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where y = (TL — T0)/L2 stands for the imposed temperature gradient.
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In a recent paper, Liu and Oppenheim [J. Stat. Phys. 86:179 (1997)] solve the
fluctuating heat diffusion equation for a bounded system with a temperature
gradient. This note demonstrates that, contrary to their claims, their solution for
the temperature correlation function is indeed long-ranged and reduces to that
of Garcia et al. [J. Stat. Phys. 47:209 (1987)].
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The theoretical analysis of long-ranged spatial correlations of fluctuations
in a simple fluid was recently reexamined by Liu and Oppenheim.(1)

Specifically, they consider the fluctuating heat diffusion (Fourier) equation
for a system confined between heat reservoirs at z = 0 and Lz held at fixed
temperatures T0 and TL, respectively, and subjected to periodic boundary
conditions in the other directions. If one neglects the state dependence of
the thermal conductivity coefficient A, then the stationary temperature
profile is a linear function of the z coordinates:
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which is clearly long-ranged and does not involve any intrinsic length scale,
i.e., the correlation encompasses the entire system. The validity of this

The solution of this equation is readily found to be(4,5)

Combining the equations for ST(r, t) and ST(r', t) and using the definition
(5), one gets a closed equation for ( d T ( z ) 5 T ( z ' ) y \

where the first term on the right hand side represents the local-equilibrium
contribution.

We first consider the "reduced" temperature correlation, defined as the
spatial average over the Lx and Ly directions,

where kB is Boltzmann's constant. Being a hydrodynamic formulation, (2)
is accurate down to the transport scale (e.g., mean free path) but not to
the molecular scale (i.e., atomic diameter).(3) In what follows, we shall be
mainly interested in the spatial correlation of temperature fluctuations
<dTr(r) ST(r')y which can be decomposed as

where p and Cp represent the mass density and the heat capacity per unit
mass at constant pressure, respectively. The fluctuating heat flux J(r, t) has
zero mean and variance given by

Consider now the temperature fluctuations around the stationary
state, defined as ST(r, t) = T(r, t) - Ts(r). Using the Landau Lifshitz fluc-
tuating hydrodynamics formalism, one finds(2)
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Fig. 1. Correlation of reduced temperature fluctuations ( S T ( z ) d T ( z ' ) y versus z'/L as given
by Eq. (8) (filled circles) and by Eq. (7) (solid line) for z/L = 0.6. The parameters are set so
that ( T L - T r , ] 2 k B l ( p C p L , L y L z ) = 1 .

with r'n = r' + 2nLzt, and r"n = r' + 2(nLz-z') t. They then claim that this
result demonstrates the absence of long-ranged correlations of temperature
fluctuations since <<$r(r)«5r(r ')> oc |r-r'|-' when Lz» |r-r'|.

On the other hand, one may compute the reduced temperature
correlation function by inserting (8) in (5) and evaluating the integrals and
sums numerically. Taking 100 points per spatial direction and 20 images on
each side of the boundaries we obtain the result shown in Fig. 1 (filled
circles). Comparing with the result given by (7) (solid line) shows that the
two are equivalent, to within the accuracy of the numerical calculation.
This equivalence was expected since both (7) and (8) come from the
Greens' function solution of the Poisson equation. Clearly, neither solution
has an intrinsic length scale.

Finally, we stress that reduced variables are not introduced merely to
simplify the theoretical analysis. Besides light scattering experiments,(6)

nonequilibrium fluctuations are studied by time-integrating the stochastic
hydrodynamic equations and by simulations of a fluid at the microscopic
level (e.g., molecular dynamics, direct simulation Monte Carlo). For these
numerical experiments, spatial averaging is routinely applied to improve

solution has been questioned by Liu and Oppenheim on precisely these
grounds.

Assuming the system is infinite in the x and y directions and using the
method of images, Liu and Oppenheim obtain the three dimensional spa-
tial correlation of temperature fluctuations to be
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the statistics and long-ranged correlations of the form given by (7) have
been observed in numerous nonequilibrium scenarios.(5,7,8)
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