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Electrodeposit tree patterns in linear cells: 
Experiment and computer models 

R.D.  Pochy,  A. Garc ia ,  R .D.  F r e imu th ,  V.M.  Casti l lo and  L. L a m  
Nonlinear Physics Group, Department of  Physics, San Jose State University, San Jose, CA 95192, USA 

Fractal tree patterns are generated experimentally in electrodeposits of C u S P  4 in thin linear cells with relatively high 
voltages (15-30 V across two copper electrodes of separation 3.8 cm). The tree separations, tree widths and heights, and 
tree statistics are analysed. Tree pattern from two two-dimensional computer  models, the three-directions biased random 
walk (BRW) model and the dielectric breakdown model (DBM) with probability cut-off, are produced. The BRW model 
compares  very well with our  experimental  data. There  is a minimum in the Nm versus m curve where Nm is the number  of  
trees with mass m. For m small, N m ~ m -~ with 0 < z < 1, in contrast to the D L A  result that  1.< z < 2. The  fractal 
dimension of the tree D varies linearly with the fractal dimension of the walker Dw, which also differs from the D L A  results 
of Matsushi ta  et al. The  DBM with cut-off gives trees with too much ramification compared to the  experimental  results, and 
fails to produce the sharp structure transition lines observed in previous electrodeposit experiments.  

I. Introduction 

It has been known for some time that different 
patterns can be generated in electrodeposits [1, 2] 
in thin, closed radial cells of ZnSO 4 solution by 
varying the voltage V and the concentration of 
the solutions C [3]. Similar and new patterns 
were obtained by our group [1, 4] in closed or 
open, radial or linear cells of ZnSO 4 and CuSP 4, 
respectively. In particular, (i) the very sensitive 
dependence of morphology on the cell thickness 
d was discovered. For example, three different 
morphologies (string, open ramified, and den- 
drite) were obtained in a single cell of varying 
thickness [1]. (ii) In linear cells dense linear mor- 
phologies (DLM) characterized by well-defined 
linear boundaries, the counterparts of the dense 
radial morphologies in radial cells [3], are discov- 
ered [4]. (iii) Compact fractal morphologies simi- 
lar to viscous fingers in Hele-Shaw ceils were 
found in both open and closed cells [1]. (iv) 
Depending on d two types of anode-sensitive 
sharp structure transition boundaries, induced by 
tip splitting or by fanning, were distinguished. (v) 

Power laws in time and space variables were 
obtained in the pattern growth. 

In this paper, experimental results on elec- 
trodeposit tree patterns grown from CuSP  4 lin- 
ear cells are presented. The voltage used is rela- 
tively high, 15-30 V across two parallel copper 
electrodes of 3.8 cm in separation. The cell thick- 
ness varied from 0.1-0.7 mm; the solution con- 
centration is either 0.05 or 0.5 M. There is less 
ramification in these trees consisting of filaments, 
in comparison with those obtained by Matsushita 
et al. [5] in ZnSO 4 with 20 V between two elec- 
trodes of 10 cm apart. The latter is well described 
by the diffusion limited aggregate (DLA) model 
of Witten and Sander [6]. 

To simulate the trees produced by diffusion 
and electrical drift of the Cu ions in our experi- 
ments, the three-directions biased random walk 
model (BRW) [1] is used. Characteristics of the 
trees (average tree separation, tree heights and 
widths, and tree statistics) from this model agree 
very well with those from the experiments. The 
dependence of the tree fractal dimension, D, on 
the walker fractal dimension, Dw, is investigated. 
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For comparison the (unbiased) dielectric 
breakdown model (DBM) with probability cut-off, 
studied by Arian et al. [7] for a radial cell, is 
applied here for a linear cell. The trees from this 
generalized DBM, like the DLA, have too much 

ramification in comparison with the trees from 
our experiments. In spite of the existence of 
crossover from the usual DBM patterns to a spiky 
behavior the generalized DBM fails to produce 
the sharp structure transition (ST) lines observed 
in previous electrodeposit  experiments [4]. 

2. Experimental results 

The apparatus,  experimental  setup and proce- 
dure are the same as that described in ref. [4]. 
Two parallel copper  electrodes with separation of 
3.8 cm were used. The cell was placed horizon- 
tally. The ranges of V, C and d were chosen so 
that tree pat terns were produced. The results 
shown in figs. 1-3  are the scans of the pho- 
tographs taken when the majority of the trees 

l 1 were about ~ to .~ across the cell. The scan has 
144 lines per  inch. In some cases, such as those in 
fig. 3, sharp ST lines (not shown here) appeared  
in the further growth of the patterns (see fig. 7 of 
Ref. [4]). 

As can be seen from figs. 1-3, all the three 
parameters  V, C and d can influence the separa- 

(a) 

(b) 

(c) t 

Fig. 1. Exper imental  trees formed by Cu deposits. Here and 
in figs. 2 and 3, scans f rom photographs are shown, d = 0.7 
mm, C =  0.5 M. (a) V =  15 V, (b) V =  20 V, (c) V =  25 V, 
(d) V = 30 V. The indicated distance is 1 cm. 

t III,l Jlt, l,I tI  ,t ll 
(d) . t 

Fig. 2. E x p e r i m e n t a l  t rees  fo rmed  by Cu deposi ts ,  d = 0.6 
ram, C= 0.05 M; (a) V= 15 V, (b) V= 20 V, (c) V= 25 V, 
(d) V = 3O V. 

(c) t l # ~ i 

Fig. 3. Exper imental  trees formed by Cu deposits. V =  20 V, 
C = 0.05 M. (a) d = 0.1 mm, (b) d = 0.4 mm, (c) d = 0.6 mm. 

tion, thickness and branching of the trees. For 
example, the average tree separation, s, increases 
(decreases) with increasing d (V)  when the other 
two parameters  remain constant. Each picture in 
figs. 1-3 will be referred to as a forest. 

The fractal dimension of each forest is calcu- 
lated by both the box counting method and the 
correlation function method [8]. These two re- 
sults are very close to each other. In fig. 4a the 
fractal dimension D obtained from the average 
from these two methods for each forest versus its 
mass density p is plotted. Here,  p =- N / A  where 
N is the total number  of dark pixels in the picture 
enclosed by a rectangular grid barely containing 
the forest, and A is the area of this grid. D 
varies from 1.26 to 1.80. 

The height of a tree, h, is defined to be the 
distance between the farthest point in the tree 
from the base line, the cathode. For each forest 
the variation of h with m obeys a power law, 
h ~ m t~, where /3 varies slightly with each forest. 
Typical result is shown in fig. 5a. When averaged 
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Fig. 4. Variation of fractal dimension D with mass density p. 
Each point comes from a forest. (a) From experimental data. 
D is the average of box and correlation dimensions. The 
straight line is the best fit given by D = 2.08 + 0.611ogp. 
(b) Theoretical results from the B R W  model. The  straight line 
represents  the best fit, D = 2.22 + 0.641og p, for the box di- 
mensions;  and D = 2.14 + 0.581ogp, for the correlation di- 
mensions.  

over the different forests, we found /3 = 0.74 + 
0.06. 

The  width of  a tree, w, is defined to be the 

largest span of  the tree in the direction parallel to 

the base line. Approximately,  for a given forest  
we found w varies linearly with m, i.e., w = w 0 + 

w l m .  A typical result is depicted in fig. 6. As 
shown in fig. 7, for the four  forests of  fig. 1, both  
w 0 and w I vary linearly with I/. 

The  average separat ion of  trees in a forest, s, 
was found to decrease  with p of  that  forest  with a 
power  law, s ~ p - V ,  as shown in fig. 8a where  
each point  corresponds  to a forest  in figs. 1-3.  

Experimentally,  3' = 0.58. For  the three forests in 
fig. 3, s versus d is plot ted in fig. 9. 
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Fig. 5. Variation of tree height h with tree mass  m. (a) 
Experimental  result obtained from the third picture of  fig. 2. 
(b) Theoretical result from the B R W  model. 
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Fig. 6. Experimental  tree width w versus tree mass  m curve 
obtained from the middle picture of  fig. 3. The straight line 
gives w = w o + w l m .  

The  number  of  trees of  mass m, N,,, as a 
funct ion o f  m is shown in fig. 10a. For  each forest  
there  is a min imum in the Arm versus m curve at 
m = 100 before  N m drops rapidly at large m. For  
m < 100, one  has approximately N,, ~ m -T with 

0 < 7 < 1 .  This is in contrast  with the Z n S O  4 
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Fig. 7. Variat ion of  w o and w I with voltage V from the four 
experimental  pictures of fig. 1. (a) The best  fit gives w 0 = 
4.555 - 0.078V. (b) The best fit gives w 1 = 0.017 + 0.000735V. 
Here  V is in volts. 
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Fig. 8. Variat ion of average tree separat ion s with mass 
density p. (a) Exper imenta l  result. (b) Theoret ical  result f rom 
the B R W  model.  

result of Matsushita et al. [5] where ~-= 1.54; in 
ref. [5] the initial electric field across the elec- 
trodes is 2 V / c m  while ours is at least 4 V / c m .  
This decrease of r is thus attributed to the high 
electric field applied. 

3. The three-directions biased random walk 
model 

To simulate the diffusion and drift of the ions 
at high electric field and to generate filaments of 
controllable widths, the three-directions biased 
random walk model (BRW) was introduced [1]. 
In this specific BRW model the walker in a 
square lattice is released randomly from the top 
and allowed to move sideward or downward, but 
not upward. This exclusion of the upward motion 
serves two purposes. First, the model has only 
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Fig. 9. Variat ion of  average tree separat ion s with cell thick- 
ness d for the forests of fig. 3. 

one constant parameter ,  R, the ratio of the prob- 
abilities to move sideward to downward. Second, 
the computat ion is much faster. (The effect of the 
upward motion on the morphology produced is to 
increase slightly the ramification of the trees.) 
The simplest version is to allow the walker to 
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Fig. 10. Variation of Nm, number  of trees of mass  m, with 
tree mass  m. (a) Experimental  results, l :  from second pic- 
ture of  fig. 2, O: from first picture of fig. 2, <>: from third 
picture of  fig. 3. (b) Theoretical results from the B R W  model. 
× :  R = 8 , < ~ :  R = 1 0 ,  i :  R = 1 2 , © :  R = 1 5 .  

stick when it reaches the bot tom base line or is 
on top or at the side of any part  of the growing 
aggregate. Some of the simulations are shown in 
fig. 11 (see ref. [1] for more), which compare 
rather  well with the experimental  forests. 

The fractal dimension of the trajectory of the 
walker, D w, increases with R (fig. 12) according 
to R =Roexp(aDw), with R 0 = 2 × 10 - 6  and a = 
13.16 for the box dimension. One expects D w = 1 
for R = 0 ;  D w = 2 f o r  R --, oo; and so I < D  w < 2 .  

The fractal dimension of the forest, D,  changes 
with R according to R=Rtexp(-bD); R I =  
1.36 × 107 and b = 8.67 for the box dimension 

(fig. 13a). The corresponding mass density p varies 
with R as p = P 0 R - ~ ;  p0=0 .31  and (~ =0.42.  
Figs. 13a and 13b may be combined to give fig. 
4b, which agrees very well with the experiment 
data of fig. 4a. 

(a) 

( b )  

Fig. 11. Simulated forests from the B R W  model. Grid size is 
1024 × 256. (a) R = 10. (b) R = 50. 
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Fig. 12. Fractal dimension of the trajectory of the biased 
walker, Dw, versus R: 

Note that one has D = - 1.52D w + 3.47, which 
differs from the theoretical expression, D = 
(d 2 - 1 + Dw)/(d - 1 + D w) with d = spatial di- 
mension, for the radial cell obtained by Honda  
et al. [9]. 

Other  typical results from the BRW model are 
given in figs. 5b, 8b, 10b and 14. The model gives 
/3 = 0.75 + 0.03 when averaged over R, in excel- 
lent agreement  with the experiment.  However, w 
increases with m in a power law (fig. 14a) while 
the experimental data (fig. 6) shows a linear law. 
The model also gives y = 0.80 (fig. 8b), which is 
slightly larger than the experimental value of 
0.58. Finally, the model gives the N m versus 
m curves (fig. 10b) the shapes of which are in 
qualitative agreement  with the experiments, and 
0.31 <~-<  0.46. Note that, in contrast, simula- 
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Fig. 13. Results from the BRW model. (a) Fractal dimension 
of the forest, D, versus R. (b) Mass density p versus R. 

tions and theory for purely diffusion-controlled 
deposition by Rficz and Vicsek [10] give 1 < ~" < 2. 

4. Dielectric breakdown model with 
probability cut-off 

In the dielectric breakdown model (DBM), the 
field ~b is solved from the Laplace equation ~72~) 

= 0. The probability of a per imeter  site being 
occupied, Pi o~ (7~b) n. In the probability cut-off 
model, at every step only those sites with Pi >pc 
are kept where the cut-off probability Pc is a 
parameter .  Each remaining site has now a new 

probability Pi/(~pi> peps). This model with rl = 1 
has been applied to Arian et al. [7] in a 2D radial 
cell of square lattice to produce crossover behav- 
ior in the aggregates. 

Our  interest in this model is to apply it to a 
linear cell to see whether  it can produce trees 
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Fig. 14. Results from the BRW model. (a) Tree width w 
versus tree mass m. Two runs of data are shown. (b) Mean 
tree width w.v from each forest versus R. 

like those in our experiment, and whether  it can 

produce the sharp ST lines [4]. Our  square lattice 
has grid size 512 x 128. We have tried r t = l ,  1, 3 

and 2; ~ = 0, 0.25, 0.5, 0.75 and 0.9 where Pc = 
a /512 .  Some results are shown in fig. 15. As 
increases, s decreases. The trees are found to 
have too much ramification compared to those in 
figs. 1-3. No sharp ST lines are found within the 
parameters  used here. The fractal dimensions of 
the forests are shown in fig. 16; the slope of the 
straight line (D  versus log p) is 0.50 which is 
slightly less than 0.64, the value for the BRW 
model (fig. 4b). 

5. Discussions 

The three-directions BRW model does give 
trees and forests resembling the experimental  
results. Except for some discrepancies in the tree 
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width w there are many quantitative agreements  
between the model and the experiments. Perhaps 
the rms tree height and width (instead of the 
absolute tree height and width used here) will 
give bet ter  description and better  agreement.  Re- 
sults from the BRW model differ from the DLA- 
type model in several important aspects. For ex- 

ample, in the former 0 < z < 1 and D is linear 

in D w. 
Realistically, the "bias"  in the BRW model is 

related to the electric field which should be de- 
termined by the instantaneous configurations of 
the trees, and is not constant as assumed in our 
model. That  is, the "bias"  should be built into 

the DBM model. Whether  our results are sensi- 
tive to this modification and to noise remains to 

be explored. 
To produce the experimental trees it seems 

some bias of the walker is essential in the com- 
puter  model. It will be of  interest to incorporate 
bias into the DBM with cut-off in the future. 
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