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SIMULATION OF THE CONSISTENT

BOLTZMANN EQUATION FOR HARD
SPHERES AND ITS EXTENSION TO

HIGHER DENSITIES

Francis J. Alezander, Alejandro L. Garcia* and Berni J. Alder

Institute for Scientific Computing Research L-416
Lawrence Livermore National Laboratory
Livermore, California 94550

The direct simulation Monte Carlo method is modified with a post-collision
displacement in order to obtain the hard sphere equation of state. This leads to
consistent thermodynamic and transport properties in the low density regime.
At higher densities, when the enhanced collision rate according to kinetic the-
ory is introduced, the exact hard sphere equation of state is recovered, and the
transport coefficients are comparable to those of the Enskog theory. The com-
putational advantages of this scheme over hard sphere molecular dynamics are
that it is significantly faster at low and moderate densities and that it is readily
parallelizable. °

1 Introdﬁction

The direct simulation Monte Carlo (DSMC) method is a particle-based, numer-
ical scheme for solving the nonlinear Boltzmann equation [1, 2, 3]. Rather than
exactly calculating successive hard sphere (HS) collisions, as in molecular dy-
namics (MD) [4], DSMC generates collisions stochastically with scattering rates
and post-collision velocity distributions determined from the kinetic theory of a
dilute gas. DSMC encounters the usual inconsistency of the Boltzmann equation,
namely, it yields the transport properties for a dilute gas of hard spheres of di-
ameter o, yet results in an ideal gas equation of state (implying o = 0) [5]. In this
paper, a modification to DSMC is introduced which removes this inconsistency
and, in fact, recovers the exact HS equation of state at all densities.

The DSMC method solves the Boltzmann equation by using a representative
random sample drawn from the actual velocity distribution. In the simulation,
the state of the system is given by the positions and velocities of particles,
{ri,vi}. The system evolves in two steps, advection (or free streaming) and
collision. In free streaming, particles are propagated for a time At as if they
did not interact. In other words, their positions are updated to r; + v; At. Any
particles that reach a boundary are reflected a.ccordmg to the boundary condition
(e-g., specularly or diffusely).

* Permanent Address: Department of Physics, San Jose State University, San Jose,
CA 95192-0106.
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After the advection step, the particles are sorted into cells to evalyate the
collisions in the gas. Particles within a cell are randomly selected as collision
partners according to the collision probabilities derived from dilute hard sphere
kinetic theory. Conservation of momentum and energy provide four of the six
equations needed to determine the post-collision velocities. The remaining two
conditions are selected stochastically with the assumption that the direction of
the post-collision relative velocity is uniformly distributed on the unit sphere.
The spatial “coarse-graining” of particles into cells allows two particles to col-
lide by simply being located within the same cell. Since only the magnitude
of the relative velocity between particles is used in determining their collision
probability, even particles that are moving away from each other may collide.

The DSMC scheme is only accurate when the time step is a fraction of
the mean collision time and the cell volume is a fraction of a cubic mean free
path. Because each particle in the simulation represents an effective number
of molecules in the physical system, macroscopic systems may be accurately
modeled by using as few as 104 — 105 particles, with at least 20 particles per
cubic mean free path [6]. A more detailed description of the standard DSMC
method may be found in References (1] and [2].

The DSMC method was developed for use in rarefied gas dynamics to com-
pute flows at high Knudsen number (ratio of mean free path to characteristic
length) [7]. The algorithm has been thoroughly tested over the past 20 years
and found to be in excellent agreement with both experimental data [8, 9] and
molecular dynamics computations (10, 11]. Recently, it was proved that DSMC
is equivalent to a Monte Carlo solution of an equation “close” to the Boltzmann
equation [3]. The DSMC method has also been useful in the study of nonequi-
librium fluctuations [12], chemically reacting systems {13, 14] and nanoscale hy-
drodynamics [15)].

2 Non-ideal Gas DSMC

To obtain a consistent equation of state, DSMC must be modified in the collision
step to include the extra separation, d (Id] = @), that the particles would have
experienced if they had collided as hard spheres. Consider for simplicity a one-
dimensional system with two hard rods of length o initially traveling toward
each other. They collide when their centers are a distance o apart. After the
collision, the distance between ceriters will be larger than the separation between
similarly colliding point particles by a distance 2¢ [16]. For hard spheres in three
dimensions this eflect generalizes to a displacement, d:

(v'i=v'3) = (v, - \2)) vl —v,
d= = —"g, 1
=V = (=l = W= v° W

where the incoming velocities of the colliding particles 1 and 2 are v; and v,
and the post-collisional velocities are v’ 1 and v’y respectively; v, is the relative
velocity. Thus, particle 1 is displaced by the vector distance d and particle 2
by —d. See Figure 1 for an example. In the low density limit the displacement
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yields the correct second virial coefficient. The average projection of the velocity
change onto the line connecting centers of colliding particles after displacement,
(rij - Av;), the virial, resulting from this procedure is that of hard spheres at all
densities.

3 Dense Gas DSMC

If, in addition to the displacement, d, the Boltzmann collision rate is scaled by
the so-called Y-factor, the enhanced probability of a collision due to the volume
occupied by the spheres, a model in the spirit of Enskog results [17]. This density
dependent Y factor can be obtained from the HS equation state as determined
by Monte Carlo and MD simulations and expressed in the Padé form [18]

1+ 0.05556782bon + 0.01394451b3n2 — 0.001339653n3
1 - 0.56943218b2n + 0.0828901153n? ’

Y(n) = )
where by = (2/3)x0? is the HS second virial coefficient. Collisions within a cell
are generated with a rate A(n*) = Y (n*)Ago(n*), where n* = no?3 is the reduced
particle number density and Agg is the Boltzmann collision rate:

Ago(n) = 2N no?\/xkgT/m. 3)

In this expression kg is the Boltzmann constant, and T is the temperature, m is
the particle mass and N, is the number of particles in a given cell. In the Enskog
approximation, the mean free path for a dense gas is A = 1/(v/27nY (n)o?) [17].

4 Computer Simulations

A series of computer simulations tested this model with the units determined
by setting m = 1, ¢ = 1, and k5T = 1. The equilibrium pressure as a function
of density can be determined from the virial and also by measuring the normal
momentum transfer across a plane. Both procedures yield the HS equation of
state within 1% for all densities (see Fig. 2) when the time step is less than
0.03 mean collision times. From the hydrodynamic expression for the direct
scattering function, S(k,w), {19], the sound speed obtained from the location of
the Brillouin peak is in agreement with HS MD at low densities. At the higher
densities, the Rayleigh and Brillouin peaks are not well separated, and accurate
measurements of the sound speed cannot be made in this way. Furthermore, the
radial distribution (pair correlation) function is that of a perfect gas so that
the compressibility, as determined from the density fluctuations in a volume V/,

= (6n?)V/kgTn? is that of a perfect gas and does not agree with yr =
(8logn/0p)T as obtained directly from the equation of state.

The self-diffusion coefficient, D, is measured using the Einstein relation,

= ot Zu.(t) - n(O)?), Q)
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where N is the number of particles in the system and t is the (long) time over
which averages are taken. For densities up to n* = 0.3 there is good agreement
(within 5%) with hard sphere MD and the Enskog self-diffusion prediction. How-
ever, at higher densities, the agreement fails because the post-collisional particle
displacement d is of similar or larger magnitude than the mean free path. Also,
as mentioned above, structural eflects found at high densities in hard spheres
are absent in this model and the backscattering events at these densities are not
reproduced (i.e., there is no ”caging”).

The shear viscosity was measured by both equilibrium (Einstein relation and
transverse current correlation function) and nonequilibrium (Poiseuille flow and
relaxing velocity sine waves) techniques. For the thermal conductivity only the
Einstein relation was used. The transport coefficients as functions of density
are shown in Figures 3 and 4. For the shear viscosity, there is good agreement
with both Enskog theory and HS MD at lower densities. At higher densities the
measured shear viscosity shows better agreement with HS MD than does Enskog
theory.

Poiseuille flows for various densities were generated in a channel by applying
a constant external force on the particles parallel to the walls. At the walls, a
thermal boundary condition was used; that is, particles colliding with a wall were
emitted with a biased Maxwellian distribution at temperature T. The resulting
velocity profile (See Figure 5) was fit assuming a parabolic form,

U = GrL/D = =)+ Uy, (5)
where U,ip is the slip velocity at the walls, F is the force applied to the fluid,
and L is the channel width. As can be seen in Fig 3, the viscosity obtained in
this way agrees with alternative methods.

The Einstein relation allows one to assess the separate contributions to the
transport coefficients. In HS MD there are two ways to transfer momentum and
energy, namely by streaming and collisions. The former, the kinetic transport,
is due to the motion of the particle, while potential transport consists of mo-
mentum and energy being instantaneously transferred in a collision from the
center of one sphere to the center of its collision partner. The shear viscosity
and thermal conductivity may then be decomposed into three distinct parts: the
kinetic, potential, and cross contributions [20]. These separate terms can also be
determined from the Enskog theory of hard spheres [17].

In the model presented in this paper the kinetic contribution to the fluxes is
the same as that for uncorrelated hard spheres as given by the Enskog theory.
The collisional transport, however, has two parts: exchange between colliding
particles (which are in the same cell) and post-collision displacement. The vis-
cosity, for example, then has the form

m? t Y
1= EaTi | / Do vei(Silss+ o (hi—vedwi  (6)
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+ Z ("’:idy*vlzjdy)}z): (7

coll pairs

where y;; is the y-component of the distance between colliding particles i and j
and dy is the y-component of d. The first term accounts for the kinetic transport;
the second term for the transfer of momentum over the distance separating
colliding particles i and j, and the last term for the post-collision displacement.
The second term in (5) corresponds to collisional momentum and energy transfer
on a length scale on the order of a cell size. In both standard DSMC and its
dense gas extension, the transport coefficients depend (weakly) on cell size Ay,
yet this effect is small when Ay is less than the mean free path [21]. In the limit
of cell size tending to zero, this “grid error” vanishes (since y;; — 0). For all
cases shown in Figure 3, the grid error was within the error bars of the measured
transport coefficients.

Good agreement with Enskog theory is found for the kinetic and cross terms
of the shear viscosity and thermal conductivity at all densities [22]. The potential
term in the shear viscosity is about twice that predicted by the Enskog theory; for
thermal conductivity the potential term was about 25% larger than the Enskog
predicted value. A kinetic theory explanation for these differences between the
Enskog model and the present model is in progress.

-

5 Efficiency

The model presented here runs with nearly the same efficiency as standard
DSMC at low densities. The calculation of displacements and the use of the
Y factor only increase the computational cost by one or two percent. At low
densities, HS MD is inefficient because of the large number of possible collision
partners within a neighborhood of a few mean free paths [23]. The number of
operations per collision per particle with hard sphere dynamics grows as n~=2 at
lew densities, while it is independent of density for DSMC. In comparison with a
scalar hard spheres molecular dynamics code, the dense gas DSMC scheme runs
two orders of magnitude faster for n* = 0.01414. This advantage can be further
enhanced by running on a parallel architecture [24].

At high densities, the dense gas DSMC method becomes inefficient compared
with HS MD. The reason is that a cell the size of a mean free path, namely one
which is roughly 1/10 of a HS diameter represents only a small fraction (1/1000)
of a single hard sphere particle. Thus 20 million particles are required to represent
1000 HS particles, assuming 20 DSMC particles per cell. On a single processor
computer, HS MD and dense gas DSMC are of comparable efficiency at n* = 0.3,
while on a massively parallel machine (with 1000 processors) this “break-even”
density increases to n* = (.7.

6 Conclusions

In this paper a modification of the DSMC algorithm which extends the method
to dense gases is described. Computer simulations of this method yielded the
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1) equilibrium th?rmodynamic and nonequilibrium transport properties. In general
for all properties good agreement was found with HS MD at densities less than’

n® = 0.3. Further exploration of the effects of time step, spatial grid, effective
number, and overall system size is necessary for more quantitative comparisons,
Direct simulation Monte Carlo has been a popular method for the simula-
tion of hydrodynamic flows of high Knudsen number where conventional Navier-
Stokes solvers are inaccurate. Since most DSMC applications have been in rar-
efied flows, the method’s restriction to ideal gases has not been viewed as a major
drawback. This dense gas version of DSMC will extend the method’s utility to
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a variety of new problems, which involve not only very low density gases, but
moderate density as well. These include the study of cold boundary layers in
high altitude flows and strong shocks [25].
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