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Continuum-Atomistic Simulations
For Multiscale Hydrodynamics
We present an adaptive mesh and algorithmic refinement (AMAR) scheme for mo
multi-scale hydrodynamics. The AMAR approach extends standard conservative ad
mesh refinement (AMR) algorithms by providing a robust flux-based method for cou
an atomistic fluid representation to a continuum model. The atomistic model is ap
locally in regions where the continuum description is invalid or inaccurate, such as n
strong flow gradients and at fluid interfaces, or when the continuum grid is refined to
molecular scale. The need for such ‘‘hybrid’’ methods arises from the fact that hydr
namics modeled by continuum representations are often under-resolved or inacc
while solutions generated using molecular resolution globally are not feasible. In
implementation described herein, Direct Simulation Monte Carlo (DSMC) provides
atomistic description of the flow and the compressible two-fluid Euler equations ser
our continuum-scale model. The AMR methodology provides local grid refinement
the algorithm refinement feature allows the transition to DSMC where needed. The
tinuum and atomistic representations are coupled by matching fluxes at the contin
atomistic interfaces and by proper averaging and interpolation of data between sc
Our AMAR application code is implemented inC11 and is built upon the SAMRA
(Structured Adaptive Mesh Refinement Application Infrastructure) framework deve
at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adap
gridding algorithm and enables the coupling between the continuum and atomistic m
ods.
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1 Introduction and Background
Multiscale simulation of complex physical systems has

ceived increasing attention in recent years. The primary challe
lies in resolving physical phenomena occurring over a broad ra
of spatial and temporal scales. Often, this challenge cannot be
by conventional, single-method formulations. Efficient multisc
formulations respond to this challenge by limiting the use of
expensive high-resolution model~e.g., atomistic! to the regions in
which it is needed, while using a simpler, less expensive meth
in the rest of the computational domain. Such a hybrid appro
allows effective use of each method in different regions of
problem~e.g., interior and exterior of a shock wave!.

Numerous hybrid methods have been proposed and dem
strated for solids@1–3#, liquids @4–7#, and gases@8–16#. The
purpose of this paper is to illustrate one methodology for integ
ing the concepts of adaptive mesh refinement and hybrid meth
While our continuum-atomistic approach using adaptive mesh
finement uses an unsplit Godunov scheme for the continuum
ler equations~discussed in Section 2!, the couplingmethodology
is in no way limited to a particular continuum solution metho
provided the latter is a time-explicit conservative formulati
@17#. This will be particularly important if the hybrid metho
needs to be used for the simulation of small-scale flows wh
Navier-Stokes capabilities are required. In fact, perhaps the m
important message from this work is that powerful coupling me
ods can be developed from already existing continuum-continu
matching techniques@5,18#. This is possible because coupling ca
only be achieved in regions where both descriptions are equ
lent, that is, where the continuum description is valid. This a
proach is in fact preferred because it typically results in coupl
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methods that~1! can be rigorously shown to converge and~2!
place very few restrictions on the continuum and atomistic c
stituents other than accommodating the coupling recipe.

In what follows, we will first describe the continuum and at
mistic methods and their coupling. Next, the challenging ques
of choosing reliable grid and algorithm refinement criteria to tra
fluid interfaces is discussed. Finally, we present numerical res
from several test cases and compare them with theory and o
simulations to verify our approach.

2 Adaptive Mesh and Algorithmic Refinement
This section describes the Adaptive Mesh and Algorithm R

finement~AMAR ! methodology in which a continuum algorithm
is replaced by a particle algorithm at the finest grid scale in
hierarchical adaptive grid refinement~AMR! setting. Details of
the general AMAR scheme have been presented elsewhere@14#.
We will summarize them here for completeness and note dif
ences from previous work.

2.1 AMR Algorithm for Continuum Hydrodynamics. In
the AMAR implementation described herein, we employ a str
tured AMR grid hierarchy on which we solve the compressib
two-species Euler equations on every grid level except the fin
On the finest level, the solution is represented by the Direct Sim
lation Monte Carlo~DSMC! method. Note that AMAR uses the
same adaptive meshing and time integration algorithms develo
for continuum modeling of shock hydrodynamics@19,20#.

Consider the two-fluid Euler equations in conservative integ
form

d

dt EV
UdV1 R

]V
F•n̂dS50, (1)

where

n
itor:
© 2004 by ASME Transactions of the ASME
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Fig. 1 Outline of AMAR hybrid: „a… Beginning of a time step; „b… advance the continuum grid;
„c… create buffer particles; „d… advance DSMC particles; „e… refluxing; „f … reset overlying con-
tinuum grid.
e
i

n

-

t

t

g

s
o

les
all
for

, as
i-
loc-
s.

the

e
the
cell

lar
er

a-
ly
by

ce

he
the
ps,

fer
ch
ells

d
ime

the
an

ne
are
er,
U5S r
px

py

pz

e
rc

D ; Fx5S rux

rux
21P

ruxuy

ruxuz

~e1P!ux

rcux

D (2)

Here, we provide only thex-direction component of the flux
terms; other directions are similar. We assume a two-species
with the mass concentrations of the two species beingc and (1
2c); generalization to more species is straightforward. Discr
time integration is achieved by using a finite volume approxim
tion to Eq. 1. This yields a conservative finite difference expr
sion with Ui jk

n appearing as a cell-centered quantity at each t
level andFi 11/2,j ,k

x,n11/2 located at faces between cells at half-time le
els. We use a second-order version of an unsplit Godunov sch
to approximate the fluxes@21–23#.

Time stepping on an AMR grid hierarchy involves interleavi
time steps on individual levels@20#. Each level has its own spatia
grid resolution and timestep~typically constrained by a CFL con
dition!. The key to achieving a conservative AMR algorithm is
define a discretization for Eq. 1 that holds on every region of
grid hierarchy. In particular, the discrete cell volume integrals
U and the discrete cell face integrals ofF must match on the
locally-refined AMR grid. Thus, integration of a level involve
two steps: solution advance and solution synchronization w
other levels. Synchronizing the solution across levels assumes
fine grid values are more accurate than coarse grid values.
coarse values ofU are replaced by suitable cell volume averag
of finer U data where levels overlap, and discrete fine flux in
grals replace coarse fluxes at coarse-fine grid boundaries.
though the solution is computed differently in overlapping cells
different levels as each level is advanced initially, the synchro
zation procedure enforces conservation over the entire AMR
hierarchy.

2.2 Atomistic Algorithm. Due to our interest in gas flow
@24–28#, the atomistic algorithm we use is the direct simulati
Monte Carlo ~DSMC! method @29#. In DSMC, the state of the
system is given by positions and velocities of particles,$ra ,va%.
The system evolves in time using the following two step a
proach. First, particles are moved without interaction; that is, th
positions are updated tora1vaDtp , where Dtp is a DSMC
s Engineering
gas
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timestep. Appropriate boundary conditions are applied to partic
that reach the boundary of the DSMC domain. Second, after
particles have moved, a given number are randomly selected
collisions. Rather than exactly calculate successive collisions
in molecular dynamics@30#, the DSMC method generates coll
sions stochastically with scattering rates and post-collision ve
ity distributions determined from the kinetic theory of a dilute ga
Accuracy of the splitting of streaming and collisions requires
time stepDtp to be a fraction of the mean collision timetm for a
particle @31,32#. DSMC has been rigorously shown to provid
accurate solutions to the Boltzmann equation in the limit as
number of particles becomes large and the DSMC collision
size and time step become small@33#.

Although DSMC is orders of magnitude faster than molecu
dynamics for simulation of gases, it is orders of magnitude slow
than continuum algorithms for solving partial differential equ
tions of hydrodynamics in the Navier-Stokes limit. Thus, on
flow regions that require molecular resolution are treated
DSMC in the AMAR approach.

2.3 Continuum-Atomistic Coupling. During time integra-
tion of continuum grid levels, fluxes computed at each cell fa
are used to advance the solutionU ~Fig. 1~b!!. Continuum values
are advanced using a time incrementDtc appropriate for each
level, including those that overlay the DSMC region. When t
particle level is integrated, it is advanced to the new time on
finest continuum level using a sequence of particle time ste
Dtp . The relative magnitude ofDtp to the finest continuum grid
Dtc depends on the finest continuum grid spacingDx ~typically a
few l! and the particle mean collision time.

Euler solution information is passed to the particles via buf
cells surrounding the DSMC region. At the beginning of ea
DSMC integration step, particles are created in the buffer c
using the continuum hydrodynamic values~r, u, T) and their
gradients~Fig. 1~c!!. Since the continuum solution is advance
first, these values are time interpolated between continuum t
steps for the sequence of DSMC time steps needed to reach
new continuum solution time. DSMC buffer cells are one me
free path wide; thus, the time stepDtp is constrained so that it is
extremely improbable that a particle will travel further than o
mean free path in a single time step. The particle velocities
drawn from an appropriate distribution for the continuum solv
such as the Chapman-Enskog distribution@34#.
SEPTEMBER 2004, Vol. 126 Õ 769
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During each DSMC time integration step, all particles a
moved, including those in the buffer regions~Fig. 1~d!!. A particle
that crosses the interface between continuum and DSMC reg
will eventually contribute to the flux at the corresponding co
tinuum cell face during the synchronization of the DSMC lev
with the finest continuum level. After moving particles, those
siding in buffer regions are discarded. Then, collisions among
remaining particles are evaluated and new particle velocities
computed.

After the DSMC region has advanced over an entire continu
grid timestep, the continuum and DSMC solutions are synch
nized in a manner analogous to the AMR level synchronizat
process described earlier. First, the continuum values in each
overlaying the DSMC region interior are set to the conserva
averages of data from the particles within the continuum grid
region~Fig. 1~f!!. Second, the continuum solution in cells adjace
to the DSMC region is recomputed using a ‘‘refluxing’’ proce
~Fig. 1~e!!. That is, a flux correction is computed using a spa
and time integral of particle flux data,

dF52AFn1 1/21 (
particles

Fp . (3)

The sum represents the flux of the conserved quantities carrie
particles passing through the continuum cell face during
DSMC updates. Finally,

Un115Un111
DtcdF

DxDyDz
(4)

is used to update the conserved quantities on the continuum
whereUn11 is the coarse grid solution before computing the fl
correction.

In summary, the coupling between the continuum and DSM
methods is performed in three operations. First, continuum s
tion values are interpolated to create particles in DSMC bu
cells before each DSMC step. Second, conserved quantitie
each continuum cell overlaying the DSMC region are replaced
averages over particles in the same region. Third, fluxes reco
when particles cross the DSMC interface are used to correct
continuum solution in cells adjacent to the DSMC region. T
coupling procedure makes the DSMC region appear as any o
level in the AMR grid hierarchy.

Multiple DSMC parallelepiped regions~i.e., patches! are
coupled by copying particles from patch interiors to buffer regio
of adjacent DSMC patches~see Fig. 2!. That is, particles in the
interior of one patch supply boundary values~by acting as a res-
ervoir! for adjacent particle patches. After copying particles in
buffer regions, each DSMC patch may be integratedindepen-

Fig. 2 Multiple DSMC regions are coupled by copying par-
ticles from one DSMC region „upper left … to the buffer region of
an adjacent DSMC region „lower right …. After copying, regions
are integrated independently over the same time increment.
770 Õ Vol. 126, SEPTEMBER 2004
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dently, in the same fashion that different patches in a conventio
AMR problems are treated after exchanging boundary data.

2.4 Refinement Criteria. Criteria for refining the mesh and
transitioning from continuum to a particle scheme is a signific
research topic and is generally problem specific. Standard A
methods assume that the differential equations of continuum
drodynamics are valid at all length scales in the computation
grid refinement is often based on ad hoc notions~e.g., refine
around steep gradients! or analytical error estimation technique
involving the continuum differential equations~e.g., Richardson
extrapolation!. In contrast, hybrid methods apply computation
models matched to the flow properties at each physical sc
While results presented later demonstrate that we can effecti
focus DSMC locally to capture shocks and diffusion fronts, ma
research issues remain.

The AMAR algorithm can refine the grid and algorithm bas
on any of a number of possible criteria. However, we have fou
that for single species flows, refinement based on density gr
ents is reliable. Tracking concentration gradients or concentra
values within some interval is effective for multispecies flow
involving concentration interfaces. Parameters for transitioning
DSMC are based on the continuum breakdown parameter me
proposed by Bird@35#, i.e., refinement is triggered by spatial gr
dients exceeding continuum tolerances. The gradient detector
mula that we use is a variation of a sharp discontinuity detecto
Trangenstein and Pember@36#.

Due to spontaneous stochastic fluctuations in DSMC comp
tions, it is important to track gradients in a manner that does
allow the fluctuations to trigger unnecessary refinement and
cessively large DSMC regions. Let us consider the gas densit
an example. Using the fact that for an ideal gas under equilibr
conditions the number of particles in a given volume is Poiss
distributed, it can be shown that the standard deviation in
normalized density gradient is@37#,

AK S dr/dx

r D 2L 'AK S Ni 112Ni

Dx^Ni&
D 2L 5

A2

DxA^Ncell&
, (5)

where Ncell is the number of particles in a cell where macr
scopic properties are defined. The fluid density fluctuation
only be reduced by increasing the number of DSMC simulat
particles. This has consequences for the use of density grad
tolerancesRr used for AMAR. In general, such tolerances must
based on the number of particles used for the atomistic dom
since the spatial gradients of density on thecoarsegrid which is
fluctuating ~as shown below! are used to decide whether refin
ment will take place. In particular, in our version of densit
gradient-based refinement, refinement occurs in regions where
nondimensionalized density gradients are above theRr threshold,
i.e.,

Rr,
2l UdrU (6)

Fig. 3 3D AMAR computational domain for investigation of tol-
erance parameter variation with number of particles in DSMC
cells
r dx

Transactions of the ASME
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Note that the density gradient is calculated in the continuum m
on a coarser AMR hierarchy level than the DSMC level.

To determine the minimum value ofRr required to prevent
growth of the atomistic region, simulations were conducted us
the domain geometry shown in Fig. 3 for a range ofNcell. Grid
refinement occurs during a ‘‘trigger’’ event where the density flu
tuations exceedRr and the atomistic subdomain grows in the ax
direction by a single continuum cell width. The value ofRr that
yields a 5–10% trigger rate~i.e., between 5–10 trigger events p
100 iterations! is plotted in Fig. 4 as a function ofNcell. In what
follows we outline how theoretical predictions bounding these
merical results, shown as solid lines in Fig. 4, can be obtaine

For the geometry considered in this test problem, each c
tinuum cell consists of 8 DSMC cells and hence effectively
contribution of 83Ncell particles is averaged to determine t
density gradient between continuum cells. If we use Eq.~5! for
continuum cells, we obtain

s5AK S dr/dx

r D 2L
c

'
1

2DxA^Ncell&
(7)

Note that we are assuming that the fluctuation of the continu
cells across from the atomistic-continuum interface is appro
mately the same as that in the atomistic region. This was show

Fig. 4 Variation of density gradient tolerance with number of
DSMC particles N. Here we use N because in our implementa-
tion NcellÄN.

Fig. 5 Average density for stationary fluid Euler-DSMC hybrid
simulation with NcellÄ80. Error bars give one standard devia-
tion over 10 samples.
Journal of Fluids Engineering
esh

ing

c-
al

r

u-
d.
on-
he
e

um
xi-
n to

be the case for the diffusion equation and a random walk mode
Ref. @38#, and is verified here for the Euler-DSMC system
shown in Fig. 5. This allows the use of Eq.~5! that was derived
assuming 2 atomistic cells. Note that the observed trigger eve
a composite of a large number of probable density gradient fl
tuations that could exceedRr ; gradients across all possible nea
est neighbor cells, next-to-nearest neighbor cells and diagon
nearest neighbor cells are all individually evaluated by
refinement routines and checked againstRr . For a 10% trigger
rate ~or equivalent probability of trigger! the probability of an
individual cell-pair having a density fluctuation exceedingRr can
be estimated asO(0.1/100) by observing that,

1. since the trigger event is rare, probabilities can be taken
additive,

2. for the geometry considered, there are'300 nearest neigh-
bor, next-nearest neighbor and diagonal cells that can trig
refinement and

3. the rapid decay of the Gaussian distribution ensures the
creasing probability (O(0.1/100);O(0.001)) of a single
event does not significantly alter the corresponding co
dence interval and thus an exact enumeration of all poss
trigger pairs with correct weighting factors is not necessa

For example, our probability estimate atO(0.001) suggests tha
our confidence interval is 3s24s. This is verified in Fig. 4.
Larger trigger rates can be achieved by reducingRr . Curves
shown in Fig. 4 help prototype tolerance criteria using a sm
number of particles prior to running larger simulations.

2.5 Euler-DSMC Code Implementation. The Euler-
DSMC AMR code discussed here is composed of elements f
the SAMRAI object-oriented framework, developed at Lawren
Livermore National Laboratory, and numerical routines specific
the application. SAMRAI provides a general, flexible softwa
toolbox for developing multiphysics AMR applications and su
ports general parallel data management capabilities, including
ticle representations, on an AMR grid hierarchy.

The organization of major algorithmic parts in the hybrid Eule
DSMC code is similar to that of an Euler-only AMR code. How
ever, the hybrid code requires a new level integrator that coo
nates DSMC and Euler operations on different hierarchy lev
The new integrator, developed for this project, was construc
from elements in SAMRAI. It is interesting to note that all class
appearing in an Euler-only application are used without modifi
tion in the hybrid code. Also, the DSMC data structures and
merical routines, developed previous to incorporation in the
brid application, were introduced without significant modificatio

Recall that the Euler continuum model and DSMC partic
model are vastly different numerical approaches. The Euler mo
represents compressible fluid flow as a deterministic system
partial differential equations containing a few grid-based va
ables. DSMC approximates the Boltzmann equation using a
resentative, stochastic sampling of a collection of particles wh
state and motion are essentially gridless. The DSMC data st
tures and numerical routines are insulated from SAMRAI abstr
tions by a ‘‘wrapper’’ interface class. This class serves two imp
tant functions. First, it acts as a translator between SAMRAI pa
data and the DSMC particle structures. Second, it allows the
ticles to be manipulated on a distributed parallel machine
SAMRAI. More importantly, theserial DSMC routines were
coupled to the SAMRAI parallel communication framework wit
out changing the particle structures or routines or recompil
SAMRAI library code. Additional details describing how this
done appear in Ref.@17#.

3 Code and Algorithm Verification Tests
This section describes a number of test problems used to ve

the AMAR hybrid formulation. Tolerance parameters used for g
refinement are also described. The single-species tests use ga
SEPTEMBER 2004, Vol. 126 Õ 771
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Argon ~molecular massm56.63310223 g, hard sphere diamete
d53.6631028 cm) at atmospheric conditions (P51.013
3105 Pa and average temperatureT̄5273 K). This choice is for
convenience reasons. The hard sphere diameter for Argon is
known to reproduce equilibrium and nonequilibrium propert
accurately. Argon is also used in a large number of DSMC stud
and thus a substantial literature base of simulation and experim
tal results exist for verification purposes.

3.1 Thermodynamic Equilibrium. We start with the ther-
modynamic equilibrium test which serves to illustrate that due
the underlying Re→` (Pe→`) assumption associated with ou
continuum solver, care needs to be taken in not using this m
in nonconvectively dominated situations. The computational
main, illustrated in Fig. 6, consists of a cubic DSMC region
size 4l34l34l embedded in the center of an Euler continuu
grid of size 32l332l332l. The DSMC computation uses 80
particles perl3. The continuum cell size is 2l, while the DSMC
grid size isl. Periodic boundary conditions are applied at ea
face of the cubic domain. This geometry is the same as in R
@14# for comparison purposes. The density and temperature
were initialized atr51.7831023 g/cm3 and T5273 K and the
initial velocity field was set to zero in all directions. Adaptiv
refinement~both mesh and algorithmic! was disabled in order to
illustrate the following effect. Figure 7 shows that the number
particles in the atomistic subdomain slowly increases in time. T
phenomenon can be explained as follows. Although the ini

Fig. 6 Computational domain for uniform field test

Fig. 7 Particle increase in the DSMC domain resulting from
net heat flux transfer from the DSMC to the Euler region
772 Õ Vol. 126, SEPTEMBER 2004
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conditions are uniform, the statistical nature of atomistic solut
generates fluctuations that transfer heat to the continuum su
main. Since the Euler model possesses no mechanism to tra
thermal energy back to the atomistic domain, the result is an
ergy increase in the continuum subdomain and a correspon
energy decrease in the atomistic subdomain as total energy is
served. This, in turn, produces an increase in density in the at
istic subdomain so as to maintain mechanical equilibrium~i.e.,
constant pressure!. Hence the total number of particles in the at
mistic subdomain increases. This phenomenon has been obs
in other Euler/DSMC hybrid schemes@14# and has been shown t
be suppressed when diffusive transport~Navier-Stokes terms! are
included. Recall, however, that in the Re→` (Pe→`) limit ap-
propriate for Euler calculations, the diffusive timescale associa
with molecular transport~the cause of this phenomenon! is much
~infinitely! longer than the convective timescale which domina
the flow. As a result, this phenomenon should have no effect in
Euler limit. In some sense, it is a manifestation of the fact t
equilibrium is not a convectively dominated situation appropri
to an Euler calculation. This is supported by simple tests we h
performed which show that in the presence of a uniform flow t
effect is reduced. Additionally, the excellent agreement betw
our results and benchmark Euler flows presented in the follow
sections shows that this phenomenon has no effect on solutio
the Euler limit.

3.2 Concentration Diffusion. Concentration diffusion tests
were conducted to verify the ability of AMAR to track the sprea
ing of an interface between two gases. The Euler model cont
no diffusion terms~except for artificial numerical diffusion! so
spreading of the interface is governed by physics modeled by
DSMC routines.

The diffusion coefficient for two gases modeled as hard sphe
can be approximated as@39#,

D125
3

16

A2pk3T3/M
Ppd2 5

3

8

1

nd2A kT

2pM (8)

where M5(1/m111/m2)215m1m2 /(m11m2) is the reduced
mass, andd5(d11d2)/2 is the average atomic diameter.

Fig. 8 Computational domain for self-diffusion interface
tracked adaptively. The borders of DSMC patches are indicated
by the boxes near the middle of the domain. The Euler model is
applied in the remainder of the domain.
Transactions of the ASME
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A simple concentration diffusion test involves Argon gas
either side of an interface ‘‘colored’’ differently, i.e., the gases a
essentially isotopes with negligible mass differences that unde
self-diffusion. The self-diffusion coefficient for Argon at standa
temperature and pressure isD1150.14 cm2/s. Figure 8 shows the
evolution of the atomistic-continuum computational domain
this self-diffusion test. Initially the gases are separated by a
continuous interface corresponding to a step function profile
the gas concentration. The gradient of the corresponding m
concentration is used to place the atomistic region at the gas
terface at the initial time. Subsequently, the mixing region
tracked using a ‘‘mass-concentration-value’’ refinement crite
which triggers below 0.001 and above 0.999. These values en
that negligible concentration gradients exist across the atomi
continuum interface.

The hybrid concentration profiles for the self-diffusion case
compared with theoretical profiles in Fig. 9. Also shown is t
concentration profile for a test case using Argon and a fictiti
gasG with hard-sphere diameterd251.51631028 cm such that

Fig. 9 Comparison of profiles obtained simulating diffusion
with AMAR with theoretical diffusion profiles. Both self-
diffusion and two-species diffusion are shown. Note l refers to
the Ar-Ar mean free path. The mean collision time tm is also
associated with the Ar-Ar system.

Fig. 10 Argon gas density profile evolution to equilibrium. tm
is the mean collision time.
Journal of Fluids Engineering
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the diffusion coefficient is twice the self-diffusion coefficient; th
is, D12523D1150.28 cm2/s. The simulation results show exce
lent agreement with theory in both cases.

3.3 Stationary Shock Waves. Stationary shock simulations
were conducted for both a single gas and a binary gas mixtu

3.3.1 Single Gas Stationary Shock Wave.For the single gas
case, a shock wave is initialized using the discontinuous step
file given by the Rankine–Hugoniot conditions for Argon gas w
an upstream Mach number of 5.0. The shock wave density, t
perature and velocity ratios for this Mach number are 3.57, 8
and 0.28, respectively. A density gradient tolerance parameteRr
50.2 was used to detect and refine the continuum grid across
shock. This value forRr creates a stable610l atomistic region
ahead of and behind the shock front.

The time evolution of the density profile is shown in Fig. 1
The initial step profile gradually transitions to a smoother curv
profile within 20 mean collision times. The final equilibrium pro
files for the pressure, density, velocity and temperature are sh
in Fig. 11. The hybrid solution matches the Rankine-Hugon
jump values in the far field while resolving the flow discontinui
at the shock front. Also note the temperature jump is shown
‘‘lead’’ the density jump as documented in Ref.@29#. Note that
since the initial density gradient in the streamwise direction
essentially infinite, the shock region will be refined for any setti
of Rr . As the profile becomes smoother however, the value ofRr
is critical to ensure the shock front remains tagged for refinem
while preventing excessive atomistic subdomain growth due
spurious statistical fluctuations. This is achieved successfully w
the Rr50.2 setting.

3.3.2 Binary Gas Stationary Shock Wave.The binary gas
shock simulation was conducted using a mixture of Helium a
Xenon gases with number densities of 97% and 3% respectiv
The hard sphere mass and diameter chosen to model Helium
Xenon were m156.65310224 g, m252.18310222 g and d1

52.2831028 cm, d255.1831028 cm, respectively. The up-
stream flow Mach number was set to 3.89 with a temperature
300 K and reference mass density of 1.0731027 g/cm3. These
flow conditions were chosen to allow for convenient comparis
with literature results. The corresponding Rankine-Hugoniot re
tions for the shock density, temperature and velocity ratios
3.34, 5.59, and 0.3, respectively. Tolerance parameters were

Fig. 11 Equilibrium shock wave profiles for density, tempera-
ture and velocity in a stationary Argon shock. The solid line
connects the Rankine-Hugoniot jump values through a sharp
jump centered on the AMAR shock location as determined by
the AMAR density profile. The solid-square line is the AMAR
result. Note that the AMAR temperature jump ‘‘leads’’ the AMAR
density jump as documented in Ref. †29‡. The agreement be-
tween AMAR and Rankine-Hugoniot jump values is excellent.
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used for this test and instead the refinement region was user s
fied to extend 15l ahead of and 35l behind the shock front.

Similar to the single gas shock case, the binary gas shock
file also transitions from an initial discontinuous step profile to
smoother equilibrium profile. A comparison of the equilibriu
hybrid density profiles with a fully DSMC simulation performe
by Schmidt and Worner@40# are shown in Fig. 12. Good agree
ment can be seen for both Helium and Xenon density profiles

3.4 Moving Shock Wave. Adaptive feature-tracking of the
AMAR hybrid scheme is further verified using aM55 moving
shock passing through a stationary Argon gas. Figure 13 sh
the atomistic subdomain dynamically tracking the passage of
shock front. Similar to the case of a stationaryM55 shock wave
a density gradient toleranceRr50.2 was found sufficient to ex
tend the atomistic subdomain610l about the shock front.

The density profile of the moving shock is shown in Fig. 1
Good comparison is seen with the analytical result. Note the
brid profile does not produce spurious postshock oscillations w
known to plague continuum-only schemes@41,42#. Conventional
shock capturing techniques for the Euler equations require a
cial viscosity and enhanced smoothing techniques to reduce o
lations that cannot often be eliminated entirely. The AMAR hyb

Fig. 12 Comparison of He-Xe binary gas shock wave equilib-
rium profiles computed with AMAR „blue lines … and with DSMC
alone „red lines …. The mixture mean free path lÄ0.46 mm for
this test.

Fig. 13 A moving Mach 5 shock wave though Argon. The
AMAR algorithm tracks the shock by adaptively moving the
DSMC region with the shock front.
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scheme allows for accurate, adaptive and stable resolution
shock fronts without the need for artificial numerical construct

3.5 Richtmyer-Meshkov Instability. The Richtmyer-
Meshkov instability~RMI! ~Meshkov@43,44#, Richtmyer@45#! is
generated when the interface between two fluids is impulsiv
accelerated by a shock wave. The shock impulse causes pert
tions on the interface to grow in size which in turn creates
mixing layer between the two gases@46#. In this paper RMI serves
as a test problem from which to assess both the adaptive fea
tracking and multispecies capability of the AMAR hybrid schem
For the simulation considered here adaptive mesh refineme
considered only for tracking the shock front, and for compu
tional convenience, only a small system was considered.

The computational domain illustrated in Fig. 15 was used
the RMI simulation. Argon gas and a fictitious gas B with ha
sphere mass and diametermB51.326310222 g, dB53.66
31028 cm were chosen for the test. In order to reduce diffus
between the gases the cross collision diameterd5(d11d2)/2 was
increased by a factor of 4. The density ratio across the gas
interface was initialized tor2 /r151.5 ~which corresponds to an
Atwood number At5((r2 /r1)21)/((r2 /r1)11)50.2). This

Fig. 14 A moving Mach 5 shock wave though Argon. The
AMAR profile „red dots … is compared with the analytical time
evolution of the initial discontinuity „blue lines …. tm is the mean
collision time.

Fig. 15 Computational domain for Richtmyer-Meshkov insta-
bility simulation
Transactions of the ASME
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simulation utilizes 20 DSMC particles per cubic mean free path
Argon at the reference density. The lighter Argon gas occupies
left hand side of the interface while the heavier gas B occupies
right hand side. The shock wave is initialized upstream of

Fig. 16 Richtmyer-Meshkov instability simulation, time t
Ä1.3tm where tm is the Argon-Argon mean collision time. The
shock wave is ahead of the gas-gas interface.

Fig. 17 Richtmyer-Meshkov instability simulation, time t
Ä26.0tm where tm is the Argon-Argon mean collision time. The
shock wave intercepts the gas-gas interface.
Journal of Fluids Engineering
of
the
the
he

gas-gas interface and propagates at Mach numberM54.0 through
Argon gas. Classical Navier-Stokes methods have been unab
perform rigorous simulation at these Mach numbers@29# which
are typical of experimental conditions@47#. The gas-gas interface
has an initial sinusoidal profile with wavelengths 171l and 57l
superimposed. Peak to peak amplitudes vary between 8l and 32l.
Both the wavelength and disturbance amplitude are typical of
experimental conditions@47#.

On interception with the interface, a reflected shock retu
upstream and a transmitted shock continues through gas B
reflection with the right hand wall, the transmitted shock retu
past the interface and leaves the domain through the left fac
density gradient toleranceRr50.6 ensures the atomistic subdo
main is localized about the shock wave region only, while t
gas-gas interface remains nonrefined. Figures 16, 17 and 18 s
the propagation of the shock wave. Note that Fig. 18 also show
reflected shock wave traveling upstream in addition to the tra
mitted shock through the gas-gas interface. The choice ofRr al-
lows only for the transmitted shock wave to be refined in t
case. This hybrid approach achieves a computational saving
O(10) over a fully atomistic solution~assuming that the con
tinuum solution cost is negligible compared to the DSMC solut
cost the savings for this problem is more than a factor of 20!. Our
simulations show that through a judicious choice of refinem
criteria and the development of a theory to quantify the effect
fluctuations, reliable fully adaptive mesh and algorithm refinem
algorithms are possible. Larger calculations which will allow f
comparison with experimental data and other simulation co
~for an example see Ref.@47#! are planned in the future.

4 Concluding Remarks
We have described an adaptive mesh and algorithmic refi

ment ~AMAR ! scheme for modeling multiscale, multispecies g

Fig. 18 Richtmyer-Meshkov instability simulation, time t
Ä170.1tm where tm is the Argon-Argon mean collision time.
The shock wave has passed the gas-gas interface.
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dynamics and have demonstrated its effectiveness in a hy
Euler-DSMC code via a series of computational test cases.
atomistic model is applied locally in regions where the continu
description is invalid or inaccurate, such as near strong flow g
dients and at fluid interfaces. In particular, accurate and st
solutions for concentration diffusion, single and binary gas s
tionary shocks waves and moving shock waves have been
tained. These tests suggest that the AMAR code can perf
highly-resolved DSMC calculations in a more cost effective m
ner than a DSMC-only code. An evaluation of code performa
and scaling studies to larger problems will be the subject of fut
work.

While this effort shows the promise of the approach, mu
work remains to address research issues associated with suc
brid methods. In future work we plan to rigorously address iss
related to accuracy and robustness of particle-continuum hyb
criteria for adaptively switching between models, and effects
statistical fluctuations in particle schemes on the stability of c
tinuum methods to which they may be coupled. In addition,
expect that future adoption of a Navier-Stokes model in the sa
algorithmic framework will yield a very useful tool for the desig
of micro and nano scale devices involvingcompressibleflow fea-
tures in which local continuum breakdown occurs.

Finally, the range of scales and dynamic nature of mu
algorithm hybrids that may be applied to a variety of importa
physical problems emphasizes the need for efficient comp
tional approaches for large-scale parallel computing platfor
The AMR grid hierarchy paradigm offers many advantages
algorithm development and parallel code implementation, incl
ing the ability to manage both field data and particles in a sin
grid system while allowing workload and data for each method
be distributed in parallel independently of one other. We are c
rently working on more effective dynamic load balancing and d
distribution algorithms for our code to increase the scale of
problems we can simulate. These results will be reported in
near future.
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Nomenclature

A 5 signed area of a grid cell face
c 5 mass concentration of reference fluid spe-

cies
D 5 diffusion coefficient
d 5 atomic diameter
e 5 total energy density

dF 5 refluxing correction
F 5 flux vector
k 5 Boltzmann’s constant

M 5 reduced mass
m 5 atomic mass
N 5 number of particles per cubic mean free

path
Ncell 5 number of particles per unit

n 5 number density
n̂ 5 surface normal
P 5 pressure

Pe5RePr 5 Peclet number
Pr 5 gas Prandtl number

p5(px ,py ,pz) 5 vector of momentum densities
Re 5 Reynolds number

r 5 particle position vector
S 5 surface element
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T 5 temperature
Dt 5 time step

t 5 time
U 5 Euler solution state vector

u5(ux ,uy ,uz) 5 fluid velocity vector
v 5 particle velocity vector

Dx,Dy,Dz 5 grid spacing

Greek

l 5 particle mean free path
V 5 fluid volume element

]V 5 boundary of fluid element
r 5 mass density
s 5 standard deviation

SubscriptsÕSuperscripts

0 5 mean
1,2 5 first, second species

a 5 particle index
c 5 continuum

i , j , k 5 coordinate indices
max 5 maximum

p 5 particle
n 5 temporal index

x,y,z 5 spatial coordinates
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