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Abstract

Surface properties are obtained from an extension of the direct simulation Monte Carlo algo-
rithm to a hard sphere system with an in�nite range, weak attractive potential that obeys the van
der Waals equation of state. Liquid–vapor surface tension measurements both with and without
a gravitational �eld are in agreement with models summarizing experimental values for simple
substances. These measurements are also in agreement with the van der Waals predictions using
the measured interface density pro�le provided the square gradient term identi�cation with a
divergent free energy expansion is ignored. The divergent term should be replaced by one that
takes into account the work required to form the density gradient in the reference hard sphere
system. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The mean �eld van der Waals (vdW) model has been popular because it is simple
enough to be rigorously derivable from statistical mechanics, yet realistic enough to
capture both the liquid and vapor states of matter, as well as predict the coexistence
region by the use of the Maxwell construction. However, theoretical studies have so
far been unable to predict rigorously the surface properties of the vdW model with-
out resorting to approximations. Surface tension theories [1] require either information
about the density gradient through the liquid–vapor interface or knowledge of the ra-
dial distribution function in that region. For the vdW model this information cannot
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be obtained experimentally since real uids only approximately correspond to this
model.
Numerically, a vdW uid is di�cult to simulate rigorously by molecular dynam-

ics because the particle interaction consists of a hard sphere repulsion with a weak,
long-ranged attraction [2]. Recently, it was shown that the direct simulation Monte
Carlo (DSMC) procedure can be generalized to the simulation of dense hard sphere
systems [3], which in turn can further be extended to the simulation of the van der
Waals equation of state [4]. It has thus become possible for the �rst time to obtain the
density pro�le through the interface and the surface tension of a true vdW uid and
to compare these measurements with theoretical predictions.

2. DSMC extension to the vdW Fluid

For completeness, the simulation algorithm is outlined briey. For details on DSMC,
see Refs. [5,6]; extensions to higher densities are described in Refs. [3,4,7]. The uid is
represented as a collection of particles, speci�ed by their positions, {ri}, and velocities,
{vi}. At each time step, these particles are sorted into spatial cells; the dimensions of
a cell are a fraction of a mean free path [8]. The number of collisions that occur
within a cell during a time step � is computed from the hard sphere collision rate,
� = �B(n; T )Y (n), where n is the number density, T is the temperature, �B is the
Boltzmann (i.e., dilute gas) collision rate and Y is the Enskog factor that rigorously
gives the collision rate in a dense gas [9]. For the simulations presented here � is
one-tenth of the mean free time. Random collision partners are selected within a cell
given the hard sphere collision probability P(vi ; vj) = |vr|=

∑
i; j |vr|, where vr = vi − vj

and the sum is over eligible partners. The post-collision velocities, v′i and v
′
j, conserve

momentum and energy. The post-collision relative velocity is chosen statistically as
v′r = |vr|R̂ where R̂ is a unit vector with random direction, uniformly distributed on the
unit sphere.
To obtain the vdW equation of state, each pair of colliding particles is assigned a

displacement d. Speci�cally,

di =
v′r − vr
|v′r − vr|

(
� − a�

b2YkT

)
; dj =−di ; (1)

where k is Boltzmann’s constant, a is the van der Waals attraction coe�cient, b2=2
3��

3,
and � is the hard sphere diameter. For the results presented here m = k = � = a = 1.
After all collisions have been processed, each particle is moved ballistically so ri(t +
�) = ri(t) + vi(t)�+ 1

2a�
2 + di and vi(t + �) = vi(t) + a� where a is the acceleration of

an applied, external �eld.
The collision process outlined above results in a virial that leads to the van der

Waals equation of state [9]

P(n; T ) = nkT
(
1 + b2nY (n)− an

kT

)
: (2)
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If in the calculation of Y and d the mean density is used in each cell then (2) is exactly
reproduced [4], however, at densities in the vdW loop region only the homogeneous
state is found since the displacement is independent of location in the uid. Thus,
strictly speaking, in the mean �eld approximation no surface is obtained.
To generate coexisting phases at di�erent densities requires having � and d eval-

uated using the local density, that is, density uctuations must be allowed. In this
model, these density uctuations are entirely due to the repulsive hard sphere density
uctuations. Allowing density uctuations, however, for reasons that are not entirely
understood, leads to a nonlinear coupling between the displacement and the collision
rate, resulting in an unphysical correlation that manifests itself as a strati�cation of
the density aligned with the collision cells. This correlation results in a discrepancy
between the correct equation of state, Eq. (2), and the measured equation of state.
Unfortunately, although this discrepancy is small in absolute terms, it is of the same
order as the capillarity generated pressure di�erences at liquid–vapor coexistence. To
break up this arti�cial correlation an additional displacement of � in a random direc-
tion is given to each colliding particle. This modi�es the transport properties but has
no e�ect on the equation of state [4]. The introduction of this random displacement,
however, has the e�ect of smearing the uid vapor–liquid interface, and leads to the
largest source of uncertainty in the results. This uncertainty has been accounted for
in the error bars of the quantitative results presented and in no way can change the
qualitative conclusions.
Simulations initially at a density in the two phase region evolve to form drops at the

correct tie-line liquid density, n‘, with the remainder of the material at the satu-
rated vapor density, nv. However, an initially uniform density distribution does not
phase separate into drops and vapor during reasonable running times unless an initial
high-density region is present to nucleate the phase separation. Dense regions, initially
at half the liquid density, have been observed to succesfully evolve to drops; the ex-
act size of the initial state required for nucleation is still under investigation. Fig. 1
shows the coagulation and relaxation of two proto-droplets into the equilibrium circu-
lar con�guration. In this constant temperature simulation (T=Tc = 0:756, where Tc is
the critical temperature) the initial density is 0.48 within the droplets, and 0.10 else-
where. The �nal densities inside and outside the drop are very nearly the equilibrium
coexistence liquid and vapor densities of n‘ = 0:63 and nv = 0:03.

3. Measurement of surface tension

3.1. Laplace approach

A series of simulations at varying temperatures close to the critical point is per-
formed. A single droplet of initial density n=0:48 is placed in a vapor bath of density
n=0:1. The temperature is held �xed by use of a thermostat in which particle velocities
are adjusted locally. The system is equilibrated for at least 5000 collision times (usually
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Fig. 1. Snapshots of the time evolution of two proto-droplets in a vapor bath to a circular drop. The
simulation box is rectangular (54:6� × 54:6� × 2:7�) with 4 × 105 particles. Density contours are shown
starting at n = 0:05 in increments of 0.1; snapshots are at 2, 100, 300, and 5000 collision times.

9000) before statistical samples are gathered. The size of the simulation domain in the
x and y directions is 54:6� and contains 4× 105 particles. The drops are between 20�
and 30� in diameter.
The surface tension of the circular drops is calculated using the Laplace equation

(in two dimensions)

Pd = P∞ +

R
; (3)

where Pd is the pressure in the interior of the drop and P∞ is the pressure in the
ambient vapor far away from the drop. The radially symmetric pressure is calculated
as the ux of normal momentum through small test areas. Typical pressure and density
pro�les are shown in Fig. 2. In this �gure the vdW loop is evident from the variation
in pressure through the interface. The de�nition of an equimolar radius [1] (modi�ed
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Fig. 2. Density (solid line) and pressure (dashed line), in reduced units, across a system of total width 54:6�
held at T=Tc = 0:8.

for two dimensions)

r2e =
1

n‘ − nv

∫ ∞

0
r2
dn
dr
dr (4)

can be shown to be approximately equivalent to the radius at which the density reaches
the value n(R) = nv + 0:4(n‘ − nv); this de�nition of the drop radius R has been
subsequently used. The surface thickness, �, has been de�ned as

�=−(n‘ − nv)
[
dr
dn

]
r=R

: (5)

The values of �; R, and  are given in Table 1. The drops are large enough that
Tolman size corrections due to surface curvature are smaller than the simulation error
bars [10]. The curvature also leads to an increase in the vapor pressure by a factor
of e=nmRkT , as predicted by the Kelvin equation [1]. This e�ect is always less than
15% and hence it was not explicitly accounted for, but rather included in the error
estimates. An other source of error is the fairly sluggish equilibration dynamics close
to the equilibrium coexistence densities.
The interface thickness is observed to be a monotonically increasing function of

temperature and independent of the computational domain size, within statistical error
bars, when the domain size is doubled. The long-range potential of the vdW model has
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Table 1
Surface tension as a function of temperature computed from the Laplace equation (L), from Elsner’s method
(e), and the vdW theory (vdW ). The interface thickness (�), and drop radius (R) are also shown

T=Tc R � L × 102 e × 102 vdW × 102

0.889 12± 1 7:5± 0:6 1:1± 0:5 2.4 2± 0:5
0.844 13:5± 1 6± 0:6 3:1± 0:4 3.9 3:1± 0:8
0.800 14± 1 5± 0:6 5:6± 1 5.6 4:4± 1
0.756 11:5± 1 5± 0:6 8:9± 1:5 7.5 6:6± 1
0.756 14:5± 1 4:5± 0:6 9:4± 1:5 7.5 5:9± 1
0.711 11:5± 1 4:5± 0:6 12:5± 3 9.4 8:7± 1
0.711 15± 1 4± 0:6 12:5± 3 9.4 7:8± 1

the e�ect of damping out capillary waves and possibly any associated divergence in
the thickness [14]. If any divergences in the thickness due to the long-range potential
itself are present they were not observed in the numerical experiments [13].

3.2. Mechanical approach

An independent estimate of the surface tension was obtained from its mechanical
de�nition. Previous studies have shown that a constant external body force, such as
gravity, facilitates the phase separation into liquid and vapor for a uid in the two-phase
region [4]. When a spatially varying gravitational �eld is introduced the liquid–vapor
interface becomes curved and from this curvature the surface tension can be measured.
One of the simplest ways to achieve this is spinning the uid in a gravitational �eld.
A variant that makes the computations signi�cantly more tractable is to introduce a
lateral “centrifugal” acceleration that is a linear function of the distance from the center
of the simulation box (at x = 0), that is, ax = !2x. This external �eld, in conjunction
with a constant gravitational �eld (ay = −g) in the vertical (y-direction), reproduces
solid body rotation in a two-dimensional con�guration. The simulations presented here
are three-dimensional but shallow in the z-direction, which results in signi�cant com-
putational savings. The uid reaches hydrostatic equilibrium in this �eld while the
temperature is held �xed by use of a thermostat.
Fig. 3 shows a typical density pro�le from the simulations. The surface tension

is calculated by applying momentum conservation in the y-direction on the control
volume shown in the same �gure. By momentum balance,

2 cos �=
∫
1
P dA+

∫
�g dV −

∫
2
P dA : (6)

Each term on the r.h.s., as well as the interface angle �, can be evaluated from the
simulation data. Note that to avoid edge e�ects, the control volume is constructed
such that its sides are su�ciently far away from the specular walls bounding the uid.
Faces 1 and 2 are placed optimally such that the area integrals in (6) are as accurate as
possible. The interface angle � tends toward a preferred “contact” angle between wall,
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Fig. 3. Number density versus position at T=Tc = 0:89 for g = 2:82 × 10−4 and ! =
√
4g. Surface tension

angle, �, is obtained from the n = 0:3 contour; the control volume is outlined by the dashed rectangle. The
simulation box measures 27:3� in both the x- and y-direction and contains 4× 105 particles.

liquid and vapor and since this contact angle is not known a priori for this system, the
sides of the control volume are placed away from the sides of the simulation box while
maintaining a control volume su�ciently large. The pressure integrals are evaluated by
measuring the net momentum transfer through faces 1 and 2.
The surface tension obtained through this method depends on the magnitude of the

applied gravity as given by the Bond number, Bo=m �ng�2=, where �n is the mean simu-
lation density. For Bo¿1, it appears that gravity has an e�ect on the surface tension of
the interface and the interface thickness. Unfortunately, the accuracy of the results for
Bo¿1 is insu�cient to allow any �rm conclusions to be drawn: compressibility e�ects
become important, and the relative importance of the left-hand side of Eq. (6) with
respect to the right-hand side decreases proportionally to Bo making the results sus-
ceptible to signi�cant error. Table 2 shows that interface thickness and surface tension
are consistent with the droplet simulation results when Bo¡1.
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Table 2
Surface tension and surface thickness computed from surface curvature for T=Tc=0:89. The e�ective rotation
rate is ! =

√
4g. The value for g = 0 is from Table 1

g× 103 Bo � × 102 �

14 5:5± 1 4± 0:4 3:1± 0:6 50
◦

5.6 3:4± 0:6 5± 0:5 2:6± 0:5 57
◦

2.8 2:1± 0:5 5:5± 0:5 1:9± 0:5 63
◦

0.7 0:66± 0:25 7± 0:5 1:2± 0:4 66
◦

0.28 0:35± 0:2 7:2± 0:5 1:3± 0:3 70
◦

0 0 7:5± 0:6 1:1± 0:5 —

3.3. Comparison to experiment

To compare our results to experimental data for the surface tension of simple sub-
stances we employ an empirical model that has been shown [11] to �t this data. This
model evaluates the surface free energy, �, by integrating the Helmholtz free energy
per particle, � − pv, across the tie line [11]

�=
1
3
�(T )

∫ v‘(T )

vg(T )

� − pv
v5=3

dv ; (7)

where v is the inverse number density and � is the chemical potential. The coe�cient
�(T ) e�ectively acts as a Jacobian relating the integration in length to the integration in
volume, that is, r = �v1=3. This approach has been found to accurately �t experimental
data for simple substances with � ≈ 0:6 [11] at all temperatures.
The surface tension is then obtained from the thermodynamic relation,

e(T ) = T
∫ Tc

T

�(T )
T 2

dT : (8)

Taking �(T ) = 0:6, the values of surface tension are listed in Table 1 and found to be
in good agreement with the surface tension measured from the droplet pressure. This
indicates that the vdW equation of state gives a reasonable surface tension for simple
substances.

4. vdW theory of surface tension

Next, the results are compared to the celebrated van der Waals theory of surface
tension. According to van der Waals the surface tension is given by [1]

vdW =
∫ ∞

0

{
F(n) +

1
2
m
(
dn
dr

)2}
dr ; (9)

where F(n) is the Gibbs free energy excess per unit volume as obtained from the
di�erence between the chemical potential of the coexisting phases at temperature T;
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�(T ) = �‘(T ) = �v(T ), and M (n; T ), the chemical potential within the vdW loop,

F(n) =
∫ n

n‘

[M (n; T )− �(T )] dn ; (10)

where F(n‘) = F(nv) = 0. This theory has not been tested with the vdW equation of
state since it requires knowledge of the density gradient through the interface and the
coe�cient m, which is discussed in the next section.
Estimates of the surface tension can be obtained (see Table 1) by utilizing the

measured density gradient through the interface and exploiting the fact that the free
energy reaches a minimum when the two terms in Eq. (9) contribute equally [1], thus
requiring no knowledge of m. This leads to:

vdW =
∫ n‘

nv
2
F(n)
dn=dr

dn ≈ 2�
n‘ − nv

∫ n‘

nv
F(n) dn : (11)

The last numerical approximation is su�ciently precise in view of the uncertainty in
the numerical results. The estimates obtained are consistent with the surface tension
measurements using the Laplace equation and the model that reproduces experimental
data. The results can also be summarized by quoting a value for m obtained by rewriting
Eq. (9) as m ≈ vdW �=(n‘ − nv)2, again using the fact that the two terms in Eq. (9)
contribute equally. This leads to a temperature-independent estimate of m= 0:8± 0:2.

5. Discussion

In the vdW mean �eld theory, m is identi�ed with the second moment of the
attractive part of the interaction potential 	(r),

m=−1
6

∫
r2	(r) d3r : (12)

This second moment diverges for long-ranged interaction potentials. This identi�cation,
in view of theoretical developments since vdW, is incomplete because the contribution
to m from the constant long-range potential should vanish since all the particles always
interact independent of their position, so the formation of the gradient requires no work.
However, this term does not account for the work required to rearrange the reference
hard sphere system to form the relatively steep density gradient, a quantity that can be
obtained by separate molecular dynamics simulation for hard spheres [12]. The steep
repulsive forces cannot be treated by mean �eld theory. Furthermore, the magnitude
of the inhomogeneity present at the interface between the liquid and the vapor might
violate the assumption that the expansion of the free energy functional only to second
order su�ces. However, close to the critical point where the interface thickness goes
to in�nity the truncation of the expansion should be acceptable but, as we know now
through renormalization theory, the mean �eld theory is qualitatively wrong there.
We used our simulations to verify our original assertion that in the absence of

uctuations no interface is obtained (Section 2). We performed simulations where the
displacement and the collision rate was not based on the local density but on the mean
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�eld value, thus neglecting uctuations in the spirit of mean �eld theory. In those
simulations no phase separation was observed.
The simulation method allows veri�cation of the vdW assertion that the existence of

surface tension is related to the existence of an unstable loop of �nite
∫
F(n) dn area.

When the equation of state, Eq. (2), is replaced with an equation of state that has a
at tie-line [4],

PTL(n; T ) =

{
P(nv; Tv) = P(n‘; T‘); nv ¡n¡n‘ ;

P(n; T ) otherwise ;
(13)

no phase separation occurs even if density uctuations are allowed. In this model the
surface tension is zero since F(n)=0, that is, there is no compensating free energy gain
to o�set the cost of forming the inhomogeneity associated with the interface surface.
We performed a gravity simulation (g= 2:8× 10−3) using the at tie-line equation of
state (Eq. (13)) to verify this; although the uid is forced to segregate into liquid and
vapor regions to satisfy the equation of state and the hydrostatic condition

∇P = �g ; (14)

the surface tension obtained is zero (−0:5± 0:5 from Eq. (6) with �= 55◦) to within
the accuracy of the simulations.

6. Conclusions

The simulation results show that a stochastic particle simulation with a mean �eld
attractive potential can capture the physics of phase separation and surface tension
provided density uctuations and an unstable vdW loop are allowed. This emphasizes
the link between surface tension and mechanical stability in mean �eld approaches such
as the vdW model and the DSMC algorithm.
In order to reproduce the value of m obtained from our simulations, separate molecu-

lar dynamics simulations of hard spheres must be performed to evaluate the contribution
of the repulsive part of the potential to the work to form an interface gradient. These
molecular dynamics simulations can also give an indication whether the free energy
expansion needs to be continued to higher-order terms in the inhomogeneity. Further
work involves the removal of the random displacement to reduce the uncertainties
in the measurements. The simulation method presented here can also be used to
generate the time evolution of droplet dynamics, such as droplet formation and
coagulation.
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