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Abstract

Surface properties are obtained from an extension of the direct simulation Monte Carlo algo-
rithm to a hard sphere system with an infinite range, weak attractive potential that obeys the van
der Waals equation of state. Liquid—vapor surface tension measurements both with and without
a gravitational field are in agreement with models summarizing experimental values for simple
substances. These measurements are also in agreement with the van der Waals predictions using
the measured interface density profile provided the square gradient term identification with a
divergent free energy expansion is ignored. The divergent term should be replaced by one that
takes into account the work required to form the density gradient in the reference hard sphere
system. (©) 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The mean field van der Waals (vdW) model has been popular because it is simple
enough to be rigorously derivable from statistical mechanics, yet realistic enough to
capture both the liquid and vapor states of matter, as well as predict the coexistence
region by the use of the Maxwell construction. However, theoretical studies have so
far been unable to predict rigorously the surface properties of the vdW model with-
out resorting to approximations. Surface tension theories [1] require either information
about the density gradient through the liquid—vapor interface or knowledge of the ra-
dial distribution function in that region. For the vdW model this information cannot
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be obtained experimentally since real fluids only approximately correspond to this
model.

Numerically, a vdW fluid is difficult to simulate rigorously by molecular dynam-
ics because the particle interaction consists of a hard sphere repulsion with a weak,
long-ranged attraction [2]. Recently, it was shown that the direct simulation Monte
Carlo (DSMC) procedure can be generalized to the simulation of dense hard sphere
systems [3], which in turn can further be extended to the simulation of the van der
Waals equation of state [4]. It has thus become possible for the first time to obtain the
density profile through the interface and the surface tension of a true vdW fluid and
to compare these measurements with theoretical predictions.

2. DSMC extension to the vdW Fluid

For completeness, the simulation algorithm is outlined briefly. For details on DSMC,
see Refs. [5,6]; extensions to higher densities are described in Refs. [3,4,7]. The fluid is
represented as a collection of particles, specified by their positions, {r;}, and velocities,
{v;}. At each time step, these particles are sorted into spatial cells; the dimensions of
a cell are a fraction of a mean free path [8]. The number of collisions that occur
within a cell during a time step t is computed from the hard sphere collision rate,
I' =T'g(n,T)Y(n), where n is the number density, T is the temperature, I'p is the
Boltzmann (i.e., dilute gas) collision rate and Y is the Enskog factor that rigorously
gives the collision rate in a dense gas [9]. For the simulations presented here 7 is
one-tenth of the mean free time. Random collision partners are selected within a cell
given the hard sphere collision probability 2(v;,v;) = |v.|/>_, ; [v:|, where v, =v; —v;
and the sum is over eligible partners. The post-collision velocities, v/ and V}, conserve
momentum and energy. The post-collision relative velocity is chosen statistically as
v/ =|v,|R where R is a unit vector with random direction, uniformly distributed on the
unit sphere.

To obtain the vdW equation of state, each pair of colliding particles is assigned a
displacement d. Specifically,

v —v ac
d[: z 4 - s d'zidi’ l
[V — v, | (6 szkT) / ey

where k is Boltzmann’s constant, a is the van der Waals attraction coefficient, b2:§1w3,

and o is the hard sphere diameter. For the results presented here m =k =0=a=1.
After all collisions have been processed, each particle is moved ballistically so r;(¢ +
) =r;(¢t)+ vi(t)t + %arz +d; and v;(# + 7) = v;(¢) + at where a is the acceleration of
an applied, external field.

The collision process outlined above results in a virial that leads to the van der
Waals equation of state [9]

P(n,T) = nkT (1 + byn¥(n) — %) : )
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If in the calculation of ¥ and d the mean density is used in each cell then (2) is exactly
reproduced [4], however, at densities in the vdW loop region only the homogeneous
state is found since the displacement is independent of location in the fluid. Thus,
strictly speaking, in the mean field approximation no surface is obtained.

To generate coexisting phases at different densities requires having I' and d eval-
uated using the local density, that is, density fluctuations must be allowed. In this
model, these density fluctuations are entirely due to the repulsive hard sphere density
fluctuations. Allowing density fluctuations, however, for reasons that are not entirely
understood, leads to a nonlinear coupling between the displacement and the collision
rate, resulting in an unphysical correlation that manifests itself as a stratification of
the density aligned with the collision cells. This correlation results in a discrepancy
between the correct equation of state, Eq. (2), and the measured equation of state.
Unfortunately, although this discrepancy is small in absolute terms, it is of the same
order as the capillarity generated pressure differences at liquid—vapor coexistence. To
break up this artificial correlation an additional displacement of ¢ in a random direc-
tion is given to each colliding particle. This modifies the transport properties but has
no effect on the equation of state [4]. The introduction of this random displacement,
however, has the effect of smearing the fluid vapor-liquid interface, and leads to the
largest source of uncertainty in the results. This uncertainty has been accounted for
in the error bars of the quantitative results presented and in no way can change the
qualitative conclusions.

Simulations initially at a density in the two phase region evolve to form drops at the
correct tie-line liquid density, n,, with the remainder of the material at the satu-
rated vapor density, n,. However, an initially uniform density distribution does not
phase separate into drops and vapor during reasonable running times unless an initial
high-density region is present to nucleate the phase separation. Dense regions, initially
at half the liquid density, have been observed to succesfully evolve to drops; the ex-
act size of the initial state required for nucleation is still under investigation. Fig. 1
shows the coagulation and relaxation of two proto-droplets into the equilibrium circu-
lar configuration. In this constant temperature simulation (7/7. = 0.756, where T, is
the critical temperature) the initial density is 0.48 within the droplets, and 0.10 else-
where. The final densities inside and outside the drop are very nearly the equilibrium
coexistence liquid and vapor densities of n, = 0.63 and n, = 0.03.

3. Measurement of surface tension
3.1. Laplace approach

A series of simulations at varying temperatures close to the critical point is per-
formed. A single droplet of initial density »=10.48 is placed in a vapor bath of density

n=0.1. The temperature is held fixed by use of a thermostat in which particle velocities
are adjusted locally. The system is equilibrated for at least S000 collision times (usually
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Fig. 1. Snapshots of the time evolution of two proto-droplets in a vapor bath to a circular drop. The
simulation box is rectangular (54.66 x 54.66 x 2.7¢) with 4 x 10° particles. Density contours are shown
starting at n = 0.05 in increments of 0.1; snapshots are at 2, 100, 300, and 5000 collision times.

9000) before statistical samples are gathered. The size of the simulation domain in the
x and y directions is 54.6¢ and contains 4 x 10° particles. The drops are between 20¢
and 300 in diameter.

The surface tension of the circular drops is calculated using the Laplace equation
(in two dimensions)

Pd=POO+1§, 3)

where P, is the pressure in the interior of the drop and P., is the pressure in the
ambient vapor far away from the drop. The radially symmetric pressure is calculated
as the flux of normal momentum through small test areas. Typical pressure and density
profiles are shown in Fig. 2. In this figure the vdW loop is evident from the variation
in pressure through the interface. The definition of an equimolar radius [1] (modified
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Fig. 2. Density (solid line) and pressure (dashed line), in reduced units, across a system of total width 54.6¢
held at 7/T, = 0.8.

for two dimensions)

1 o0
rz = / },2% dr (€))
ny—ny Jo dr

can be shown to be approximately equivalent to the radius at which the density reaches
the value n(R) = n, + 0.4(n; — n,); this definition of the drop radius R has been
subsequently used. The surface thickness, ¢, has been defined as

5= —(ny —my) {Sn] . (5)

r=R

The values of J, R, and y are given in Table 1. The drops are large enough that
Tolman size corrections due to surface curvature are smaller than the simulation error
bars [10]. The curvature also leads to an increase in the vapor pressure by a factor
of e"/"RkT a5 predicted by the Kelvin equation [1]. This effect is always less than
15% and hence it was not explicitly accounted for, but rather included in the error
estimates. An other source of error is the fairly sluggish equilibration dynamics close
to the equilibrium coexistence densities.

The interface thickness is observed to be a monotonically increasing function of
temperature and independent of the computational domain size, within statistical error
bars, when the domain size is doubled. The long-range potential of the vdW model has
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Table 1
Surface tension as a function of temperature computed from the Laplace equation (. ), from Elsner’s method
(7e), and the vdW theory (y,4m ). The interface thickness (0), and drop radius (R) are also shown

T/T. R ) yr x 102 ye x 102 Yeaw X 102
0.889 1241 75406 1.1£05 24 2405
0.844 13541 640.6 31404 3.9 31408
0.800 14+1 540.6 56+1 5.6 44 +1
0.756 11541 540.6 89+ 1.5 7.5 66+1
0.756 14541 45406 94+15 7.5 59+1
0.711 11541 45+06 12543 9.4 87+1
0.711 1541 4406 12543 9.4 78+1

the effect of damping out capillary waves and possibly any associated divergence in
the thickness [14]. If any divergences in the thickness due to the long-range potential
itself are present they were not observed in the numerical experiments [13].

3.2. Mechanical approach

An independent estimate of the surface tension was obtained from its mechanical
definition. Previous studies have shown that a constant external body force, such as
gravity, facilitates the phase separation into liquid and vapor for a fluid in the two-phase
region [4]. When a spatially varying gravitational field is introduced the liquid—vapor
interface becomes curved and from this curvature the surface tension can be measured.
One of the simplest ways to achieve this is spinning the fluid in a gravitational field.
A variant that makes the computations significantly more tractable is to introduce a
lateral “centrifugal” acceleration that is a linear function of the distance from the center
of the simulation box (at x = 0), that is, a, = w?x. This external field, in conjunction
with a constant gravitational field (@, = —g) in the vertical (y-direction), reproduces
solid body rotation in a two-dimensional configuration. The simulations presented here
are three-dimensional but shallow in the z-direction, which results in significant com-
putational savings. The fluid reaches hydrostatic equilibrium in this field while the
temperature is held fixed by use of a thermostat.

Fig. 3 shows a typical density profile from the simulations. The surface tension
is calculated by applying momentum conservation in the y-direction on the control
volume shown in the same figure. By momentum balance,

2ycosH:/PdA+/png—/PdA. (6)
1 2

Each term on the r.h.s., as well as the interface angle 6, can be evaluated from the
simulation data. Note that to avoid edge effects, the control volume is constructed
such that its sides are sufficiently far away from the specular walls bounding the fluid.
Faces 1 and 2 are placed optimally such that the area integrals in (6) are as accurate as
possible. The interface angle 6 tends toward a preferred “contact” angle between wall,
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Fig. 3. Number density versus position at 7/7. = 0.89 for g = 2.82 x 10~* and w = /4g. Surface tension
angle, 0, is obtained from the n = 0.3 contour; the control volume is outlined by the dashed rectangle. The
simulation box measures 27.3¢ in both the x- and y-direction and contains 4 x 10° particles.

liquid and vapor and since this contact angle is not known a priori for this system, the
sides of the control volume are placed away from the sides of the simulation box while
maintaining a control volume sufficiently large. The pressure integrals are evaluated by
measuring the net momentum transfer through faces 1 and 2.

The surface tension obtained through this method depends on the magnitude of the
applied gravity as given by the Bond number, Bo=miigd*/y, where i1 is the mean simu-
lation density. For Bo>1, it appears that gravity has an effect on the surface tension of
the interface and the interface thickness. Unfortunately, the accuracy of the results for
Bo>1 is insufficient to allow any firm conclusions to be drawn: compressibility effects
become important, and the relative importance of the left-hand side of Eq. (6) with
respect to the right-hand side decreases proportionally to Bo making the results sus-
ceptible to significant error. Table 2 shows that interface thickness and surface tension
are consistent with the droplet simulation results when Bo<1.
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Table 2
Surface tension and surface thickness computed from surface curvature for 7/7. =0.89. The effective rotation
rate is w = 1/4g. The value for g =0 is from Table 1

g x 103 Bo d y x 10? 0

14 55+1 4404 31406 50°
5.6 34406 5405 26405 57°
2.8 21405 55405 1.9+05 63°
0.7 0.66 £+ 0.25 7405 12404 66°
0.28 035402 72405 13403 70°
0 0 75406 11405 —

3.3. Comparison to experiment

To compare our results to experimental data for the surface tension of simple sub-
stances we employ an empirical model that has been shown [11] to fit this data. This
model evaluates the surface free energy, ¢, by integrating the Helmholtz free energy
per particle, ¢ — pv, across the tie line [11]

v/(T)
b=y [ PP, ™
o(r)y YV
where v is the inverse number density and u is the chemical potential. The coefficient
o(T') effectively acts as a Jacobian relating the integration in length to the integration in
volume, that is, » = ow!/3. This approach has been found to accurately fit experimental
data for simple substances with « ~ 0.6 [11] at all temperatures.
The surface tension is then obtained from the thermodynamic relation,

Te (1)
r T2

9(T)=T dr . (8)

Taking o(7)= 0.6, the values of surface tension are listed in Table 1 and found to be
in good agreement with the surface tension measured from the droplet pressure. This
indicates that the vdW equation of state gives a reasonable surface tension for simple
substances.

4. vdW theory of surface tension

Next, the results are compared to the celebrated van der Waals theory of surface
tension. According to van der Waals the surface tension is given by [1]

o) 2
peaw = | {F(n) 3 () } ar., ©)

where F(n) is the Gibbs free energy excess per unit volume as obtained from the
difference between the chemical potential of the coexisting phases at temperature 7,
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wW(T)=p,(T)=p(T), and M(n,T), the chemical potential within the vdW loop,

F(n) = / [M(n,T) — u(T)] dn., (10)

where F(ns) = F(n,)=0. This theory has not been tested with the vdW equation of
state since it requires knowledge of the density gradient through the interface and the
coefficient m, which is discussed in the next section.

Estimates of the surface tension can be obtained (see Table 1) by utilizing the
measured density gradient through the interface and exploiting the fact that the free
energy reaches a minimum when the two terms in Eq. (9) contribute equally [1], thus
requiring no knowledge of m. This leads to:

ny F 2 ny
asz/ 2 F0) gy 20 / F(n)dn . (11)
n,  dn/dr ny—ny J,

The last numerical approximation is sufficiently precise in view of the uncertainty in
the numerical results. The estimates obtained are consistent with the surface tension
measurements using the Laplace equation and the model that reproduces experimental
data. The results can also be summarized by quoting a value for m obtained by rewriting
Eq. (9) as m = y,4wd/(n; — n,)?, again using the fact that the two terms in Eq. (9)
contribute equally. This leads to a temperature-independent estimate of m = 0.8 £ 0.2.

v

5. Discussion

In the vdW mean field theory, m is identified with the second moment of the
attractive part of the interaction potential ¥'(r),

m:—é/Zwum%. (12)

This second moment diverges for long-ranged interaction potentials. This identification,
in view of theoretical developments since vdW, is incomplete because the contribution
to m from the constant long-range potential should vanish since all the particles always
interact independent of their position, so the formation of the gradient requires no work.
However, this term does not account for the work required to rearrange the reference
hard sphere system to form the relatively steep density gradient, a quantity that can be
obtained by separate molecular dynamics simulation for hard spheres [12]. The steep
repulsive forces cannot be treated by mean field theory. Furthermore, the magnitude
of the inhomogeneity present at the interface between the liquid and the vapor might
violate the assumption that the expansion of the free energy functional only to second
order suffices. However, close to the critical point where the interface thickness goes
to infinity the truncation of the expansion should be acceptable but, as we know now
through renormalization theory, the mean field theory is qualitatively wrong there.
We used our simulations to verify our original assertion that in the absence of
fluctuations no interface is obtained (Section 2). We performed simulations where the
displacement and the collision rate was not based on the local density but on the mean
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field value, thus neglecting fluctuations in the spirit of mean field theory. In those
simulations no phase separation was observed.

The simulation method allows verification of the vdW assertion that the existence of
surface tension is related to the existence of an unstable loop of finite [ F(n)dn area.
When the equation of state, Eq. (2), is replaced with an equation of state that has a
flat tie-line [4],

P(ny,,Ty) =P(ny, Ty), n,<n<ng,

Pruin,T) = { P(n,T) otherwise , (13)
no phase separation occurs even if density fluctuations are allowed. In this model the
surface tension is zero since F(n)=0, that is, there is no compensating free energy gain
to offset the cost of forming the inhomogeneity associated with the interface surface.
We performed a gravity simulation (g =2.8 x 1073) using the flat tie-line equation of
state (Eq. (13)) to verify this; although the fluid is forced to segregate into liquid and
vapor regions to satisfy the equation of state and the hydrostatic condition

VP =pg, (14)

the surface tension obtained is zero (—0.5 £ 0.5 from Eq. (6) with 0 = 55°) to within
the accuracy of the simulations.

6. Conclusions

The simulation results show that a stochastic particle simulation with a mean field
attractive potential can capture the physics of phase separation and surface tension
provided density fluctuations and an unstable vdW loop are allowed. This emphasizes
the link between surface tension and mechanical stability in mean field approaches such
as the vdW model and the DSMC algorithm.

In order to reproduce the value of m obtained from our simulations, separate molecu-
lar dynamics simulations of hard spheres must be performed to evaluate the contribution
of the repulsive part of the potential to the work to form an interface gradient. These
molecular dynamics simulations can also give an indication whether the free energy
expansion needs to be continued to higher-order terms in the inhomogeneity. Further
work involves the removal of the random displacement to reduce the uncertainties
in the measurements. The simulation method presented here can also be used to
generate the time evolution of droplet dynamics, such as droplet formation and
coagulation.
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