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We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling
multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive
mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling

. R. Df Hornung an atomistic fluid representation to a continuum model. The atomistic model is applied
Lawrence Livermore NatlonLqI Laboratocrﬁ locally in regions where the continuum description is invalid or inaccurate, such as near
Ivermore,

strong flow gradients and at fluid interfaces, or when the continuum grid is refined to the
molecular scale. The need for such “hybrid” methods arises from the fact that hydrody-
namics modeled by continuum representations are often under-resolved or inaccurate
while solutions generated using molecular resolution globally are not feasible. In the
implementation described herein, Direct Simulation Monte Carlo (DSMC) provides an
atomistic description of the flow and the compressible two-fluid Euler equations serve as
our continuum-scale model. The AMR methodology provides local grid refinement while
the algorithm refinement feature allows the transition to DSMC where needed. The con-
tinuum and atomistic representations are coupled by matching fluxes at the continuum-
atomistic interfaces and by proper averaging and interpolation of data between scales.
Our AMAR application code is implemented @+ + and is built upon the SAMRAI
(Structured Adaptive Mesh Refinement Application Infrastructure) framework developed
at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adaptive
gridding algorithm and enables the coupling between the continuum and atomistic meth-
ods.
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methods that1l) can be rigorously shown to converge a(gl

1 Introduction and Background
Multiscale simulation of complex phvsical svstems has r lace very few restrictions on the continuum and atomistic con-
P phy Y tituents other than accommodating the coupling recipe.

ceived increasing attention in recent years. The primary challeng n what follows, we will first describe the continuum and ato-

lies in r_esolving physical phenomena occ_:urring over a broad rangfstic methods and their coupling. Next, the challenging question
gf spatial atf‘d telmporflal sca!;s.dofften, }h{_s challge#gg ctann(?tt_ be :BF hoosing reliable grid and algorithm refinement criteria to track
y conventional, singie-method formulations. EMcient multiscalg, iq interfaces is discussed. Finally, we present numerical results

formulations respond to this challenge by limiting the use of a3, several test cases and compare them with theory and other
expensive high-resolution mod@.g., atomistigto the regions in simulations to verify our approach.

which it is needed, while using a simpler, less expensive method,
in the rest of the computational domain. Such a hybrid approach
allows effective use of each method in different regions of the
problem(e.g., interior and exterior of a shock wave 2 Adaptive Mesh and Algorithmic Refinement

Numerous hybrid methods have been proposed and demonyps section describes the Adaptive Mesh and Algorithm Re-
strated for solidg1-3], liquids [4—7], and gase$8-16. The finement(AMAR) methodology in which a continuum algorithm
purpose of this paper is to illustrate one methodology for integrat replaced by a particle algorithm at the finest grid scale in a
ing the concepts of adaptive mesh refinement and hybrid methogig, g chical adaptive grid refinemefAMR) setting. Details of
While our continuum-atomistic approach using adaptive mesh g, general AMAR scheme have been presented elsevjhdle

finement uses an unsplit Godunov scheme for the continuum B will summarize them here for completeness and note differ-
ler equationgdiscussed in Section) 2the couplingmethodology ences from previous work.

is in no way limited to a particular continuum solution method,

provided the latter is a time-explicit conservative formulation 2.1 AMR Algorithm for Continuum Hydrodynamics. In

[17]. This will be particularly important if the hybrid methodthe AMAR implementation described herein, we employ a struc-
needs to be used for the simulation of small-scale flows whefgred AMR grid hierarchy on which we solve the compressible,
Navier-Stokes capabilities are required. In fact, perhaps the mb&p-species Euler equations on every grid level except the finest.
important message from this work is that powerful coupling mettn the finest level, the solution is represented by the Direct Simu-
ods can be developed from already existing continuum-continud@tion Monte Carlo(DSMC) method. Note that AMAR uses the
matching techniqueis,18]. This is possible because coupling carsame adaptive meshing and time integration algorithms developed
only be achieved in regions where both descriptions are equii@t continuum modeling of shock hydrodynamids,20.

lent, that is, where the continuum description is valid. This ap- Consider the two-fluid Euler equations in conservative integral
proach is in fact preferred because it typically results in couplif§rm

d
—f UdV+ j‘; F-AdS=0, 1)
dt Jq 90
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Fig. 1 Outline of AMAR hybrid:  (a) Beginning of a time step; (b) advance the continuum grid;
(c) create buffer particles; (d) advance DSMC particles; (e) refluxing; (f) reset overlying con-

tinuum grid.
p pu, timestep. Appropriate boundary conditions are applied to particles
D, pu§+P that reach the boundary of the DSMC domain. Second, after all
particles have moved, a given number are randomly selected for
U= Py = pUxtly (2) collisions. Rather than exactly calculate successive collisions, as
Pz puxU, in molecular dynamic$30], the DSMC method generates colli-
€ (e+P)uy sions stochastically with scattering rates and post-collision veloc-
pcC pCU, ity distributions determined from the kinetic theory of a dilute gas.

Here, we provide only the-direction component of the flux A_ccuracy of the splitting of streaming and collisions requires the

terms; other directions are similar. We assume a two-species %5%9 stepAt, to be a fraction of the mean collision time, for a
with the mass concentrations of the two species beimd (1 Particle [31,33. DSMC has been rigorously shown to provide
—¢); generalization to more species is straightforward. Discreficcurate solutlc_)ns to the Boltzmann equation in the I|m|t_ as the
time integration is achieved by using a finite volume approximél_umber 01_‘ particles becomes large and the DSMC collision cell
tion to Eq. 1. This yields a conservative finite difference expre§iz€ and time step become smi@B].

sion with Uinjk appearing as a cell-centered quantity at each tim Although DSMC is orders of magnitude faster than molecular

. namics for simulation of gases, it is orders of magnitude slower
level andF}",}}f3 located at faces between cells at half-time levs gases, 9

els. We use a second-order version of an unsplit Godunov sche%%a%g %c;nrt]lngruorg ﬁl{gnc;:ggrﬁ tfr?g S,\?(,L\\'I';?_gglii ?i'rfrf]ire.?ﬂﬁls ecg)t:]?-
to approximate the fluxg21-23. Y y : » ony

Time stepping on an AMR grid hierarchy involves interleavin lOSWMCr:egr:Otﬂse ;h,\itAFr{egwrl%ar;c:lecular resolution are treated by
time steps on individual leve[®0]. Each level has its own spatial : Pp '

grid resolution and timesteypically constrained by a CFL con- 2.3 Continuum-Atomistic Coupling. During time integra-
dition). The key to achieving a conservative AMR algorithm is t@jon of continuum grid levels, fluxes computed at each cell face
define a discretization for Eq. 1 that holds on every region of thge used to advance the solution(Fig. 1(b)). Continuum values
gr|d hierarchy. In particular, the diSCI‘ete Ce” V0|ume integrals Qre advanced using a Ume incremm appropriate for each
U and the discrete cell face integrals Bfmust match on the |eye|, including those that overlay the DSMC region. When the
locally-refined AMR grid. Thus, integration of a level involvesparticle level is integrated, it is advanced to the new time on the
two steps: solution advance and solution synchronization Withest continuum level using a sequence of particle time steps

other levels. Synchronizing the solution across levels assumes tm\g' The relative magnitude okt, to the finest continuum grid
fine grid values are more accurate than coarse grid values. gqé depends on the finest continuum grid spacing(typically a
coarse values o) are replaced by suitable cell volume averageg,, \) and the particle mean collision time.

of finer U data where levels overlap, and discrete fine flux inte- g,jer solution information is passed to the particles via buffer
grais replace coarse fluxes at coarse-fine grid boundaries. flyq surrounding the DSMC region. At the beginning of each
though the solution is computed differently in overlapping cells %Bsmc integration step, particles are created in the buffer cells

different levels as each level is advanced initially, the synchroru— ing the continuum hydrodynamic valués u, T) and their

zation procedure enforces conservation over the entire AMR 9iadients(Fig. 1(c)). Since the continuum solution is advanced

hierarchy. first, these values are time interpolated between continuum time

2.2 Atomistic Algorithm. Due to our interest in gas flows steps for the sequence of DSMC time steps needed to reach the
[24-28, the atomistic algorithm we use is the direct simulatiomew continuum solution time. DSMC buffer cells are one mean
Monte Carlo(DSMC) method[29]. In DSMC, the state of the free path wide; thus, the time steéyt, is constrained so that it is
system is given by positions and velocities of particles,,v,}. extremely improbable that a particle will travel further than one
The system evolves in time using the following two step apnean free path in a single time step. The particle velocities are
proach. First, particles are moved without interaction; that is, theirawn from an appropriate distribution for the continuum solver,
positions are updated to,+Vv,At,, where At, is a DSMC such as the Chapman-Enskog distributia].
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Fig. 2 Multiple DSMC regions are coupled by copying par-

ticles from one DSMC region  (upper left ) to the buffer region o genty in the same fashion that different patches in a conventional

an adjacent DSMC region (lower right ). After copying, regions  AMR™problems are treated after exchanging boundary data
are integrated independently over the same time increment. ’

2.4 Refinement Criteria. Criteria for refining the mesh and
transitioning from continuum to a particle scheme is a significant

During each DSMC time integration step, all particles areesearch topic and is generally problem specific. Standard AMR
moved, including those in the buffer regioff§g. 1(d)). A particle methods assume that the differential equations of continuum hy-
that crosses the interface between continuum and DSMC regiahiedynamics are valid at all length scales in the computation and
will eventually contribute to the flux at the corresponding congrid refinement is often based on ad hoc notidesy., refine
tinuum cell face during the synchronization of the DSMC levehround steep gradientsr analytical error estimation techniques
with the finest continuum level. After moving particles, those rgavolving the continuum differential equatior{s.g., Richardson
siding in buffer regions are discarded. Then, collisions among tleatrapolation. In contrast, hybrid methods apply computational
remaining particles are evaluated and new particle velocities ar@dels matched to the flow properties at each physical scale.
computed. While results presented later demonstrate that we can effectively

After the DSMC region has advanced over an entire continuuiacus DSMC locally to capture shocks and diffusion fronts, many
grid timestep, the continuum and DSMC solutions are synchrtesearch issues remain.
nized in a manner analogous to the AMR level synchronization The AMAR algorithm can refine the grid and algorithm based
process described earlier. First, the continuum values in each egllany of a number of possible criteria. However, we have found
overlaying the DSMC region interior are set to the conservatiwbat for single species flows, refinement based on density gradi-
averages of data from the particles within the continuum grid cedhts is reliable. Tracking concentration gradients or concentration
region(Fig. 1(f)). Second, the continuum solution in cells adjacentalues within some interval is effective for multispecies flows
to the DSMC region is recomputed using a “refluxing” proces#nvolving concentration interfaces. Parameters for transitioning to
(Fig. 1(e)). That is, a flux correction is computed using a spad@SMC are based on the continuum breakdown parameter method

and time integral of particle flux data, proposed by Bird35], i.e., refinement is triggered by spatial gra-
dients exceeding continuum tolerances. The gradient detector for-
SF=— AFM 124 F 3) Mmulathat we use is a variation of a sharp discontinuity detector by
par%ms P ®) Trangenstein and Pembfg6].

Un+1:Un+1+

. . Due to spontaneous stochastic fluctuations in DSMC computa-
The_sum represents the flux of the cc_mserved quantities C‘?‘medt@ﬁs, it is important to track gradients in a manner that does not
particles passing 'through the continuum cell face during tr:‘;fflow the fluctuations to trigger unnecessary refinement and ex-
DSMC updates. Finally, cessively large DSMC regions. Let us consider the gas density as
At SF an example. Using the fact that for an ideal gas under equilibrium
(4) conditions the number of particles in a given volume is Poisson
distributed, it can be shown that the standard deviation in the
is used to update the conserved quantities on the continuum gniakmalized density gradient [87],
T . . .
\clzvct]r?éihjon. is the coarse grid solution before computing the flux \/<(dp/dx 2> B \/< ( Ni+l_Ni)2> ) 2 o
In summary, the coupling between the continuum and DSMC p AX(N;) AXW/(Ncell)'
methods is performed in three operations. First, continuum solu- . . .
tion values are interpolated to create particles in DSMC buffdfnere Ncell is the number of particles in a cell where macro-
cells before each DSMC step. Second, conserved quantitiesSfPPIC Properties are defined. The fluid density fluctuation can
each continuum cell overlaying the DSMC region are replaced %Y Pe reduced by increasing the number of DSMC simulation
averages over particles in the same region. Third, fluxes record&ticles. This has consequences for the use of density gradient
when particles cross the DSMC interface are used to correct {eerance®t, used for AMAR. In general, such tolerances must be
continuum solution in cells adjacent to the DSMC region. ThigaSed on the number of particles used for the atomistic domain
coupling procedure makes the DSMC region appear as any otﬁ@ce the spatial gradients of density on tuarsegrid which is
level in the AMR grid hierarchy. fuctuatl_ng(as shown beIO\)var_e used_to decide whether reflr_1e-
Multiple DSMC parallelepiped regiongi.e., patches are ment will take pla}ce. In partl_cular, in our ve_r5|on_of density-
coupled by copying particles from patch interiors to buffer regiorgradlgnt-bqsed 'reflnemen.t, reflne.ment occurs in regions where the
of adjacent DSMC patchesee Fig. 2 That is, particles in the nondimensionalized density gradients are aboveRththreshold,
interior of one patch supply boundary valugy acting as a res- '€=
ervoin for adjacent particle patches. After copying particles into 2\ |dp
buffer regions, each DSMC patch may be integraiedepen- p<7 ax

6
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1 ' , be the case for the diffusion equation and a random walk model in
§ 0.9 '_"32 Ref. [38], and is verified here for the Euler-DSMC system as
g o Simulation data shown in Fig. 5. This allows the use of E) that was derived
o 08 assuming 2 atomistic cells. Note that the observed trigger event is
s 07 a composite of a large number of probable density gradient fluc-
n tuations that could exceed, ; gradients across all possible near-
§ 0.6 est neighbor cells, next-to-nearest neighbor cells and diagonally-
% usl nearest neighbor cells are all individually evaluated by the
K} ) refinement routines and checked agaiRgt For a 10% trigger
5 04 rate (or equivalent probability of triggerthe probability of an
5 i individual cell-pair having a density fluctuation exceedRgcan
g ’ be estimated a©(0.1/100) by observing that,
'-s o 1. since the trigger event is rare, probabilities can be taken as
501 additive,
= 0 2. for the geometry considered, there ar800 nearest neigh-
U IS 200 SEn Jou  2gp sl bor, next-nearest neighbor and diagonal cells that can trigger
umber of particles per cubic mean free path N X
refinement and
Fig. 4 Variation of density gradient tolerance with number of 3. the ra.lpld decay Of the Gaussian distribution ensures the de-
DSMC particles N. Here we use N because in our implementa- creasing probability ©(0.1/100)~0(0.001)) of a single
tion Ncell =N. event does not significantly alter the corresponding confi-

dence interval and thus an exact enumeration of all possible
trigger pairs with correct weighting factors is not necessary.

Note that the density gradient is calculated in the continuum meshF o ;
. or example, our probability estimate@{0.001) suggests that
on a coarser AMR hierarchy level ihan the DSMC level. our confidence interval is 840¢. This is verified in Fig. 4.

To determine the minimum value d®, required to prevent_l_arger trigger rates can be achieved by reducRyg Curves

growth of the atomistic region, simulations were conducted usirgl A . .
. e : own in Fig. 4 help prototype tolerance criteria using a small
the domain geometry shown in Fig. 3 for a rangeNaiell. Grid number of particles prior to running larger simulations.

refinement occurs during a “trigger” event where the density fluc-
tuations excee®, and the atomistic subdomain grows in the axial 2.5 Euler-DSMC Code Implementation. The Euler-
direction by a single continuum cell width. The valueRf that DSMC AMR code discussed here is composed of elements from
yields a 5-10% trigger rat@.e., between 5-10 trigger events pethe SAMRAI object-oriented framework, developed at Lawrence
100 iterationg is plotted in Fig. 4 as a function dicell. In what Livermore National Laboratory, and numerical routines specific to
follows we outline how theoretical predictions bounding these ntihe application. SAMRAI provides a general, flexible software
merical results, shown as solid lines in Fig. 4, can be obtainedtoolbox for developing multiphysics AMR applications and sup-
For the geometry considered in this test problem, each cqperts general parallel data management capabilities, including par-
tinuum cell consists of 8 DSMC cells and hence effectively thiicle representations, on an AMR grid hierarchy.
contribution of 8<Ncell particles is averaged to determine the The organization of major algorithmic parts in the hybrid Euler-
density gradient between continuum cells. If we use @&j.for DSMC code is similar to that of an Euler-only AMR code. How-

continuum cells, we obtain ever, the hybrid code requires a new level integrator that coordi-
5 nates DSMC and Euler operations on different hierarchy levels.

o /<(dp/dx) > _ 1 % The new integrator, developed for this project, was constructed

p e 2Ax /(Ncell> from elements in SAMRAI. It is interesting to note that all classes

. . . appearing in an Euler-only application are used without modifica-

Note that we are assuming that the fluctuation of the continuugan, in the hybrid code. Also, the DSMC data structures and nu-
cells across from the atomistic-continuum interface is approxherical routines, developed previous to incorporation in the hy-
mately the same as that in the atomistic region. This was shownggq application, were introduced without significant modification.
Recall that the Euler continuum model and DSMC particle

model are vastly different numerical approaches. The Euler model

represents compressible fluid flow as a deterministic system of

1.86 partial differential equations containing a few grid-based vari-
ables. DSMC approximates the Boltzmann equation using a rep-
1.84 resentative, stochastic sampling of a collection of particles whose
state and motion are essentially gridless. The DSMC data struc-
1.82 tures and numerical routines are insulated from SAMRAI abstrac-
”ﬁ 18 tions by a “wrapper” interface class. This class serves two impor-
S tant functions. First, it acts as a translator between SAMRAI patch
ALz data and the DSMC particle structures. Second, it allows the par-
§Q ticles to be manipulated on a distributed parallel machine by
Yaze-| Y.L SAMRAI. More importantly, theserial DSMC routines were
coupled to the SAMRAI parallel communication framework with-
1.74 out changing the particle structures or routines or recompiling
SAMRAI library code. Additional details describing how this is
12 i done appear in Ref17].
: ] N N N N M
o e 2 % 20 50
x/A 3 Code and Algorithm Verification Tests
Fig. 5 Average density for stationary fluid Euler-DSMC hybrid This section describes a number of test problems used to verify
simulation with  Ncell =80. Error bars give one standard devia- the AMAR hybrid formulation. Tolerance parameters used for grid
tion over 10 samples. refinement are also described. The single-species tests use gaseous
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Fig. 6 Computational domain for uniform field test

Argon (molecular massn=6.63x 102 g, hard sphere diameter
d=3.66x10 8cm) at atmospheric conditions P& 1.013

X 10° Pa and average temperat(fe 273 K). This choice is for
convenience reasons. The hard sphere diameter for Argon is w
known to reproduce equilibrium and nonequilibrium propertie
accurately. Argon is also used in a large number of DSMC studi
and thus a substantial literature base of simulation and experim
tal results exist for verification purposes.

acked adaptively. The borders of DSMC patches are indicated
the boxes near the middle of the domain. The Euler model is

g;. 8 Computational domain for self-diffusion interface
éﬂplied in the remainder of the domain.

3.1 Thermodynamic Equilibrium. We start with the ther-

modynamic equilibrium test which serves to illustrate that due {Qngitions are uniform, the statistical nature of atomistic solution
the underlying Re-» (Pe—) assumption associated with ourgenerates fluctuations that transfer heat to the continuum subdo-
continuum solver, care needs to be taken in not using this mogghin. Since the Euler model possesses no mechanism to transfer
in nonconvectively dominated situations. The computational dgyermal energy back to the atomistic domain, the result is an en-
main, illustrated in Fig. 6, consists of a cubic DSMC region ofrqgy increase in the continuum subdomain and a corresponding
size 4\ X 4\ X4\ embedded in the center of an Euler continuundnergy decrease in the atomistic subdomain as total energy is con-
grid of size 32 X 32\ X 32\. The DSMC computation uses 800seryed. This, in turn, produces an increase in density in the atom-
particles pen®. The continuum cell size is\2 while the DSMC jstic subdomain so as to maintain mechanical equilibrii.,
grid size is\. Periodic boundary conditions are applied at eacgonstant pressureHence the total number of particles in the ato-
face of the cubic domain. This geometry is the same as in Rejistic subdomain increases. This phenomenon has been observed
[14] for comparison purposes. The density and temperature figiflother Euler/DSMC hybrid schemg$4] and has been shown to
were initialized atp=1.78<10"% g/cn? and T=273 K and the be suppressed when diffusive transpdtavier-Stokes termsare
initial velocity field was set to zero in all directions. Adaptiveincluded. Recall, however, that in the Rec (Pe—x) limit ap-
refinement(both mesh and algorithmiavas disabled in order to propriate for Euler calculations, the diffusive timescale associated
illustrate the following effect. Figure 7 shows that the number afith molecular transportthe cause of this phenomenads much
particles in the atomistic subdomain slowly increases in time. Thigfinitely) longer than the convective timescale which dominates
phenomenon can be explained as follows. Although the initighe flow. As a result, this phenomenon should have no effect in the
Euler limit. In some sense, it is a manifestation of the fact that
equilibrium is not a convectively dominated situation appropriate

x 10" to an Euler calculation. This is supported by simple tests we have
5.22 ' ' ' performed which show that in the presence of a uniform flow this
o . + ] effect is reduced. Additionally, the excellent agreement between
5. + ++ our results and benchmark Euler flows presented in the following
g 518 + +++ & o+ | sections shows that this phenomenon has no effect on solutions in
2™ oo ¥ e+ tatw the Euler limit.
t ++ + T S
$ 5.161+ R A T S s I NS
S A H + ety + s iy iﬂrif 3.2 Concentration Diffusion. Concentration diffusion tests
o 5.14+ ﬁdr+++ﬂ+ + {#% vl ] were conducted to verify the ability of AMAR to track the spread-
2 +t*++J'r-*+Jﬁ +; +J:;+ & ey ing of an interface between two gases. The Euler model contains
55.12_ = ey +++++ St et At ] no diffusion terms(except for artificial numerical diffusionso
.E“ ; o+ H o F + spreading of the interface is governed by physics modeled by the
3 sA[F 0t g DSMC routines.
= T ; : The diffusion coefficient for two gases modeled as hard spheres
5.081 . 1 can be approximated 489],
! ‘ ' ' 3 27k3T¥ 31 KT
s 060 1000 2000 3000 4000 D= m M =——\/—— (8)
Mean Collision Time 16 Pd? 8 nd° V27 M
Fig. 7 Particle increase in the DSMC domain resulting from where M= (1/my+1/m,) ~*=mym,/(m;+m,) is the reduced
net heat flux transfer from the DSMC to the Euler region mass, andl=(d;+d,)/2 is the average atomic diameter.

772 | Vol. 126, SEPTEMBER 2004 Transactions of the ASME
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Fig. 11 Equilibrium shock wave profiles for density, tempera-
ture and velocity in a stationary Argon shock. The solid line
connects the Rankine-Hugoniot jump values through a sharp
jump centered on the AMAR shock location as determined by
the AMAR density profile. The solid-square line is the AMAR
result. Note that the AMAR temperature jump “leads” the AMAR
density jump as documented in Ref.  [29]. The agreement be-
tween AMAR and Rankine-Hugoniot jump values is excellent.

Fig. 9 Comparison of profiles obtained simulating diffusion
with  AMAR with theoretical diffusion profiles. Both self-
diffusion and two-species diffusion are shown. Note \ refers to
the Ar-Ar mean free path. The mean collision time Ty IS also
associated with the Ar-Ar system.

A simple concentration diffusion test involves Argon gas on
either side of an interface “colored” differently, i.e., the gases arée diffusion coefficient is twice the self-diffusion coefficient; that
essentially isotopes with negligible mass differences that undergoD;,=2X D;;,=0.28 cnf/s. The simulation results show excel-
self-diffusion. The self-diffusion coefficient for Argon at standardent agreement with theory in both cases.

temperature and pressuref,;=0.14 cnt/s. Figure 8 shows the 3.3 Stationary Shock Waves. Stationary shock simulations

evolution of the atomistic-continuum computational domain fi ; . .
this self-diffusion test. Initially the gases are separated by a é’lxé/?re conducted for both a single gas and a binary gas mixture.

continuous interface corresponding to a step function profile for3.3.1 Single Gas Stationary Shock WavEor the single gas
the gas concentration. The gradient of the corresponding masse, a shock wave is initialized using the discontinuous step pro-
concentration is used to place the atomistic region at the gas fite given by the Rankine—Hugoniot conditions for Argon gas with
terface at the initial time. Subsequently, the mixing region isn upstream Mach number of 5.0. The shock wave density, tem-
tracked using a “mass-concentration-value” refinement criterigerature and velocity ratios for this Mach number are 3.57, 8.68
which triggers below 0.001 and above 0.999. These values ensarel 0.28, respectively. A density gradient tolerance paranfeter
that negligible concentration gradients exist across the atomistie0.2 was used to detect and refine the continuum grid across the
continuum interface. shock. This value foR, creates a stable- 10N atomistic region
The hybrid concentration profiles for the self-diffusion case amghead of and behind the shock front.
compared with theoretical profiles in Fig. 9. Also shown is the The time evolution of the density profile is shown in Fig. 10.
concentration profile for a test case using Argon and a fictitiodghe initial step profile gradually transitions to a smoother curved
gasG with hard-sphere diametet,=1.516<10 8 cm such that profile within 20 mean collision times. The final equilibrium pro-
files for the pressure, density, velocity and temperature are shown
in Fig. 11. The hybrid solution matches the Rankine-Hugoniot
jump values in the far field while resolving the flow discontinuity
3 at the shock front. Also note the temperature jump is shown to
7X10 “lead” the density jump as documented in R¢29]. Note that
since the initial density gradient in the streamwise direction is
essentially infinite, the shock region will be refined for any setting
of R,. As the profile becomes smoother however, the valug of
is critical to ensure the shock front remains tagged for refinement
while preventing excessive atomistic subdomain growth due to
spurious statistical fluctuations. This is achieved successfully with
the R,=0.2 setting.

2]

&

3.3.2 Binary Gas Stationary Shock Wavé&he binary gas
shock simulation was conducted using a mixture of Helium and
Xenon gases with number densities of 97% and 3% respectively.
The hard sphere mass and diameter chosen to model Helium and
Xenon were m;=6.65x10 %*g, m,=2.18x10 g and d,
=2.28<10 8 cm, d,=5.18<10"8 cm, respectively. The up-
stream flow Mach number was set to 3.89 with a temperature of
11— ' : ' ' 300 K and reference mass density of Q0 7 g/cn?. These

Density (g/cm®)

(2]

-10 -5 x?). 5 10 flqw (_:onditions were chosen to allow for conve_nient com_parison

with literature results. The corresponding Rankine-Hugoniot rela-

Fig. 10 Argon gas density profile evolution to equilibrium. 7, tions for the shock density, temperature and velocity ratios are
is the mean collision time. 3.34, 5.59, and 0.3, respectively. Tolerance parameters were not
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Fig. 12 Comparison of He-Xe binary gas shock wave equilib-

rium profiles_computed wit_h AMAR  (blue lines ) and with DSMC Fig. 14 A moving Mach 5 shock wave though Argon. The

alone (red lines ). The mixture mean free path A=0.46 mm for  AMAR profile (red dots ) is compared with the analytical time

this test. evolution of the initial discontinuity ~ (blue lines ). 7, is the mean
collision time.

used for this test and instead the refinement region was user speck . .
fied to extend 15 ahead of and 36behind the shock front. scheme allows for accurate, adaptive and stable resolution of

Similar to the single gas shock case, the binary gas shock pﬁp_ock fronts without the need for artificial numerical constructs.
file also transitions from an initial discontinuous step profile to a 35 Rjchtmyer-Meshkov  Instability. The  Richtmyer-

smoother equilibrium profile. A comparison of the equilibriumyeshkov instability(RMI) (Meshkov[43,44, Richtmyer{45]) is
hybrid density profiles with a fully DSMC simulation performedgenerated when the interface between two fluids is impulsively

by Schmidt and Wornef40] are shown in Fig. 12. Good agree-accelerated by a shock wave. The shock impulse causes perturba-
ment can be seen for both Helium and Xenon density profiles.jons on the interface to grow in size which in turn creates a

3.4 Moving Shock Wave. Adaptive feature-tracking of the Mixing layer between the two gastb]. In this paper RMI serves
AMAR hybrid scheme is further verified using =5 moving aS & test problem from which to assess both the adaptive feature
shock passing through a stationary Argon gas. Figure 13 shoficking and multispecies capability of the AMAR hybrid scheme.
the atomistic subdomain dynamically tracking the passage of thar the simulation considered here adaptive mesh refinement is
shock front. Similar to the case of a stationy=5 shock wave considered only for tracking the shock front, and for computa-

a density gradient tolerand@,=0.2 was found sufficient to ex- tional convenience, only a small system was considered.
tend the atomistic subdomaih 10\ about the shock front. The computational domain illustrated in Fig. 15 was used for

The density profile of the moving shock is shown in Fig. 14N RMI simulation. Argon gas and a f'Ct't'OHZSZ gas B with hard
Good comparison is seen with the analytical result. Note the h§Phere mass and diametemg=1.326<10"""g, ds=3.66
brid profile does not produce spurious postshock oscillations wel-10~® cm were chosen for the test. In order to reduce diffusion
known to plague continuum-only scheniedl,42. Conventional between the gases the cross collision diamete(d; +d,)/2 was
shock capturing techniques for the Euler equations require artificreased by a factor of 4. The density ratio across the gas-gas
cial viscosity and enhanced smoothing techniques to reduce ostiterface was initialized t@,/p;=1.5 (which corresponds to an
lations that cannot often be eliminated entirely. The AMAR hybridtwood number At=((p,/p1) —1)/((p2/p1) +1)=0.2). This

400
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L GasB
®)
Ak 4
g Ll Z | 6002
r | |E]|Z =
145 $ b zla
- : » - & 5
] FEST R IFEREaT RS y 5118
ez s S5 of|l®
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Fig. 13 A moving Mach 5 shock wave though Argon. The
AMAR algorithm tracks the shock by adaptively moving the Fig. 15 Computational domain for Richtmyer-Meshkov insta-
DSMC region with the shock front. bility simulation
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Fig. 16 Richtmyer-Meshkov instability simulation, time t

=1.37,, where 7, is the Argon-Argon mean collision time. The Fig. 18 Richtmyer-Meshkov instability simulation, time t
shock wave is ahead of the gas-gas interface. =170.17, where 7, is the Argon-Argon mean collision time.

The shock wave has passed the gas-gas interface.

simulation utilizes 20 DSMC particles per cubic mean free path of

Argon at the reference density. The lighter Argon gas occupies 8s-gas interface and propagates at Mach nudbert.0 through

left hand side of the interface while the heavier gas B occupies Agyon gas. Classical Navier-Stokes methods have been unable to
right hand side. The shock wave is initialized upstream of ”’t?erform rigorous simulation at these Mach numbéi9] which

are typical of experimental conditiofig7]. The gas-gas interface
has an initial sinusoidal profile with wavelengths 474nd 54
superimposed. Peak to peak amplitudes vary betwieem8 32.

Both the wavelength and disturbance amplitude are typical of real
experimental conditionf47].

On interception with the interface, a reflected shock returns
upstream and a transmitted shock continues through gas B. On
reflection with the right hand wall, the transmitted shock returns
past the interface and leaves the domain through the left face. A
density gradient tolerancR,=0.6 ensures the atomistic subdo-
main is localized about the shock wave region only, while the
gas-gas interface remains nonrefined. Figures 16, 17 and 18 show
the propagation of the shock wave. Note that Fig. 18 also shows a
reflected shock wave traveling upstream in addition to the trans-
mitted shock through the gas-gas interface. The choidg,odil-
lows only for the transmitted shock wave to be refined in this
case. This hybrid approach achieves a computational savings of
O(10) over a fully atomistic solutiofassuming that the con-
tinuum solution cost is negligible compared to the DSMC solution
cost the savings for this problem is more than a factor of @air
simulations show that through a judicious choice of refinement
criteria and the development of a theory to quantify the effect of
fluctuations, reliable fully adaptive mesh and algorithm refinement
algorithms are possible. Larger calculations which will allow for
comparison with experimental data and other simulation codes
(for an example see Rdi47]) are planned in the future.

Shock wave and Gas-Gas Interface )
4 Concluding Remarks

Fig. 17 Richtmyer-Meshkov instability simulation, time t ) ) . ) )
=26.07,, where 7, is the Argon-Argon mean collision time. The We have described an adaptive mesh and algorithmic refine-
shock wave intercepts the gas-gas interface. ment(AMAR) scheme for modeling multiscale, multispecies gas
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dynamics and have demonstrated its effectiveness in a hybrid
Euler-DSMC code via a series of computational test cases. The
atomistic model is applied locally in regions where the continuum

description is invalid or inaccurate, such as near strong flow gra-
dients and at fluid interfaces. In particular, accurate and stabla=(uy,uy,u,)
solutions for concentration diffusion, single and binary gas sta-
tionary shocks waves and moving shock waves have been ob- Ax,Ay,Az

tained. These tests suggest that the AMAR code can perfo

T = temperature
At = time step
t = time
U = Euler solution state vector

fluid velocity vector
particle velocity vector
grid spacing

\Y

Bleek

highly-resolved DSMC calculations in a more cost effective man-

ner than a DSMC-only code. An evaluation of code performance
and scaling studies to larger problems will be the subject of future

work.

While this effort shows the promise of the approach, much

work remains to address research issues associated with such

N = particle mean free path
Q) = fluid volume element
dQ = boundary of fluid element
p = mass density
o = standard deviation

hy-

brid methods. In future work we plan to rigorously address issuggibscriptySuperscripts

related to accuracy and robustness of particle-continuum hybrids,
criteria for adaptively switching between models, and effects of
statistical fluctuations in particle schemes on the stability of con-
tinuum methods to which they may be coupled. In addition, we
expect that future adoption of a Navier-Stokes model in the same

algorithmic framework will yield a very useful tool for the design
of micro and nano scale devices involvingmpressibldlow fea-
tures in which local continuum breakdown occurs.

Finally, the range of scales and dynamic nature of multi-
algorithm hybrids that may be applied to a variety of important

0 = mean
1,2 = first, second species
a = particle index
¢ = continuum
i, j, kK = coordinate indices
max = maximum
p = particle
n = temporal index
X,Y,Z = spatial coordinates

physical problems emphasizes the need for efficient computa-
tional approaches for large-scale parallel computing platformReferences
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