ (equal time) correla-
tion functions of the system.”’

For density, the probability distribution turns out to be a
multi-Poissonian distribution, in a éreement with equilibrium
statistical mechanics predictions. In particular, the static
density—density correlation function is given by

1

Taking into account this result, the density—momentum static
correlation function is readily found to be

Pi &
<5Pi5pj>=170 5?, (19)

On the other hand, using the relations (14) and (15) and the

definition (8), one finds to dominant order in 1/N, the fol-
lowing relation for the velocity fluctuations:
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p() Di

l( )_ 132 5pz(t) 5pl(t) p,5p,(t), (20)

pi
where we have used the fact that p;=1 for both Couette and
Poiseuille cases. One can then easily check that

(8p;du;)=0, (21)

which shows that the instantaneous density and velocity fluc-
tuations are not correlated.

Let us now consider the static velocity—velocity correla-
tion function which is readily found to obey the following
equation:

<5u,-+15u]~>+<5u,~_15u]->+<§ui5uj+1>+<5ui5uj_1>

—4(8u;6u;)=— f’— 8 (22)

with (5u05u,~)=(6u,,+15u,~)=0 and
Fim (= )+ (g — ;)% | V|2 (23)

indicating that the static correlation of velocity fluctuations is
proportional to the square of the local velocity gradient.

To solve Eq. (22) we introduce the discrete Fourier sine
transform:

n n .
=2 2 sin kil sm
s |

so that the solution of (22) may be written as

( du;6u;), (24)

4 7rpi 7rq j
(Ou;ou;)= —————ipzl qzl sin —— P +1Cpq,
(25)
where
1 " mpk  wqk
77" 2NN, & S sy e (26)
and
_mp mq
)\pq—cosn_'_1 +cosn+1 2. (27)
Note that {\,,} are the eigenvalues of the finite difference
operator.

For Couette flow, the steady state velocity profile is linear,
it;= i, so f;=2%" and

(n+ l)y
pa= 2NN, 5?4 (28)
In this case, the sums may be evaluated explicitly to obtain,
¥ i(n+1-j), if i<j,
<5ui5uj>_N0(n+1) jn+1-i), if j<i. (29)

This function is plotted in Fig. 4 along with the results from
a computer simulation of the train model. The piecewise lin-
ear function in (29) is similar to the amplitude of a plucked
string since (22) is similar to the discretized Green’s problem
for the one-dimensional Laplace equation with Direchlet
boundary conditions. In general, the sums in (25) cannot be
evaluated analytically but they are simple to compute nu-
merically. Figure 5 compares the results from a computer
simulation of the train model with the numerical evaluation
of (25) for Poiseuille flow.
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Fig. 4. Couette flow results for the static correlation (Ju;6u;) for two dif-
ferent values of platform speed. Data points are from a computer simulation
of the train model with n=11 trains, N;=>50 passengers per platform, and
jump frequency D=1. The simulations were run for 107 jumps, which re-
quires about a minute on a workstation (filled symbols: i =5; open symbols:
i=9; squares: y=1; triangles: y=2). The solid line is given by Eq. (29).

VL. COMPARISON WITH FLUCTUATING
HYDRODYNAMICS

Our main goal in this section is to describe the connection
between the train model and the fluctuating hydrodynamic
theory of fluids. As was stated in the Introduction, the analy-
sis of fluctuations in nonequilibrium systems is not simple,
especially when boundary effects have to be included, as is
precisely the case for Couette and Poiseuille flows. For this
reason, only a brief sketch of the fluctuating hydrodynamics
calculation will be presented here; the interested reader is
invited to consult Ref. 18 for a detailed exposition.

Consider a simple fluid confined between a pair of rigid,
no-slip, perfectly conducting walls located at y=0 and L. For
simplicity, the system is assumed to be periodic in the x and
z directions with cross-section area S (see Fig. 1). The mo-
tion of the fluid may be produced by having the right wall
moving in the +x direction (Couette case) or by applying an
accelerating field in the +x direction, maintaining the con-
taining walls at rest (Poiseuille case).

1.5

L o B BB B
I P

LR B A

Fig. 5. Poiseuille flow results for the static correlation {du;du ;) for two
different values of acceleration. Data points are from a computer simulation
of the train model with n=11 trains, Ny=50 passengers per platform, and
jump frequency D=1. The simulations were run for 107 jumps, which re-
quires about a minute on a workstation (filled symbols: i =5; open symbols:
i=9; squares: a=1; triangles: a=2). The solid line is found by numerically
evaluating the summations in Eq. (25).
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We first consider the stationary solution of the macro-
scopic hydrodynamic equations. If the applied constraint
(e.g., the acceleration field in the Poiseuille flow) is large, the
stationary ‘‘laminar’’ regime may become unstable with the
flow developing complex structures, such as eddies, or even
becoming turbulent. In such cases, the analysis of the fluc-
tuations, without resorting to computer calculations, is pro-
hibitively difficult. For this reason we will limit our attention
to fluids in laminar flow. Note that the thermal fluctuations
described in this paper arise from the atomistic nature of a
fluid, unlike the statistical variance of velocity arising from
the chaotic properties of a nonlinear, turbulent flow.

Another complication comes from the fact that, in general,
the temperature is not uniform throughout the fluid. Because
of the internal friction between adjacent layers of the fluid,
mechanical energy is not conserved. The heat released
through this energy dissipation diffuses throughout the sys-
tem, thanks to the mechanism of heat conduction, eventually
reaching the containing walls which act as thermal reser-
voirs. The balance between energy dissipation, known as
““viscous heating,”” and heat conduction give rise to a tem-
perature profile (the temperature is higher in the middle of
the system than near the boundaries), which also induces a
density profile in the system. The amplitude of the tempera-
ture profile, however, is proportional to the square of the
velocity gradient and can thus be neglected if the applied
constraints on the system are weak. Furthermore, when this
viscous heating effect is incorporated into numerical calcu-
lations of the fluctuation spectrum, no significant qualitative
changes in the results are observed. For these reasons, we
will take the macroscopic density and temperature to be con-
stant throughout the system (as is the case in the train
model).

Given the above conditions, the x component of the mac-
roscopic fluid velocity, u, obeys the simplified Navier—
Stokes equation,’

Ju

J _

Eu(y,t)—vm-a, (30)
where v is the kinematic viscosity for the fluid. Using the
standard discretization of the spatial variable, y=iAy with
Ay=L/(n+1) and i=0,1,...,n+1, and the centered

difference,”

F* W +u;,_—20;

W’;“’ i+1 A;l l, (31)
one finds

J _ v _ _

Eui=A_y2(ui+1+ui—l_2ui)_a' (32

Comparing the above equation with Eq. (11) of the train
model, one finds that the two are equivalent if D=2v/Ay>.
The velocity profiles for Couette and Poiseuille flow are then
given by (12) and (13), respectively.

Let us now consider the statistical properties of the sys-
tem. To do so, first we have to linearize the hydrodynamic
equations about the macroscopic stationary state. Next, as
sketched in the Introduction, in the resulting equations one
must use the fluctuating Newton law, relating the shear and
bulk stress to the velocity gradient, and the fluctuating Fou-
rier law, describing thermal conduction. This procedure
leads to a set of stochastic partial differential equations,
known as the ‘‘Landau—Lifshitz fluctuating hydrodynamic
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equations,”” which govern the evolution of the fluctuation of
hydrodynamic variables. Unfortunately, the analysis of these
equations, in their general form, proves to be extremely dif-
ficult in our case. Besides the finite size effects, the main
source of difficulty arises from the coupling of energy (or
temperature) fluctuations with velocity and density fluctua-
tions. Associating a ‘‘temperature’’ with the train model is
problematic since there is random motion in the y-direction
(passengers jump between trains) yet none in the x direction
(passengers remain at rest in the frame of reference of their
train). In real fluids, we can neglect the coupling with ther-
mal fluctuations when the thermal expansivity coefficient is
negligibly small (e.g., water near 4 °C) and this scenario re-
ceived a considerable amount of attention in the late 1970s
(for a review, see Ref, 29). But even in this case, only the
Couette problem can be handled analytically;'® the density
and y-velocity fluctuations assume their equilibrium form,
very much as in the train model. The nonequilibrium contri-
bution to the x-velocity (static) correlation function is given
by

kyT
(Bu(y)du(y")) = == 8y=y’)

p
7 AL
— A2 B ' _ -
LT [y =) 5 @/ny
—y'—L +y'—L
e B L T -

with y>y’ (for y<y', exchange y and y') and

N :LZEéﬁEjlféil‘ (34)

il

In this relation, T and p are the steady state (constant) tem-
perature and density, respectively, kg is Boltzmann’s con-
stant, ¢ is the (isothermal) sound speed, and ¢ is the kine-
matic bulk viscosity coefficient. Note that the macroscopic
velocity gradient vy is constant (independent of space), since
the velocity profile is linear.

The parameter A, which has the units of length, can be
associated with an acoustic absorption scale. For instance,
the ratio A/L is approximately the same as the Knudsen num-
ber in a dilute gas. Now, the validity of hydrodynamics can
only be guaranteed for length scales larger than A, since oth-
erwise there will be no clear separation between microscopic
processes, giving rise to sound generation, and macroscopic
effects at the origin of dissipation, such as, for example, the
phenomenon of sound viscous damping. Such small scale
phenomena are described through the so-called ‘‘generalized
hydrodynamics,”” > whose discussion is beyond the scope of
the present work. Accordingly, we shall consider the limit
L>)\, in which case the relation (33) reduces to

r kBYA‘ 1
(Su(y)duly’))y— 75 oy—y")

_ 2 kT [y(L—y"), if y=<y’,
YL \y' (L-y), if y>y'.

The second term on the left-hand side of (35) represents the
local equilibrium contribution to the velocity fluctuation. In
the train model, the equilibrium velocity fluctuation is zero
since in the absence of nonequilibrium constraints the trains
remain at rest. The right-hand side of (35) is a piecewise

(35)
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linear function with amplitude proportional to the square of
the velocity gradient, just as in Eq. (29) of the train model.
We thus arrive at the conclusion that the fluctuating hydro-
dynamics theory leads basically to the same type of long
range correlations as the train model, a striking result given
the simplicity of the model.

VII. CONCLUSION

In this paper, we present a simple model that illustrates the
long-range correlation of fluctuations in nonequilibrium sys-
tems. This correlation is found to be approximately piece-
wise linear with an amplitude that is proportional to the
square of the imposed gradient. Remarkably, the fluctuating
hydrodynamic calculations lead basically to the same result.
Besides the references discussed in the Introduction, similar
results are also found for the nonequilibrium temperature
correlations in a high Prandtl number liquid®! and for the
nonequilibrium density autocorrelation function in a cellular
automata model.*?

While the theoretical analysis of the model requires some
knowledge of stochastic processes, the physics of the model
is no more difficult to understand than the standard random
walk (“‘drunkard’s walk’’) model. A computer simulation of
the model can easily be written by undergraduate students
and significant results can be obtained using a personal com-
puter. We hope that this model can serve as a pedagogical
introduction to the theory of nonequilibrium fluctuations.
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Using qualitative problem-solving strategies to highlight the role
of conceptual knowledge in solving problems
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We report on the use of qualitative problem-solving strategies in teaching an introductory,
calculus-based physics course as a means of highlighting the role played by conceptual knowledge
in solving problems. We found that presenting strategies during lectures and in homework solutions
provides an excellent opportunity to model for students the type of concept-based, qualitative
reasoning that is valued in our profession, and that student-generated strategies serve a diagnostic
function by providing instructors with insights on students’ conceptual understanding and reasoning.
Finally, we found strategies to be effective pedagogical tools for helping students both to identify
principles that could be applied to solve specific problems, as well as to recall the major principles
covered in the course months after it was over. © 1996 American Association of Physics Teachers.

I. INTRODUCTION

Two primary goals in teaching introductory physics are to
help students learn major concepts and principles, and to
help students learn how to apply them to solve problems. In
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traditionally taught courses we assign many problems with
the assumption that solving the problems will help develop
in students an understanding of concepts and principles, as
well as an appreciation of the role they play in solving prob-
lems. Yet, research findings demonstrate that problem solv-
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