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The correlation of fluctuations of a fluid in a finite container subject to a constant strain is stud-
ied with use of both the fluctuating hydrodynamics formalism and a Boltzmann Monte Carlo par-
ticle simulation. Good quantitative agreement is demonstrated.

I. INTRODUCTION

Consider a simple fluid contained between a pair of
parallel planes at y =0 and y =L which act as infinite
reservoirs; by fixing the velocities and temperatures of
the reservoirs, one can impose the desired nonequilibri-
um constraint on the system. We take the plates to be
at equal temperatures; one is fixed and the other moves
with a constant velocity in the x direction. The flow is
laminar and the fluid evolves towards a stationary none-
quilibrium steady state at which the velocity gradient,
@=du /dy, is constant. This state is stable and the fluc-
tuations about it are small. The nature of the fluctua-
tions, however, is significantly different from those at
thermodynamic equilibrium.! In particular, at equilibri-
um the static (equal-time) correlations of the fluctuations
are short ranged, and the order of a mean free path, thus
hydrodynamically they are of the form?

Ad(r—r'),
0, a=£b

a=b

(8a(r)dh(r')) = (equilibrium) (1

where a and b are density, velocity, or temperature. Out
of equilibrium, however, some of the static correlations
acquire a long-range component. This, in turn, will
modify the dynamical correlation functions, for example,
the dynamical structure function measured in light
scattering experiments.’

These nonequilibrium modifications are now well
known and have been predicted by a variety of theoreti-
cal approaches*™® (for a recent review see Ref. 10). Yet,
while light scattering experiments confirm the theoreti-
cal predictions in systems with a temperature gradient,'!
no corresponding results exist for systems with a velocity
gradient. The predicted strain necessary to produce an
observable effect while still maintaining laminar flow is
difficult to achieve in the laboratory.* Colloidal suspen-
sions, however, are useful in the study of nonequilibrium
modifications in the radial distribution function.'?

Computer particle simulations provide an alternative
“experimental” approach. By molecular-dynamics simu-
lations, much is now known about the macroscopic
properties of fluids.!> The existence of non-Newtonian
behavior, such as shear thinning (shear viscosity decreas-
ing with increasing shear rate) and shear dilatancy (hy-
drostatic pressure increasing with increasing shear rate)
in simple fluids is now well established.!* While a

36

kinetic-theory formulation is required for a complete
description of these phenomena, it is believed that mode
coupling of microscopic fluctuations plays an important
part,”1>1¢ somewhat in analogy with the effective viscos-
ity defined for turbulent flows.!’

Recently, we have employed a stochastic particle
simulation'® to study hydrodynamic fluctuations in a di-
lute gas under a constant temperature difference.'®?° In
this paper, we extend our studies to the shear problem
and compare the simulation results with two fluctuating
hydrodynamics calculations.?! The first is an exactly
soluble model which qualitatively describes well the
simulation results. Next, from the full fluctuating hy-
drodynamics equations for a dilute gas the correlation
functions are obtained numerically. In the latter calcu-
lation, the agreement with the simulation data is found
to be quantitatively very good for a large system (20 000
particles, L =50 mean free paths) and fair for a small
system (4000 particles, L =10 mean free paths). The
calculations presented differ from previous work princi-
pally in the dominating influence of the boundary condi-
tions in our systems, whose sizes are only tens of mean
free paths.

II. COMPUTER SIMULATION
FOR A DILUTE GAS

For our computer experiments we chose to employ a
Monte Carlo dilute-gas simulation rather than attempt-
ing a molecular dynamics (MD) approach. Our experi-
ence shows that observing nonequilibrium fluctuations,
even in simple models, requires a considerable amount of
statistics.?>?’ The dilute-gas simulation (also known as
DSMC, direct simulation Monte Carlo method) have
been used successfully by Bird and others in the study of
rarefied-gas dynamics problems.'® The simulation was
originally developed to compute flow fields in the large-
Knudsen-number regime [(mean free path)/(charac-
teristic length)>0.1]. For example, it correctly yields
the density profile of a high Mach number (M > 2) shock
wave, a problem beyond the range of validity of the
Navier-Stokes equations.?* Collective behavior, such as
buoyancy-induced convection in the slot problem, has
also been observed.”?® Some shortcomings in the simu-
lation method, recently discussed by Meiburg,?’ have
been proven by Bird to be unimportant.?® Recently, we
have used DSMC simulations to study fluctuations in a
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system under a constant temperature gradient.'%%0

The DSMC simulation algorithm is described in detail
in Ref. 18, yet since the method is not as well known as
molecular dynamics, we give a brief sketch here. As
with MD, the state of the system is the set of particle
positions and velocities, {r;,v;} where i=1,2,...,n.
The evolution of the system is integrated in time steps
At which are typically a small fraction of the mean col-
lision time for a particle. Within a time step, the free
flight motion and the particle interactions (collisions) are
assumed to be decoupled. The free flight motion for
particle i is trivially computed as r;(¢t +At)
=r,;(t)+v;(t)At, along with the appropriate boundary
conditions. In the x and z directions we take periodic
boundaries; the planes y =0 and y =L are thermal walls
at fixed temperature, 7,, and fixed velocities,
u(y =0)=0 and u(y =L)=u,, respectively. When a
particle strikes a wall its velocity is reset randomly ac-
cording to a half-Maxwellian distribution with the wall’s
temperature and velocity. '8

After all the particles have been moved, they are sort-
ed into cells, typically a fraction of a mean free path
(MFP) in length (our cells are 1x0.25X1 MFP in size).
A set of representative collisions for the time step are
chosen in each cell. The collision process in a cell is ap-
proximated by the Kac model of the Boltzmann equa-
tion.?’ All particles within the cell are considered to be
candidate collision partners. For hard spheres, each pair
in cell a is assigned a collision probability based on their
relative speed,

Pa(i,_]):JV,—le/Ea, i,_]ea (2)
where the normalization of the probability density is
Ea=7 2 X lvi—v,| . (3)
i€EajEa

It would be computationally expensive to compute =,
for each cell at each time step. Instead, an acceptance-
rejection scheme® is used to select collision pairs given

P,(i,j). A pair of particles (i,j) chosen at random is
taken to be the next to collide if
V;—V;
M >R, (4)
v

max

where R is a uniformly distributed random number in
the interval (0,1) and v,,, denotes the “estimated” max-
imum relative speed. The acceptance-rejection method
is exact if

Umax 2max( | v;—v; |), i,jEa (5)

and is most efficient when the equality holds. Yet com-
putationally it is more efficient to make an intelligent
guess which overestimates v,,, rather than compute it
at each time step.

After a pair is chosen, a random impact parameter is
selected and the collision is evaluated. Note that linear
momentum and energy are conserved in the evaluation
of the collision. Since the sequence of collisions in a cell
is modeled as a Markov process, the waiting time be-
tween collisions, 7, is exponentially distributed®! as
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P (T)=pqexp( —pu,T) , (6)

where pu, is the collision frequency in the cell. From ele-
mentary kinetic theory, for hard spheres we have

wd*Ny (N, —1)

ZVC < |V,———Vj | >a > (7)

Ha=
where d is the particle diameter, N, is the particle num-
ber in the cell, and V, is the cell volume. The average
( ), is over all pairs in the cell a. Since the exact evalu-
ation of { | v, —V; | ), is computationally expensive, one
typically makes the approximation

Clvi=v [ Da= | vi=v; |, (8)

where i and j are the particles which were selected and
accepted on the previous collision. One can show that
on average the correct collision frequency is obtained if
the number of particles per cell is large (>20). Of
course, if the number of particles per cell is not large
then the evaluation of { | v, —v;| ). directly is no longer
computationally expensive.

Simulation runs were made for two systems, one small
(1x10x1 MFP, 4000 particles) and the other large
(1x50%x 1 MFP, 20000 particles). In each case, the ve-
locity of the moving wall was (8kgzT, /m)'/? (approxi-
mately twice the sound speed) where kjp is the
Boltzmann constant and m is the particle mass. The
lengths and velocities in the simulation are normalized
by the mean free path and the most probable molecular
speed at equilibrium, respectively; the particle mass is
taken as unity. For the purpose of measurement, each
system was divided into a chain of 20 cells; statistics
were accumulated on the state of each cell.

The program was run in parallel on two Floating
Point Systems FPS-264 array processors in the 1CAP2
system at IBM Kingston. The lengths of the runs were
on the order of 10° collisions, typically 48 hours of
central-processing-unit time. In Figs. 1 and 2 we graph
the measured velocity and temperature profiles for the
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FIG. 1. Measured x-velocity profile for the large system.

Parameters in the simulation were L =50 mean free paths,
20000 particles, T, =1, u,=(8RT,)"?, L,=L,=1 MFP,
‘qo:%po(ﬁTo)”z, m =1, R ==. The solid line is the macro-
scopic steady state [Eq. (43)].
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FIG. 3. Measured static correlation function for the x-

FIG. 2. Measured temperature profile in the large system;
see Fig. 1 for the simulation parameters. The solid line is the
macroscopic steady state [Eq. (44)].

large system. Note that even though the Knudsen num-
ber is relatively large and the strain severe the data are
still extremely well described by the macroscopic hydro-
dynamic equations with the transport coefficients taken
as constant (solid line). The error bars for the data
points are about a tenth the size of the symbols marking
the points. From these profiles (excluding the cells next
to the walls) the Prandtl number may be computed (see
also Ref. 33). For the large system we find P=0.6677
and P=0.6805 for the small system; the Prandtl number
for a dilute gas is %.21 The deviation for the large sys-
tem does not exceed 0.2% while for the small system it
is close to 3%; this deviation in the small system de-
creases to 1% if the velocity gradient is reduced to that
of the large system. The relatively larger error for the
small system is probably due to the relatively large slip
boundary layer at each wall. Unfortunately, some in-
teresting predictions concerning the long-ranged extent
of the slipping length were untestable within the given
simulation parameters.

In Figs. 3 and 4 we present the measured static corre-
lation function of the x-velocity fluctuations in the large
and small systems, respectively. Figure 5 depicts the
static correlation function of the density fluctuations
measured in the large system. Note that in each case
only the nonequilibrium part is displayed; the large local
equilibrium delta function component,

(8p;8p; ) =(p;/V.)8;,; (equilibrium)

o)
(Su;du;)=[kpT;/(p;V.)15,; (equilibrium),

has been removed. Note that the velocity correlations in
the two systems are similar in nature and are of long-
range extent. These figures will be discussed further in
the following sections.

III. FLUCTUATING HYDRODYNAMICS
WITH A SIMPLE MODEL

In this section we show that the above results for the
velocity correlations can be reproduced, at least qualita-

velocity fluctuations, (&u (y)8u(y'=12)), in the large system.
See Fig. 1 for the simulation parameters. The solid line
represents the numerical solution of the fluctuating-
hydrodynamics equations for a dilute gas (see Sec. IV). The lo-
cal equilibrium contribution has been removed [see Eq. (9)].

tively, by a straightforward fluctuating-hydrodynamics?’
calculation for a model fluid. Consider a simple fluid
with the following characteristics:®7 the thermal expan-
sivity vanishes, | 9P /3T | ,=0, the transport coefficients
are constant, i.e., independent of density and tempera-
ture, and the state of the walls is statistically indepen-
dent of the state of the system. By the first assumption,
the momentum equation is decoupled from the energy
equation.®” The last assumption implies a simple form
for the boundary conditions which is precisely the one
realized in our computer experiments.’?>3> While these
assumptions considerably simplify the analysis, the main
physical aspects are preserved.'®
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FIG. 4. Measure static correlation function for the x-

velocity fluctuations, (u (y)Bu(y'=%)>, in the small system.
Parameters in the simulation were L =10 mean free paths,
4000 particles, T,=1, u,=(8RT,)'"?, L,=L,=1 MFP,
T]o:-l%po(ﬂTo)I/z, m=1, R :%. The solid line represents the
numerical solution of the fluctuating-hydrodynamics equations
for a dilute gas (see Sec. IV). The local equilibrium contribu-
tion has been removed [see Eq. (9)].
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FIG. 5. Measure static correlation function for the density
fluctuations, (8p(y)8p(y'= 1)), in the large system. See Fig.
1 for the simulation parameters. The solid line represents the
numerical solution of the fluctuating-hydrodynamics equations
for a dilute gas (see Sec. IV). The local equilibrium contribu-
tion has been removed [see Eq. (9)].

It is now easy to check that the steady-state density,
Po, is constant and the velocity profile is

uO(r)z(Pny ’ (10)

where I, is the unit vector in the x direction, ¢ is the
(constant) velocity gradient, and the subscript O denotes
macroscopic quantities. Due to viscous heating, the
fluid develops a parabolic temperature profile whose am-
plitude is proportional to the square of the imposed
strain. If this strain is not too large, the temperature
variation is very small (see Fig. 2) and for simplicity, we
shall take the temperature as constant.

Since the boundaries in the x and z direction are

periodic, we restrict ourselves to reduced variables
defined by
1 Lx Lz
h(y)=§f0 dx fo dz 8h(x,p,2) , (11)

where /4 is any hydrodynamic variable and S=L,L, is
the surface area of the walls. Note that these reduced
variables are in fact the zero-wave-number values of the
“parallel” Fourier components of the hydrodynamic
variables. In the simulation, the system is similarly
sliced into cells and statistics are collected on the states
of these cells.

The linearized fluctuating-hydrodynamic equations in
the reduced variables are?® 3

a ()
at a Sv , (12)
isu:~¢au+i—— L9, o, a3
at a 2 Po a xy \Jo ’
3 3 L 2
atﬁv— aayﬁp—f— 77+§ 5 v

1 9

=5, ), 14

+p0 ayoyy(y ) (14)
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a _11_82 1

3t po 3y ——o,p,t), (15)

where 8p, du, dv, and dw are the density fluctuations and
the x, y, and z components of the velocity fluctuations,
respectively. The shear and bulk viscosities are 7 and &,
respectively, and a=(1/pg) | 3Py /3py | r- The stochastic

components of the reduced pressure tensor, o;; i, are
white-noise processes with zero mean and variances,?!
(o, Doyt
2k T
=y —y )8t —1")
S

The boundary conditions for v follow from the conser-
vation of total particle number and the continuity equa-
tion

) l boundaries = 0, (17)

i.e., the boundary acts as a perfectly rigid wall. The
boundary conditions for du and dw are as those of a no-
slip wall,

Su(y =0)

p05v (y

=du(y =L)=dw(y =0)=8w(y =L)=0 .

(18)

These relations are a consequence of our assumption
that the state of the walls is statistically independent
with respect to the state of the system. No boundary
condition for 8p is required as its evolution is entirely
specified by the initial conditions for 8p plus the bound-
ary and initial conditions for éu, v, and dw. From a
physical point of view, this reflects the fact that the state
of the wall can only constrain the temperature and ve-
locity of the fluid at the wall whereas the behavior of the
density close to the wall is entirely determined by the
internal dynamics of the system. (The full mathematical
aspects of this problem are discussed in Ref. 36.)

With the above boundary conditions, it is easy to
show that the reduced fluctuations can be expanded in
the following sine and cosine series:

Sp(y,t) z Spi (t)cos(kmy /L) , (19a)
Su(y,[) Buk(t)
e . | kmy
Sv(y,t) =3 |8vk(z) |sin 7 , (19b)
Sw(yst) k=0 ka(l)
with the well-known inverse formula
8py (1) f dy 8p(y,t)cos(kmy /L), 8po(t)=0  (19¢)
Buy (1) 5 Su(y,t) X
S0 (1) :ffo dy |8v(p,1) |sin | X2 (19d)
Suwy (1) dw(y,1)

In this paper we restrict ourselves to the study of the
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statistical properties of a system in the stationary regime
(i.e., we are not considering the transient regimes where
one studies the evolution from a given initial condition).
In this regime, a common approach is to use the Fourier
transform in time,

5h<z)=f°° do 8h(w)e '

— o

Sh(w)=(1/2m) [ 7

— o

(20a)

dt 8h(t)e'®t (20b)

where /4 is any hydrodynamic variable.

Using now the transforms (19) and (20), we immedi-
ately obtain the correlation functions for the variables
8p, v, and dw,

(Spi(@)8py(w'))
4k ppoToT (k*7* /L*)8(w0 + 0" )8y
T wV [0 —(ckn/LPP+40 Tk /LY
21)
(v, (@)8vg (')
4kpT,T (k27 /LS80 + 0" )8y
T otV @' —(ckm /L)Y +40’ T2k mt /Lt
(22)
oy (w1011 ) = 2 L0 Blot o by kLY
mVpys (M/py)k*n /L 4w
(23)
(Bpi(0)8vi (")) =(—ipokm/wL){8v; (@)8v (') ,
(24)
(8pi(@)w @) = 8vy (@)dwy(w')) =0, (25)

where V is the volume of the system (V' =SL), T is the
sound damping coefficient, and ¢ is the sound speed,

T=(49+&)/2p, (26)
c=vVapy . 27

In this paper we shall only consider the static correla-
tion functions (for their dynamical behavior, see Ref.
36). For the density 8p and parallel velocities, v and
dw, one easily finds

(Bv(p)dv(y')) =(dw(»)dw(y’'))

=[kpTy/(ppS)10(y —y"), (28)
(Sv(»)dw(y’)) =0, (29)
(8p(y)8p(y")) =Lk Ty /(aS)][8(y —y')—1/L], (30)

which are clearly the results we expect from equilibrium
statistical mechanics.? The term —1/L in Eq. (30) en-

kT 2 kT
(Bu (»du(y)y — 28—y :% Blo | |,y
PoS c? poS L

A cosh[(y —y'—L

GARCIA, MANSOUR, LIE, MARESCHAL, AND CLEMENTI 36

sures the conservation of the total mass. Because of this
term, the static density autocorrelation function is strict-
ly negative and its integral compensates for the local
equilibrium (8-function) contribution.

Let us now consider the reduced x component of the
velocity fluctuation O6u, which is the only variable
affected by the velocity gradient ¢. Equation (13) may
be written as

2
B,Suzﬁl—éa—zﬁu-i—l"(y,t), 31)
0 oy

where F(y,t) can be taken as an effective noise term

(F(y,1))=0, (32a)

2kpTom 3?
——08(t —t')
peS dy dy

(F(y,t)F(y',t")) = -8(y —y')

+@*(8v(y,1)8v(y',t")) . (32b)

This is a non-Markovian equation for OSu(y,t) since
(8v(y,1)8v(y’,t")) is not &-correlated in time.>® Again,
using the transforms (19) and (20), we obtain

—Br(w) (k7 /pol )Yy (@)
duplw)=—— ) , (33)
km®/pol *—iw 7 /poL?—iw
where 9, (w) is the Fourier transform of o
(Y Wl@')) =[2kg Ton /(7 V)18,4-8(
and

(ﬁk( > ¢72<Uk

Moreover, because of the absence of correlation between
Langevin source terms, we have

(B (@) (")) = vy ()
Using the relations (34)—(36) it is easy to check that
(Suy (0)8uylw'))

1
T (n/pelk Tt /LA 4 ?

xy?

o+o') (34)

o)lo')) . (35)

®'))=0. (36)

2<5Uk sl)k (w ))

2kpTom
TVpj

k2772
L2

Integrating {8u;(w)duy(w’)) over w and ' to obtain
the equal-time spatial correlation and transforming back
to real space, one finds, after some algebraic manipula-
tions,

)/A]—cosh[(y +y'—L)/A]
2 sinh(L /A) ’

(38a)
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with y >y’ (for y <y’, exchange y and y’) and
A=[n&+ImM]1"*/(poc) .

In Fig. 6 we depict the rhs of Eq. (38a) for various
values of A and note the good qualitative agreement with
the simulation results (compare with Figs. 3 and 4).
Even quantitative agreement is reasonable; predicted
peak values are =3 107° (large system) and ~1x10~*
(small system). Note, however, that our simple model is
not adequate in describing {8p 8p’) since it predicts a
constant value, Eq. (30), and not the observed sinusoidal
form (see Fig. 5).

The parameter A, which has the units of length, can
be associated with an acoustic absorption scale. If
A << L, the second term in the brackets in Eq. (38a) is
negligible and the nonequilibrium part of (du du')
reduces to a piecewise linear function whose amplitude is
proportional to the square of the amplitude of the con-
straint. This is reminiscent of the results of Ref. 37 for
the temperature autocorrelation function in a high
Prandtl number liquid (see also Refs. 19, 20, and 35) and
of the results of Ref. 38 for the density autocorrelation
function in a lattice gas. For A >>L, the entire none-
quilibrium effect disappears.

IV. FLUCTUATING HYDRODYNAMICS
FOR A DILUTE GAS

(38b)

In this section we obtain the correlation equations for

a dilute gas from the nonequilibrium fluctuating-
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FIG. 6. Static correlation function for the x-velocity fluctua-
tions, {(8u (y)du (y'=32)), for the model presented in Sec. I1I
[see Eq. (38)]. The three curves displayed are for the values
A =0 in the upper most curve, A=0.1L in the center curve, and
A=0.5L in the lower curve. In each case the other parameters
are as for the large system (see Fig. 1). The local equilibrium
contribution has been removed [see Eq. (9)].
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hydrodynamic equations. The notation is as in Sec. III
and the discussion follows that of Refs. (20) and (35).
Again, we only consider reduced variables as defined by
Eq. (11). The fluctuating-hydrodynamic equations for
the reduced density, velocity and temperature fluctua-
tions are

9 d
Ly 2 3
o 8p 3 podv , (39)
9 3 T, 8 671 40
p()-a—t'(‘iu:—po(pév I,—R 3 (Todp+po b7, (40)
32 9? 0
+1in 3y’ —6vl y+7]——a 7éu— aya,-yli,
9 9 9
Zp()R—_‘ST ——RPO Sv— a TO—RPOTO a —d&v +277¢7-é—*5u
9’ 0
— @O, +K§—25T —-aygy s 41)

where « is the thermal conductivity and R =kp /m. The
random components of the pressure and heat flux are
white-noise processes with covariances given by Eq. (16)
and

ZkBKTQ( )
(g, (y,1)g, (y',1")) = ~—~S—8(y —y)8(t—1t") . (42)
For a hard-sphere gas, the transport coefficients
are functions of temperature as 7,k V'T; since the
temperature variation is small we take the transport
coefficients as constants. The bulk viscosity of a dilute
gas is zero. The macroscopic variables are

u(y)=@yl,, (43)
2
To(y)zﬂzg’i—y(L —y)+T, , (44)
P
Po, =, 45)
) RTo(y)

where the hydrostatic pressure P, is a constant. Our
boundary conditions for Su are still given by Eqgs. (17)
and (18); by similar arguments, our boundary condition
for the temperature is

8T (y =0,t)=8T(y =L,1)=0 . (46)

Again, there is no boundary condition for &p.

Because the coefficients and the noise are both space
dependent, it is not possible to proceed in the same
manner as in Sec. III. Yet, using some basic identities of
stochastic processes, it is possible to write a set of
coupled equations for the static correlations
(8a(y)8b (y')). 203539 For example, for the
(8u (y)du(y')) static correlations, we have

popé'aaT(iSu Bu’) =0=—gpepo({bv du’) + (bu dv’))

3?2 d?
+ + (Su du’)
n PO ay2 Po T 5 ay
82
+W(U”G”> . 47)
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Naturally, we must solve the full set of coupled equa-
tions, a task we have only succeeded to do numerically.
In Figs. 3-5, the solid cures are the numerical solutions
we obtain using the parameters from our particle simula-
tions (see Sec. II). Agreement is very good for the large
system while only fair for the small system. We believe
this is due to the effect of the slip boundary layer; as the
wall velocity is the same in the two systems the strain in
the small system is five times greater. Recall that the
measured Prandtl number in the small system was also
different from the value predicted by kinetic theory [the
theoretical values were used in the numerical solution of
Egs. (39)-(41)]. In Fig. 5 we see that the sinusoidal form
for <8p 8p’> is recovered, in contrast with the result for
the simple model in Sec. III.

V. CONCLUSIONS

In this paper we have studied a dilute gas under shear
by means of a Boltzmann Monte Carlo simulation origi-
nally developed by Bird.'® In our previous work the
same technique was applied to the study of a system held
at a constant temperature difference.?’’ In both cases,
the results were compared with those obtained by direct
application of the Landau-Lifshitz fluctuating-
hydrodynamics formalism and nice quantitative agree-
ment was demonstrated for the static correlation func-
tions. We also have some preliminary results which in-
dicate that this success extends to the dynamic correla-
tion functions, such as the dynamical scattering func-
tion.** These results are sufficiently encouraging to war-
rant an investigation of the onset of instabilities, such as
the Rayleigh-Bénard problem,*! by this approach.

The direct conclusion is obviously the applicability of
the fluctuating-hydrodynamics formalism down to a few
mean free paths even in systems under severe nonequili-
brium constraints. Yet, another interpretation is possi-
ble. Fluctuating hydrodynamics has a well established
theoretical foundation for near-equilibrium systems. It
can be derived from kinetic theory and its applicability
appears to be only limited by the validity of the local
equilibrium hypothesis (see also Ref. 42). Light scatter-
ing measurements in nonequilibrium systems add further
experimental evidence to this assertion.'’

On the contrary, there exists no similar theoretical
support for the stochastic Boltzmann-equation simula-
tion; its validation lies in its success in reproducing labo-
ratory results such as shock-wave profiles. While the
Kac model for the collision process is well established,
the simple treatment of transport processes adopted in
the simulation (the transport and collision processes are
decoupled during a timestep), has not received any seri-
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ous theoretical investigation. Thus, the agreement be-
tween simulation data and fluctuating-hydrodynamics
calculations in near-equilibrium systems may be seen as
demonstrating the applicability of the Boltzmann Monte
Carlo approach for the study of fluctuations. The results
presented in this paper further suggest to us that both
fluctuating hydrodynamics and the DSMC approach are
valid in far-from-equilibrium systems.

This assertion, of course, needs to be checked more
extensively, yet if it is true then a great advance towards
computer experiments of nonequilibrium systems is
achieved. The classical molecular-dynamics experiments
were originally developed to study the statistical proper-
ties of equilibrium systems. Their extension to none-
quilibrium systems was oriented, mainly, to the study of
the macroscopic behavior of fluids and many interesting
properties were discovered (see the Introduction and
Ref. 12). Yet even with modern supercomputers, it is
computationally prohibitively expensive to study none-
quilibrium modifications to the correlation of fluctua-
tions via molecular dynamics.

The stochastic approach in particle simulations, such
as the one presented here, gives one an interesting alter-
native. First and most importantly, our evidence indi-
cates that it correctly reproduces microscopic fluctua-
tions in far from equilibrium systems as compared with
the Landau-Lifshitz formalism. This is a non-negligible
advantage over other computational models, such as the
one based on cellular automata, where only the macro-
scopic properties are well established.** Second, the
method appears to be applicable to large-Knudsen-
number systems. While this assertion is well tested for
macroscopic properties, it remains to be checked that
the method correctly describes fluctuations for all values
of Knudsen number. The main limitation in the stochas-
tic approach is that, currently, it has only been formulat-
ed for a dilute gas. Whether or not a direct simulation
Monte Carlo method can be set up for a liquid remains
an open question. However, a generalization of the tech-
nique for a moderately dense gas based on the Enskog
equation seems possible;** work in this direction is in
progress.
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