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In a recent paper, Watanabe, Kaburaki, and Yokokawa [Phys. Rev. E 49, 4060 (1994)] used

a direct simulation Monte Carlo method to study Rayleigh-Bénard convection.

They reported

that, using stress-free boundary conditions, the onset of convection in the simulation occurred at
a Rayleigh number much larger than the critical Rayleigh number predicted by a linear stability
analysis. We show that the source of the discrepancy is their omission of a temperature jump effect

in the calculation of the Rayleigh number.

PACS number(s): 47.11.+j, 47.20.Bp, 47.45.Gx, 47.70.Nd

The direct simulation Monte Carlo method (DSMC),
introduced by Bird, is a popular numerical scheme for
computing rarefied gas flows [1]. The method is particu-
larly useful in the simulation of flows with high Knudsen
number (ratio of mean free path to characteristic length),
where the conventional Navier-Stokes description of hy-
drodynamics breaks down. Numerical and experimen-
tal tests have confirmed the validity and accuracy of the
DSMC algorithm in diverse scenarios [2]. Theoretical
studies have also shown the mathematical convergence of
DSMC methods to the solution of the fluctuating Boltz-
mann equation [3].

Consider a fluid confined between horizontal walls held
at fixed temperatures Ty, (lower wall) and Ty (upper
wall), with Ty, > Ty. When a critical value of the temper-
ature gradient is exceeded, the purely conductive state
becomes unstable and a transition to well structured con-
vective behavior occurs [4]. This transition, known as
the Rayleigh-Bénard (RB) instability, is governed by the
Rayleigh number, Ra, defined as

aATgL®

Ra = I//\T

; (1)
where L is the distance between the horizontal bound-
aries, g is the gravitational acceleration, AT = Ty, — Ty
is the temperature difference, v and Ar are the kine-
matic viscosity and thermal diffusivity, respectively, and
a = —(01lnp/0T)p is the thermal expansion coefficient.

In a recent paper, Watanabe, Kaburaki, and Yokokawa
[5] discuss DSMC simulations of Rayleigh-Bénard con-
vection in low Knudsen number systems. The study of
RB convection using DSMC is not new [6-8] and nu-
merous molecular dynamics (MD) studies have also ap-
peared [9-11]. In their paper, Watanabe et al. consid-
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ered two types of boundary conditions for the upper and
lower boundaries: fully thermalizing and stress-free con-
ditions. By varying AT they found that, for fully ther-
malizing boundaries, the onset of convection occurs at a
Rayleigh number which roughly agrees with linear sta-
bility theory (see their Fig. 4). On the other hand, for
stress-free boundaries (which #hey call “semislip”) they
found the onset of convection occurring at a significantly
higher temperature difference than predicted by theory
(see their Fig. 6). They concluded that the “semislip
boundary condition, which has been frequently used in
MD and DSMC simulations, was shown to be inadequate
to simulate the thermal boundary condition.”
Particle-based simulations of RB convection often use
stress-free boundary conditions because convection oc-
curs at a significantly lower Ra than with fully ther-
malizing boundaries. Since computational costs increase
rapidly with Rayleigh number, it is more economical to
study RB convection using stress-free boundaries. Fur-
thermore, particle simulations with stress-free bound-
aries are found to be in excellent agreement with numeri-
cal solutions of the Navier-Stokes equations (e.g., see Fig.
6 in (7], Fig. 1 in [8], Figs. 2-5 in [10], and Fig. 7 in
[11]). Thus the ‘question arises: why did Watanabe et
al. find disagreement between the linear stability pre-
diction for the critical Ra and their DSMC simulations
using stress-free boundaries? The answer is that they ne-
glected to account for “temperature jump” in their cal-
culation of Rayleigh number. It was first pointed out by
Maxwell that in a gas with a temperature gradient the
temperature of the gas near a wall does not match the
wall’s temperature. This phenomenon is known as tem-
perature jump or temperature slip [12,13]. Specifically,
the difference between the temperature of the wall and
the temperature of the gas near the wall is §V | T where
V1T is the temperature gradient normal to the wall.
For fully thermalizing boundaries, § ~ 2\ where A is the
mean free path in the gas [14]. For stress-free boundaries,
where only the normal component of velocity is thermal-
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ized, the temperature jump can be significantly larger
[15]. In some circumstances (e.g., the onset of explosion
in exothermal gas-phase reactions [16]) the temperature
jump effect can be dramatic.

For a dilute gas, the density profile in the conduction
state goes as p o T~¢ where ¢ = 1 — mgL/kAT, m is
the mass of a particle, and k is Boltzmann’s constant.
To maintain an approximately constant density, one of-
ten fixes the gravity in a simulation as ¢ = kAT /mL
and Watanabe et al. set g in this manner. Using the
Chapman-Enskog expressions for v and Ar, we may write
the Rayleigh number as

256 (AT\?(L\? o
a"1257r<T0) (A) @)
where Ty is the mean temperature in the system. From
this expression one sees that, keeping all else constant,
the Rayleigh number varies quadratically with AT
The vertical temperature gradient measured in a
DSMC simulation of RB convection using stress-free
boundary conditions is shown in Fig. 1. The gas is
convecting and the vertical cross section shown in Fig.
1 is centered on one of the rolls. The system size is
L = 40X and the wall temperatures are Ty = 0.5 and
Tr = 2.0. The important feature to notice is that the
temperature gradient in the gas is significantly reduced
due to the temperature jump at the walls. For this rea-
son, linear stability analysis using AT = Ty — Ty will
not correctly predict the onset of convection in the simu-
lation. Previous work comparing MD or DSMC simula-
tions to Navier-Stokes solutions did account for temper-
ature jump and thus found no discrepancy. Even non-
linear stability analysis was shown to give quantitative
agreement with hard disk MD simulations of RB convec-
tion provided the temperature jump was included in the
analysis [11].
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FIG. 1. Temperature profile measured in a DSMC simula-
tion for a convecting Rayleigh-Bénard system with stress-free
boundaries. Wall temperatures are 77, = 2.0 and Ty = 0.5;
note that the temperature of the fluid near the wall does not
match the wall’s temperature.

For fully thermalizing walls, a temperature jump is
present but its magnitude § is smaller. In the Watanabe
et al. simulations using this boundary condition, if the
critical Rayleigh number was shifted by about 10%, the
effect would not be noticeable in their data.

In conclusion, even at relatively low Knudsen num-
bers, microscopic effects, such as temperature jump, are
important in particle simulations of fluids. Great care
must be taken when comparing simulation results with
continuum theory.
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