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ABSTRACT
We present an adaptive mesh and algorithmic refinement

(AMAR) scheme for modeling multi–scale hydrodynamics. The
AMAR approach extends standard conservative adaptive mesh
refinement (AMR) algorithms by providing a robust flux–based
method for coupling an atomistic fluid representation to a con-
tinuum model. The atomistic model is applied locally in regions
where the continuum description is invalid or inaccurate, such
as near strong flow gradients and at fluid interfaces, or when the
continuum grid is refined to the molecular scale.

The need for such “hybrid” methods arises from the fact
that hydrodynamics modeled by continuum representations are
often under–resolved or inaccurate while solutions generated us-
ing molecular resolution globally are not feasible. In the im-
plementation described herein, Direct Simulation Monte Carlo
(DSMC) provides an atomistic description of the flow and the
compressible two–fluid Euler equations serve as our continuum–
scale model. The AMR methodology provides local grid refine-
ment while the algorithm refinement feature allows the transi-
tion to DSMC where needed. The continuum and atomistic rep-
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resentations are coupled by matching fluxes at the continuum–
atomistic interfaces and by proper averaging and interpolation of
data between scales.

Our AMAR application code is implemented in C++ and is
built upon the SAMRAI (Structured Adaptive Mesh Refinement
Application Infrastructure) framework developed at Lawrence
Livermore National Laboratory. SAMRAI provides the parallel
adaptive gridding algorithm and enables the coupling between
the continuum and atomistic methods.

NOMENCLATURE
A signed area of a grid cell face
c mass concentration of reference fluid species
D diffusion coefficient
d atomic diameter
e total energy density
δF refluxing correction
F flux vector
k Boltzmann’s constant
M reduced mass
m atomic mass
N number of particles per cubic mean free path
n number density
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n̂ surface normal
P pressure
p � �px� py� pz� vector of momentum densities
r particle position vector
S surface element
T temperature
∆t time step
t time
U Euler solution state vector
u � �ux�uy�uz� fluid velocity vector
v particle velocity vector
∆x�∆y�∆z grid spacing

Greek
λ particle mean free path
Ω fluid volume element
∂Ω boundary of fluid element
ρ mass density
σ standard deviation

Subscripts/Superscripts
0 mean
1,2 first, second species
α particle index
c continuum
i, j,k coordinate indices
max maximum
p particle
n temporal index
x,y,z spatial coordinates

INTRODUCTION AND BACKGROUND
Multi–scale simulation of complex physical systems has re-

ceived increasing attention in recent years. The primary chal-
lenge lies in resolving physical phenomena occurring over a
broad range of spatial and temporal scales. Often, this challenge
cannot be met by conventional, single-method formulations. Ef-
ficient multiscale formulations respond to this challenge by lim-
iting the use of an expensive high–resolution model (e.g., atom-
istic) to the regions in which it is needed, while using a simpler,
less expensive method, in the rest of the computational domain.
Such a hybrid approach allows effective use of the each method
in different regions of the problem (e.g., interior and exterior of
a shock wave).

Numerous hybrid methods have been proposed and demon-
strated for solids [1,32,36], liquids [14,19,29,30], and gases [2,
3,11,16,26,28,31,37,39]. The method described here is the first
to combine the full capabilities of adaptive mesh refinement with
algorithm refinement.

In what follows, we will first describe the continuum and
atomistic methods and their coupling. Next, the challenging

question of choosing reliable grid and algorithm refinement cri-
teria to track fluid interfaces is discussed. Finally, we present
numerical results from several test cases and compare them with
theory and other simulations to verify our approach.

ADAPTIVE MESH AND ALGORITHMIC REFINEMENT
This section describes the Adaptive Mesh and Algorithm

Refinement (AMAR) methodology in which a continuum algo-
rithm is replaced by a particle algorithm at the finest grid scale in
a hierarchical adaptive grid refinement (AMR) setting. Details of
the general AMAR scheme have been presented elsewhere [16].
We will summarize them here for completeness and note differ-
ences from previous work.

AMR Algorithm for Continuum Hydrodynamics
In the AMAR implementation described herein, we employ

a structured AMR grid hierarchy on which we solve the com-
pressible, two-species Euler equations on every grid level ex-
cept the finest. On the finest level, the solution is represented
by the Direct Simulation Monte Carlo (DSMC) method. Note
that AMAR uses the same adaptive meshing and time integra-
tion algorithms developed for continuum modeling of shock hy-
drodynamics [7, 8].

Consider the Euler equations in conservative integral form

d
dt

�
Ω

UdV �

�
∂Ω

F � n̂dS � 0 (1)

where,

U �

�
������

ρ
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py
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������ ; Fx �

�
������

ρux

ρu2
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ρuxuy
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�e�P�ux

ρcux

�
������ (2)

Here, we provide only the x-direction component of the flux
terms; other directions are similar. We assume a two-species
gas with the mass concentrations of the two species being c and
�1� c�; generalization to more species is straight-forward. Dis-
crete time integration is achieved by using a finite volume ap-
proximation to Equation 1. This yields a conservative finite dif-
ference expression with Un

i jk appearing as a cell-centered quan-

tity at each time level and F
x�n� 1

2

i� 1
2 � j�k

located at faces between cells

at half-time levels. We use a second-order version of an unsplit
Godunov scheme to approximate the fluxes [12, 13, 33].
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Time stepping on an AMR grid hierarchy involves interleav-
ing time steps on individual levels [8]. Each level has its own spa-
tial grid resolution and timestep (typically constrained by a CFL
condition). The key to achieving a conservative AMR algorithm
is to define a discretization for Equation 1 that holds on every re-
gion of the grid hierarchy. In particular, the discrete cell volume
integrals of U and the discrete cell face integrals of F must match
on the locally-refined AMR grid. Thus, integration of a level in-
volves two steps: solution advance and solution synchronization
with other levels. Synchronizing the solution across levels as-
sumes that fine grid values are more accurate than coarse grid
values. So, coarse values of U are replaced by suitable cell vol-
ume averages of finer U data where levels overlap, and discrete
fine flux integrals replace coarse fluxes at coarse-fine grid bound-
aries. Although the solution is computed differently in overlap-
ping cells on different levels as each level is advanced initially,
the synchronization procedure enforces conservation over the en-
tire AMR grid hierarchy.

Atomistic Algorithm
Due to our interest in gas flows [20–23], the atomistic al-

gorithm we use is the direct simulation Monte Carlo (DSMC)
method [10]. In DSMC, the state of the system is given by posi-
tions and velocities of particles, �rα�vα�. The system evolves in
time using the following two step approach. First, particles are
moved without interaction; that is, their positions are updated to
rα �vα∆tp, where ∆tp is a DSMC timestep. Appropriate bound-
ary conditions are applied to particles that reach the boundary
of the DSMC domain. Second, after all particles have moved,
a given number are randomly selected for collisions. Rather
than exactly calculate successive collisions, as in molecular dy-
namics [5], the DSMC method generates collisions stochastically
with scattering rates and post-collision velocity distributions de-
termined from the kinetic theory of a dilute gas. Accuracy of the
splitting of streaming and collisions requires the time step ∆tp to
be a fraction of the mean collision time τm for a particle [17,18].
DSMC has been rigorously shown to provide accurate solutions
to the Boltzmann equation in the limit as the number of particles
becomes large and the DSMC collision cell size and time step
become small [40].

Although DSMC is orders of magnitude faster than molec-
ular dynamics for simulation of gases, it is orders of magnitude
slower than continuum algorithms for solving partial differential
equations of hydrodynamics. Thus, only flow regions that re-
quire molecular resolution are treated by DSMC in the AMAR
approach.

Continuum–Atomistic Coupling
During time integration of continuum grid levels, fluxes

computed at each cell face are used to advance the solution U
(Figure 1(b)). Continuum values are advanced using a time in-

crement ∆tc appropriate for each level, including those that over-
lay the DSMC region. When the particle level is integrated, it is
advanced to the new time on the finest continuum level using a
sequence of particle time steps, ∆tp. The relative magnitude of
∆tp to the finest continuum grid ∆tc depends on the finest con-
tinuum grid spacing ∆x (typically a few λ) and the particle mean
collision time.

Euler solution information is passed to the particles via
buffer cells surrounding the DSMC region. At the beginning of
each DSMC integration step, particles are created in the buffer
cells using the continuum hydrodynamic values (ρ, u, T ) and
their gradients (Figure 1(c)). Since the continuum solution is ad-
vanced first, these values are time interpolated between contin-
uum time steps for the sequence of DSMC time steps needed to
reach the new continuum solution time. DSMC buffer cells are
one mean free path wide; thus, the time step ∆tp is constrained so
that it is extremely improbable that a particle will travel further
than one mean free path in a single time step. The particle veloci-
ties are drawn from an appropriate distribution for the continuum
solver, such as the Chapman–Enskog distribution [15].

During each DSMC time integration step, all particles are
moved, including those in the buffer regions (Figure 1(d)). A
particle that crosses the interface between continuum and DSMC
regions will eventually contribute to the flux at the correspond-
ing continuum cell face during the synchronization of the DSMC
level with the finest continuum level. After moving particles,
those residing in buffer regions are discarded. Then, collisions
among the remaining particles are evaluated and new particle ve-
locities are computed.

After the DSMC region has advanced over an entire con-
tinuum grid timestep, the continuum and DSMC solutions are
synchronized in a manner analogous to the AMR level synchro-
nization process described earlier. First, the continuum values
in each cell overlaying the DSMC region interior are set to the
conservative averages of data from the particles within the con-
tinuum grid cell region (Figure 1(e)). Second, the continuum
solution in cells adjacent to the DSMC region is recomputed us-
ing a “refluxing” process (Figure 1(f)). That is, a flux correction
is computed using a space and time integral of particle flux data,

δF ��AFn� 1
2 � ∑

particles

Fp� (3)

The sum represents the flux of the conserved quantities carried
by particles passing through the continuum cell face during the
DSMC updates. Finally,

Un�1 � Un�1�
∆tcδF
∆x∆y∆z

(4)

is used to update the conserved quantities on the continuum grid
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Figure 1. Outline of AMAR hybrid: (a) Beginning of a time step; (b) Ad-

vance the continuum grid; (c) Create buffer particles; (d) Advance DSMC

particles; (e) Refluxing; (f) Reset overlying continuum grid.

where Un�1 is the coarse grid solution before computing the flux
correction.

In summary, the coupling between the continuum and
DSMC methods is performed in three operations. First, contin-
uum solution values are interpolated to create particles in DSMC
buffer cells before each DSMC step. Second, conserved quan-
tities in each continuum cell overlaying the DSMC region are
replaced by averages over particles in the same region. Third,
fluxes recorded when particles cross the DSMC interface are
used to correct the continuum solution in cells adjacent to the
DSMC region. This coupling procedure makes the DSMC re-
gion appear as any other level in the AMR grid hierarchy.

Multiple DSMC parallelepiped regions (i.e., patches) are
coupled by copying particles from patch interiors to buffer re-
gions of adjacent DSMC patches. That is, particles in the interior
of one patch supply boundary values (by acting as a reservoir)
for adjacent particle patches. After copying particles into buffer
regions, each DSMC patch may be integrated independently, in
the same fashion that different patches in a conventional AMR
problems are treated after exchanging boundary data.

Refinement Criteria
Criteria for refining the mesh and transitioning from con-

tinuum to a particle scheme is a significant research topic and
is generally problem specific. Standard AMR methods assume
that the differential equations are valid at all length scales in the
computation and grid refinement is often based on ad hoc no-
tions (e.g., refine around steep gradients) or analytical error esti-
mation techniques involving the continuum differential equations
(e.g., Richardson extrapolation). In contrast, hybrid methods ap-
ply computational models matched to the flow properties at each
physical scale. While results presented later demonstrate that we
can effectively focus DSMC locally to capture shocks and diffu-
sion fronts, many research issues remain.

The AMAR algorithm can refine the grid and algorithm
based on any of a number of possible criteria. However, we have
found that for single species flows, refinement based on density
gradients is reliable. Tracking concentration gradients or con-
centration values within some interval are effective for multi–
species flows involving concentration interfaces. Parameters for
transitioning to DSMC are based on the continuum breakdown
parameter method proposed by Bird [9], i.e., refinement is trig-
gered by spatial gradients exceeding continuum tolerances. The
gradient detector formula that we use is a variation of a sharp
discontinuity detector by Trangenstein and Pember [38].

Due to spontaneous stochastic fluctuations in DSMC com-
putations, it is important to track gradients in a manner that does
not allow the fluctuations to trigger unnecessary refinement and
excessively large DSMC regions. Let us consider the gas density
as an example. Using the fact that for an ideal gas under equi-
librium conditions the number of particles in a given volume is
Poisson distributed, it can be shown that the standard deviation
in the normalized density gradient is [24],

����	
dρ�dx
ρ

�2
�
�
����	
Ni�1�Ni

∆x�Ni�
�2
�
�

�
2

∆x

�N� (5)

where N is the number of particles in a cell where macroscopic
properties are defined. The fluid density fluctuation can only be
reduced by increasing the number of DSMC simulation particles.
This has consequences for the use of density gradient tolerances
Rρ used for AMAR. In general, such tolerances must be based
on the number of particles used for the atomistic domain since
the spatial gradients of density on the coarse grid which is fluc-
tuating (as shown below) are used to decide whether refinement
will take place. In particular, in our version of density-gradient-
based refinement, refinement occurs in regions where the non–
dimensionalized density gradients are above the Rρ threshold,
i.e.

Rρ �
2λ
ρ

����dρ
dx

���� (6)

Note that the density gradient is calculated in the continuum
mesh on a coarser AMR hierarchy level than the DSMC level.

To determine the minimum value of Rρ required to prevent
growth of the atomistic region, simulations were conducted us-
ing the domain geometry shown in Figure 2 for a range of N.
Grid refinement occurs during a “trigger” event where the den-
sity fluctuations exceed Rρ and the atomistic subdomain grows in
the axial direction by a single continuum cell width. The value
of Rρ that yields a 5�10% trigger rate (i.e. between 5-10 trigger
events per 100 iterations) is plotted in Figure 3 as a function of N.
In what follows we outline how theoretical predictions bounding
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these numerical results, shown as solid lines in Figure 3, can be
obtained.

For the geometry considered in this test problem, each con-
tinuum cell consists of 8 DSMC cells and hence effectively the
contribution of 8	N particles is averaged to determine the den-
sity gradient between continuum cells. From Equation (5) for
continuum cells,

σ �

����	
dρ�dx
ρ

�2
�

c

� 1

2∆x

�N� (7)

Note that we are assuming that the fluctuation of the continuum
cells across from the atomistic–continuum interface is approxi-
mately the same as that in the atomistic region. This was shown
to be the case for the diffusion equation and a random walk model
in [4], and is verified here for the Euler–DSMC system as shown
in Figure 4. This allows the use of Equation (5) that was de-
rived assuming 2 atomistic cells. Note that the observed trigger
event is a composite of a large number of probable density gra-
dient fluctuations that could exceed Rρ; gradients across all pos-
sible nearest neighbor cells, next-to-nearest neighbor cells and
diagonally-nearest neighbor cells are all individually evaluated
by the refinement routines and checked against Rρ. For a 10%
trigger rate (or equivalent probability of trigger) the probability
of an individual cell having a density fluctuation exceeding R ρ
can be estimated as O�0�1�100� by observing that,

1. since the trigger event is rare, probabilities can be taken as
additive,

2. for the geometry considered, there are � 300 nearest neigh-
bor, next–nearest neighbor and diagonal cells that can trig-
ger refinement and

3. the rapid decay of the Gaussian distribution ensures the de-
creasing probability (O�0�1�100� 
 O�0�001�) of a single
event does not significantly alter the corresponding confi-
dence interval and thus an exact enumeration of all possible
trigger pairs with correct weighting factors is not necessary.

For example our probability estimate at O�0�001� suggests
that our confidence interval is 3σ� 4σ. This is verified in Fig-
ure 3. Larger trigger rates can be achieved by reducing R ρ.
Curves shown in Figure 3 help prototype tolerance criteria using
a small number of particles prior to running larger simulations.

CODE AND ALGORITHM VERIFICATION TESTS
This section describes a number of test problems used to

verify the AMAR hybrid formulation. Tolerance parameters
used for grid refinement are also described. The single–species
tests use gaseous Argon (molecular mass m � 6�63	 10�23 g,
hard sphere diameter d � 3�66	 10�8 cm) at atmospheric con-
ditions (P � 1�013	 105 Pa and average temperature T � 273

Figure 2. 3D AMAR computational domain for investigation of tolerance

parameter variation with number of particles in DSMC cells.
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Figure 3. Variation of density gradient tolerance with number of DSMC

particles N.

K). This choice is for convenience reasons. The hard sphere di-
ameter for Argon is well–known to reproduce equilibrium and
non–equilibrium properties accurately. Argon is also used in a
large number of DSMC studies and thus a substantial literature
base of simulation and experimental results exist for verification
purposes.

Thermodynamic Equilibrium
We performed a number of uniform field tests to investigate

the conservation properties of the hybrid scheme and to under-
stand the effect of particle fluctuations on the continuum subdo-
main. A domain which consists of a cubic DSMC region of size
4λ	4λ	4λ embedded in the center of an Euler continuum grid
of size 32λ	 32λ	 32λ was utilized. The DSMC computation
uses 800 particles per λ3. The continuum cell size is 2λ, while
the DSMC grid size is λ. Periodic boundary conditions are ap-
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plied at each face of the cubic domain. This geometry is the same
as in [16] for comparison purposes. The density and temperature
field were initialized at ρ � 1�78	 10�3g�cm3 and T � 273K
and the initial velocity field was set to zero in all directions.

Although the initial conditions are uniform, the statistical
nature of atomistic solution generates fluctuations that transfer
heat flux to the continuum subdomain. Since the Euler model
possesses no mechanism to transfer thermal energy back to the
atomistic domain, the result is an energy increase in the con-
tinuum subdomain and a corresponding energy decrease in the
atomistic subdomain as total energy is conserved. This, in turn,
produces an increase in density in the atomistic subdomain so
as to maintain mechanical equilibrium (i.e., constant pressure).
This is evident by the increase in the total number of particles in
the atomistic subdomain as shown in Figure 5. This phenomenon
has been observed in other Euler/DSMC hybrid schemes [16].
We have additionally found the particle increase in the atomistic
subdomain to be reduced in the presence of an imposed uniform
flow field. This is currently under investigation.

Concentration Diffusion
Concentration diffusion tests were conducted to verify the

ability of AMAR to track the spreading of an interface between
two gases. The Euler model contains no diffusion terms (except
for artificial numerical dissipation) so spreading of the interface
is governed by physics modeled by the DSMC routines.

The diffusion coefficient for two gases modeled as hard
spheres can be approximated as [25],
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Figure 5. Particle increase in the DSMC domain resulting from net heat

flux transfer from the DSMC to the Euler region.

D12 �
3
16


2πk3T 3�M

Pπd2 �
3
8

1
nd2

�
kT

2πM
(8)

where M � �1�m1�1�m2�
�1 �m1m2��m1�m2� is the reduced

mass, and d � �d1�d2��2 is the average atomic diameter.
A simple concentration diffusion test involves Argon gas

either side of an interface “colored” differently, i.e., the gases
are essentially isotopes with negligible mass differences that un-
dergo self–diffusion. The self–diffusion coefficient for Argon at
standard temperature and pressure is D11 � 0�14 cm2�s. Fig-
ure 6 shows the evolution of the atomistic–continuum computa-
tional domain for this self–diffusion test. Initially the red (left)
and blue (right) gases are separated by a discontinuous interface
corresponding to a step function profile for the gas concentra-
tion. The gradient of the corresponding mass concentration is
used to place the atomistic region at the gas interface at the ini-
tial time. Subsequently, the mixing region is tracked using a
“mass–concentration–value” refinement criteria which triggers
below 0.001 and above 0.999. These values ensure negligible
concentration gradients exists across atomistic–continuum inter-
face.

The hybrid concentration profiles for the self–diffusion case
are compared with theoretical profiles in Figure 7. Also shown
is the concentration profile for a test case using Argon and a fic-
titious gas G with hard–sphere diameter d2 � 1�516	 10�8cm
such that the diffusion coefficient is twice the self–diffusion co-
efficient; that is, D12 � 2	D11 � 0�28 cm2�s. The simulation
results show excellent agreement with theory in both cases.
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Figure 6. Computational domain for self-diffusion interface tracked

adaptively. The borders of DSMC patches are indicated by the boxes

near the middle of the domain. The Euler model is applied elsewhere.

Stationary Shock Waves
Stationary shock simulations were conducted for both a sin-

gle gas and a binary gas mixture.

Single Gas Stationary Shock Wave For the single
gas case, a shock wave is initialized using the discontinuous step
profile given by the Rankine–Hugoniot conditions for Argon gas
with an upstream Mach number of 5.0. The shock wave den-
sity, temperature and velocity ratios for this Mach number are
3�57, 8�68 and 0�28, respectively. A density gradient tolerance
parameter Rρ � 0�2 was used to detect and refine the continuum
grid across the shock. This value for Rρ creates a stable �10λ
atomistic region ahead of and behind the shock front.

The time evolution of the density profile is shown in Fig-
ure 8. The initial step profile gradually transitions to a smoother
curved profile within 20 mean collision times. The final equilib-
rium profiles for the pressure, density, velocity and temperature
are shown in Figure 9. The hybrid solution matches the analyti-
cal solution in the far field while resolving the flow discontinuity
at the shock front. Note since the initial density gradient in the
streamwise direction is essentially infinite, the shock region will
be refined for any setting of Rρ. As the profile becomes smoother
however, the value of Rρ is critical to ensure the shock front re-
mains tagged for refinement while preventing excessive atomistic
subdomain growth due to spurious statistical fluctuations. This
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is achieved successfully with the Rρ � 0�2 setting.

Binary Gas Stationary Shock Wave The binary gas
shock simulation was conducted using a mixture of Helium and
Xenon gases with number densities of 97% and 3% respectively.
The hard sphere mass and diameter chosen to model Helium
and Xenon were m1 � 6�65	 10�24g, m2 � 2�18	 10�22g and
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d1 � 2�28	10�8cm, d2 � 5�18	10�8cm respectively. The up-
stream flow Mach number was set to 3.89 with a temperature of
300K and reference mass density of 1�07	 10�7g�cm3. These
flow conditions were chosen to allow for convenient comparison
with literature results. The corresponding Rankine–Hugoniot re-
lations for the shock density, temperature and velocity ratios are
3�34�5�59 and 0�3 respectively. Tolerance parameters were not
used for this test and instead the refinement region was user spec-
ified to extend 15λ ahead of and 35λ behind the shock front.

Similar to the single gas shock case, the binary gas shock
profile also transitions from an initial discontinuous step profile
to a smoother equilibrium profile. A comparison of the equi-
librium hybrid density profiles with a fully DSMC simulation
performed by Schmidt and Worner [35] are shown in Figure 10.
Good agreement can be seen for both Helium and Xenon density
profiles.

Moving Shock Wave
Adaptive feature–tracking of the AMAR hybrid scheme is

further verified using a M � 5 moving shock passing through a
stationary Argon gas. Figure 11 shows the atomistic subdomain
dynamically tracking the passage of the shock front. Similar to
the case of a stationary M � 5 shock wave a density gradient
tolerance Rρ � 0�2 was found sufficient to extend the atomistic
subdomain�10λ about the shock front.

The density profile of the moving shock is shown in Fig-
ure 12. Good comparison is seen with the analytical result. Note
the hybrid profile does not produce spurious post–shock oscil-
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The mixture mean free path λ � 0�46 mm for this test.

Figure 11. Moving Mach 5 shock wave though Argon. The AMAR al-

gorithm tracks the shock by adaptively moving the DSMC region with the

shock front.

lations well–known to plague continuum–only schemes [6, 41].
Conventional shock capturing techniques for the Euler equations
require artificial viscosity and enhanced smoothing techniques to
reduce oscillations that cannot often be eliminated entirely. The
AMAR hybrid scheme allows for accurate, adaptive and stable
resolution of shock fronts without the need for artificial numeri-
cal constructs.

Our simulations also show that through a judicious choice
of refinement criteria and the development of a theory to quan-
tify the effect of fluctuations, reliable fully adaptive mesh and
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Figure 12. Moving Mach 5 shock wave though Argon. The AMAR pro-

file (red dots) is compared with the analytical time evolution of the initial

discontinuity (blue lines). τm is the mean collision time.

algorithm refinement algorithms are possible.

CONCLUDING REMARKS
We have described an adaptive mesh and algorithmic refine-

ment (AMAR) scheme for modeling multi–scale, multi–species
gas dynamics and have demonstrated its effectiveness in a hy-
brid Euler–DSMC code via a series of computational test cases.
The atomistic model is applied locally in regions where the con-
tinuum description is invalid or inaccurate, such as near strong
flow gradients and at fluid interfaces. In particular accurate and
stable solutions for concentration diffusion, single and binary
gas stationary shocks waves and moving shock waves have been
obtained. These tests suggest that the AMAR code can per-
form highly–resolved DSMC calculations in a more cost effec-
tive manner than a DSMC–only code. An evaluation of code
performance and scaling studies to larger problems will be the
subject of future work.

While this effort shows the promise of the approach, much
work remains to address research issues associated with such hy-
brid methods. In future work we plan to rigorously address is-
sues related to accuracy and robustness of particle–continuum
hybrids, criteria for adaptively switching between models, and
effects of statistical fluctuations in particle schemes on the stabil-
ity of continuum methods to which they may be coupled. In ad-
dition, we expect that future adoption of a Navier–Stokes model
in the same algorithmic framework will yield a very useful tool
for the design of micro and nano scale devices where local con-
tinuum breakdown occurs.

Finally, the range of scales and dynamic nature of multi–

algorithm hybrids that may be applied to a variety of important
physical problems emphasizes the need for efficient computa-
tional approaches for large–scale parallel computing platforms.
The AMR grid hierarchy paradigm offers many advantages to al-
gorithm development and parallel code implementation, includ-
ing the ability to manage both field data and particles in a single
grid system while allowing workload and data for each method
to be distributed in parallel independently of one other. We are
currently working on more effective dynamic load balancing and
data distribution algorithms for our code to increase the scale of
the problems we can simulate. These results will be reported in
the near future.
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