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Rectification of thermal fluctuations in ideal gases
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DOI: 10.1103/PhysRevE.70.051109 PACS nuni)er05.20.Dd, 05.40.Jc, 05.60.Cd, 05.70.Ln

I. INTRODUCTION sions of the first model have appeared in the literature for

Can thermal fluctuations be rectified? Ever since Maxwellspme time under the name of Rayleigh pist8hor adiabatic

[1] raised this question with his famous thought experimenpls’ton[12_14l (see alsq15)). The second model, to which

involving a so-called Maxwell demon, it has been the objec'eNe will refer to as thermal Brownian motor, was introduced

of debate in both the thermodynamics and statistical phySicng?ulr; Crwigtuzfpier}]rlcg]ﬁtsgtﬂ\:vimot(\?ve()lsinlgr\:i(tjtlavfese?\?;ﬁ! 8]?{32;'
community. The mainstream opinion is that rectification is y

impossible in a system at equilibrium. Indeed the property oPaf?S’ eachtsepara:jelly a(; qu}:hbg‘urg tlf[Ut possﬁly "’;t a differ-
detalled balance. which was discovered by OnsaBENd  or e S i raceopically exact starling point to Study
which turns out to be a basic characteristic of the steady-statt%e rﬁotion of the obiect Ks a ryesult of the regti?ication of thg
distribution in area preserving time-reversible dynamical ject.

systems(in particular Hamiltonian systemg3], states that gsgf;uél'sbrggzj fIvL\]/?]tiléﬁti/c\)/Hlsbéhsa?cﬂﬁzgﬁ?;ﬁls %izysteg]rﬁj'f
any transition between two statédefined as regions in g€ speed, Y P

phase space of nonzero measure and even in the )speed bhatlve SOIUI'fOTI of the Bolt'z:nann equr?tlon} V\;]'th IE? ratio OL
curs as frequently as the time-reversed transition. The sep};\-e Wass of the gas particles over that of the object as the
rate issue, first introduced by Szilafd], of involving an small parameter. . . .
“intelligent observer” that tracks the direction of these tran- The organization of this paper is as follows. We start in
Sec. Il by reviewing the general framework and the type of

sitions, making possible the rectification by interventions atconstruction for the Brownian motor that we have in mind.

the right moment, has a contorted history of its own. It turnsThe main technical ingredients are closely related to the so-
out that the engendered rectification is offset by the entropic 9 y

cost of processingand more precisely of erasinghe in- S S CBREIEA T TE KRR 0 R abatic
volved information[5]. Another more recent debate involv- P

ing entangled quantum systerj] is still ongoing. piston. The rectification has in this case been investigated to

Apart from the fundamental interest in the subject, anum-IOWeSt .order by Gruber an_d Piasedd4]. We present a
treamlined derivation allowing us to go two orders further

ber of recent developments have put the issue of rectifyin the expansion. Next. in Sec. IV. we discuss the more sur-
thermal fluctuations back on the agenda. First, we mention . . P ' ! L . i
rising thermal Brownian motor in which the motion derives

the observation that thermal fluctuations can in principle b : S .
rectified if the system under consideration operates und::from the spatial asymmetry of the object itsglf]. We again

nonequilibrium conditions. The past decade has witnessed %alculate the three. ﬁr‘T’It re_Ievant termks], in the .expansioln .Of the
surge in the literature on the subject of the so-called Brownf”wﬁrage speed. F'Qa )'/t,hm Sde."c' :/ the optalme? ?na yt;cﬂze—
ian motorg[7]. Such motors possibly explain, amongst other,%u IS are cc;\;lnpare with a lrt(ejc _n#merlc_:a S0 ullon IO d €
phenomena such as transport and force generation in biolo 0 tzmann-Master equation and with previous molecular dy-
cal systems. Second, our ability to observe, manipulate, o amics simulation$16].
even fabricate objects on the nanoscale prompts us to look
into new procedures to regulate such small systems, possibly
by exploiting the effects of thermal fluctuations in a con-
structive way.

Even though several constructions have been envisaged to
discuss the issue of rectification in more detail, including for Consider a closed, convex, and rigid object with a single
example the Smoluchowski—Feynman ratcf&it the issue degree of freedom, moving in a gas. To obtain a microscopi-
of thermal fluctuations in a system with nonlinear fricti®  cally exact equation for the spe&tof this object, we will
and the thermal diodgl0,11, no exactly solvable model has consider the ideal gas limit in which:
been put forward. In this paper, we will present two fully (1) the gas particles undergo instantaneous and perfectly
microscopic Hamiltonian models, in which the rectification elastic collisions with the object,
of thermal fluctuations can be studied in analytic detail. Ver- (2) the mean free path of the particles is much larger than

Il. EXPANSION OF THE BOLTZMANN-MASTER
EQUATION
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the linear dimensions of the objegegime of a large Knud- for the direct calculation of the average drift velocity, with
sen number special attention to higher order corrections, we briefly re-
(3) the(ideal) gas is initially at equilibrium, and hence at view the technical details. First it is advantageous to intro-
all times: the perturbation due to the collisions with the ob-duce the transition probabilityw(V’;r)=W(V|V’), defined in
ject is negligible in an infinitely large reservoir. terms of the jump amplitude=V-V’, since the latter jumps
With these assumptions, there are no precollisional correare anticipated to become small in the limit-0. One can
lations between the speed of the object and those of the inthen rewrite the Master equation as follows:
pinging gas particles, hence the Boltzmann ansatz of molecu-
lar chaos is exadtl7]. In fact, since the collisions with the

gas particles occur at random and uncorrelated in time, the 9PV.Y :fw(v_ r;r)P(V-r,t)dr

speedV of the object is a Markov process and its probability at

density obeys a Boltzmann—Master equation of the following

form: -P(V,1) f W(V;-r) dr. (2)
dP(\V,t)

Py —JdV’[W(V|V’)P(V’,t)—W(V’|V)P(V,t)].

A Taylor expansion of the transition probability in the first
integral of Eq.(2) with respect to the jump amplitude leads
(1) . : .
to an equivalent expression under the form of the Kramers
W(V|V’) represents the transition probability per unit time to Moyal expansion:
change the speed of the object frafhto V. Its detailed form

can be easily obtained following arguments familiar from the IP(V,t) * (-D" d\"
kinetic theory of gases. == , <—> {a(VP(V, 1)}, 3
To construct a model for a Brownian motor, two addi- gt 1 bV

tional ingredients need to be introduced. First, we have to

operate under nonequilibrium conditions. This can most easjth the so-called “jump moments” given by

ily be achieved by considering that the object interacts not

with a single but with two ideal gases, both at equilibrium in

a separate reservoir, each at its own temperature and density. a,(V) = f PV )dr (4)
The physical separatiofno particle exchangebetween the

gases can be achieved by using the object itself as a barrier . . .
(adiabatic pistopor by assuming that the object consists of . Smcg the change n thg speed of our ob!ect of nMss
two rigidly linked (closed and convesunits, each moving in i.e., the jump amplitude, will, upon colliding with a particle

2— - -
one of the separate reservoirs containing the gases. Secor?é massm, be of orderz"=m/M, the Kramers-Moyal expan

we need to break the spatial symmetry. In the adiabatic pis§Ic>n appears to provide the requested expansion in our small

ton this is achieved by the asymmetric distribution of theparameter. However, the paramebdrwill also appear im-

gases with respect to the piston. In the thermal BrowniarpIICItIy in the speedv. Indeed, we expect that the object will,

motor, at least one of the constitutive units needs to be spén the stationary regime, exhibit thermal fluctuations at an

Y . . 1 1 .
tially asymmetric. With these modifications in mind, we can €TECtive temperatur@ey, i.e., §M<VZ>:_§kBTeﬁ' To take this
still conclude that Eq(1) remains valid, but the transition INto account, we switch to a dimensionless variablef or-
probability is now a sum of the contributions representingder 1:
the collisions with the particles of each gas.

With the ingredients for a Brownian motor thus available, \/T
we expect that the object can rectify the fluctuating force X= \

. e , . . kg Tefr

resulting from the collisions with the gas particles. Hence it
will develop a steady state average nonzero systematic
speed, which we set out to calculate analytically. Unfortu-The explicit value ofTy4 will be determined below by self-
nately, an explicit exact solution of E@l) cannot be ob- consistency, more precisely from the conditixf)=1 to
tained even at the steady state, and a perturbative solutionfigst order ine. The probability densityP(x,t) for the new
required. Since we expect that the rectification disappears inariablex thus obeys the following equation:
the limit of a macroscopic object, a natural expansion param-
eter is the ratio of the mass of the gas particle over the o
mass M of the object. More precisely, we will use IP(X.t) =3 - 1)n<£>n{A ()P, )} (6)
=ym/M as the expansion parameter. In fact this type of ex- at oont \dx/ 7" T
pansion is very familiar for the equilibrium version of the
adiabatic piston, namely the so-called Rayleigh particle. It
has been developed with the primary aim of deriving exact!
Langevin equations from microscopic theory and culminated

in the more general well-known & expansion of van M \"
Kampen[10]. With the aim of streamlining this procedure An(X) = KeTor a(x). (7)
B'e

051109-2
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FIG. 1. The adiabatic piston.
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an infinite rectangle separating the gases to its right and left
from each other. These gases are initially taken separately in
equilibrium, but not necessarily at equilibrium with each
other. In the thermodynamic context of a macroscopic piston,
this construction is an example of an indeterminate problem,
i.e., the final position of the piston can not be predicted by
the criterion of maximizing the total entropy, since it depends
on the initial preparation of the gasg¢3] (see alsq14)).

The case of interest to us is when the mass of the piston is
not macroscopically large, i.e., finite=\m/M. When oper-
ating furthermore at equilibrium, this Rayleigh piston pro-
vides an exactly solvable model, allowing, for example, the

Equivalently, and of more interest to us, the following set offigorous derivation of a linear Langevin equation appearing

coupled equations determine the moment§&x™)

= [X"P(x,t)dx:
(%) = (A1(x)),
) = 2xAg(X)) + (Ax(X)),
() = 30CAL(X)) + B(XALX)) + (Ag(X)),
X" = 0CAL(X)) + BOCAL(X)) + KXAG(X)) + (Ay(X)),
(€S)

() = 5(X"A1 (X)) + L0(XAx(X)) + LOX*Ag(X)) + 5(XAy(X))
+(As(x)),

(X% = B(CAL(X)) + 15X Ag(X)) + 20(x°Ag(X))
+ 150x°Ay(X)) + 6(xAg(x)) + (Ag(X))

as the first nontrivial limit of the Boltzmann-Master equation
in the limit e —0. When the left and right gases are not at
equilibrium, but exert equal pressure on the piston, the model
becomes an example of a Brownian motor, which is able to
perform work by rectifying pressure fluctuatiofis]. In do-

ing so, the single degree of freedonalso plays the role of

a microscopic thermal conductivity, an issue that is quite
relevant to other models of Brownian mot¢is8]. Since this
model is essentially one-dimensional and the related calcula-
tions are relatively simple, we include it in this paper to
illustrate the calculation procedure and at the same time to
derive novel results for the average drift speed up to aséler

B. Presentation of the model

The ideal gases in the right and left compartments, sepa-
rated from each other by the piston, are each at equilibrium
with Maxwellian velocity distributions at temperaturds
andT,, and with uniform particle densitigs andp,, respec-
tively. Since we are mainly interested in the rectification of
fluctuations, we will focus on the case of mechanical equi-
librium with equal pressure on both sides of the piston, i.e.,
p1T1=p2T2.

The motion of the piston is determined by the laws of
Newton. Hence its velocity only changes, say, frofnto V

The exact solution of this coupled set of equations is agvhen it undergoes a collision with a gas particle, its
hopeless and equally difficult as the full Boltzmann-Master(x-component of thevelocity going fromoy, to v,. Conser-
equation. However, a Taylor expansiondnshows that the vation of energy and momentum determines the postcolli-
equations are no longer fully coupled and the calculation of &ional speeds in terms of the precollisional ones:
moment up to a finite order reduces to an in principle simple

(but in practice tedioysalgebraic problem.

Ill. THE ADIABATIC PISTON

A. Motivation

o2+ iMVv2=tmo! 2+ fMV2
smui + 5MVe=5mu, “+ MV’

Moy + MV =moy + MV’

In Fig. 1, we have represented in a schematic way thémplying

construction of the Rayleigh piston and of its nonequilibrium
version known as the adiabatic piston. We concentrate here
on an(infinite) two-dimensional system, for reasons of sim-
plicity. The piston is considered to be a single “flat” particle
of lengthL and massM with a unique degree of freedom, The transition probability(V|V’) then follows from stan-
namely its positionx along the horizontal axis. Since the dard arguments in kinetic theory of gases: one evaluates the
piston has no internal degrees of freedom, it cannot transfeérequency of collisions of gas particles of a given speed and
energy by “hidden” microscopic degrees of freedom. Thesubsequently integrates over all the speeds. Note that we
absence of a corresponding heat exchange prompted the usave two separate contributions from the gas rightand

of the name “adiabatic piston.” The piston is moving insideT;) and left(p, andT,). The result reads

, 2m , ,
V=V +m+M(UX V'). (9

051109-3
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W(V|V') =

with H the Heaviside functiong the Dirac distribution and
¢; the Maxwell-Boltzmann distribution at temperature

o) = m (—mvi)
O = 27TkBTi p 2kBTi '

Performing the integrals over the speed gives the following

explicit result for the transition probability:

, m+M |2
WVV') =Lpy| — =

’ r_ /_m+M_ (-
X (V' =V)H[V V]¢>1<V oV V))

m+M |2
"'LPz[ om }
><(V—V’)H[V—V’]¢2<V’ - %(v' —V)).

(10)

dvy(vy = V' )H[vx = V'] (vy) 5|:V, +

LPZJ dUX(V, - Ux)H[V’ - Ux]¢2(vx) 5|:V, +

PHYSICAL REVIEW E70, 051109(2004)

2m
+M

(vx—v')—v] if V<V,

2m
M(UX—V’)—V] if V>V,

I'N1+k]=Kk,
(12)
k+1| \m
r{1+ : ] ;kﬂl 3.5 - (2k+1),

and ® the Kummer function, in its integral representation
given by

1
0] J a1 -t)Paldt. (13)

P22 = T e,

C. Stationary speed

The moment equation®) form together with the explicit
expressiongll) for the jump moments the starting point for

From the transition probability, the rescaled jump momentsa straightforward perturbation in terms of the small param-

A,(X) (7) can be calculated. The exact expression forrithne
jump moment is as followgsee alsd19)):

kg &" 2+n
(3n-1)/2 —n/2
A =2V [T F[ . ]

T
| (= )" -I—(n+1)/2 expl — _effXZ 2
(( )1 1 2T, €

<@ 2+n l Teffxz 2 +pT(n+1
T2 2o,

xexp{ TEﬁxz Z}I{Z *ni TEﬁX282:|>
2T, 2 '2'2T,
ke &t 3+n
4+ 2312 /_B & g2
2 L (1+ 2)n eff r 2
xx((— 1)"p, T2 exp| - Tett 2,2
2T

1

3+n 3 Te
(I) ex22 -I—n/2
{ 2 201, O P2

T, 3+n 3 T,
Xexp[— iffxzez} CD{ eft xzez} ) ,
2T, 2 '2'2T,

(11)
with T" the Gamma function:

etere. To simplify notation, we introduce

f(n) = L\/7

ks 1T1 +p,Th

-I—n 1/2 ! (14)
| Ke p1T1— pals
g(n) = L E Tgf_fllz (15)

Also, the limite — 0 entails a slowing down of the motion of
the piston, which can be accounted for by introducing a new
scaled time variable:

=&4.

The equations for the first and second moments, expanded up
to ordere® ande?, respectively, are as followghe expansion

for higher moments up to the sixth moment can be found in
Appendix A):

94%) = = 2f[1/2)(x) - g[01(xP)e + (6f[1/2](x)
- [~ 1/203))e? + g[0](x®)e3 + (— 2f[1/2](x)
+ 1[- 1/2103) + Sf[- 3/2)(x%) &* - g[0](xP)e®
+0(e9), (16)

051109-4
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9% = A(f[312] - f[1/2)(x?)) — 29[0}(x%)e + 2(- 4f[3/2] T by the condition(x?)=1 at the lowest order i, we
immediately find from Eq(16) that at ordek the piston will

1
+ 5[ 1/2]0¢) = 5[~ 1/2](x"))&? + 4g[0](xC) e indeed develop a nonzero average systematic speed equal to
+ (12f[3/2] — 16f[ 11210 + %f[_ 112104 sg(O)_/[Zf(l_IZ)]. The explicit va_llue ofT follows from Eq.
L (17), implying at lowest order ire that (x?)=1(3/2)/f(1/2)
+ 351[- 3/2)(x5)) e* + O(&). (17 =1. In original variables, cf. Eq5), these results read as
follows:

Note that the condition of macroscopic equilibriugp, T,
=p,T,) was used to derive these equations. In particular, J—
without this constraint, an additional term corresponding to a Terr = VTaTo (19
constant, velocity-independent, force acting on the piston
would be present in Eq16). and
To lowest order ine, the equation for the first moment,
Eq. (16), is not coupled to higher order moments. It displays
. . . . V27 |m kgTy kT,
the usual linear relaxation term of the velocity, namely, in (V)= —\/:< N = /—) +---. (20
original variables,Md(V)=-V), with friction coefficient M M M
Y- Although there is no macroscopic force presgmessures on
both sides of the piston are eqyahe piston attains a sta-
kem — — _ tionary state with a nonzero average velocity toward the
y=4L (p1NT1+ p2NT)) (18 higher temperature region. Fluctuations conspire with the
spatial asymmetry to induce a net motion in the absence of
For T,=T, and(consequentlyp,=p,, this result is in agree- macroscopic forces. It is also clear from ERO) that the net
ment with[10]. We conclude that at this order of the pertur- motion vanishes wheff;=T, and also in the macroscopic
bation, the steady-state speed is zero. This is not surprisingnit M —cc. The above result was already derived[im],
since any asymmetry is buried at the level of linear responsbut the calculation presented here is streamlined so as to
theory. allow for a swift calculation of higher order corrections.
Going beyond the lowest order, one enters into the do- At each of the next orders, a coupling arises to a next
main where fluctuations and nonlinearity are intertwined.higher order moment. We shall present here the results up to
The first moment is now coupled to the higher order mo-order &° requiring the evaluation of the moments
ments. Therefore, we focus on the steady state speed reached, (<%, (x*), (x°), and(x%, up to orderss?, &3, &, &,
by the piston in the long time limit. We will omit, for sim- ands®, respectively(cf. Appendix A for details of the calcu-
plicity of notation, a superscrigt to refer to this stationary lation). The resulting expression for the average stationary
regime. Recalling that we defined the effective temperaturspeed in the original variabM up to fifth order ine is

m\ 1?2 kgl — = m 32 7TkB 1p1\ T2 + po\ Tl T (\’Fl - \*"?2)3
<v>:<—> (T =Ty +| — (\T T - T2 (T - Ty + =2
M am2 't TP M 2M L 3T+ T, 2716 1,1,

N (m>5/2 \/E 1 ( (T1-\T,) -5 _(pa T+ Ple/z)leTz(\’ T,-1\T)) 8591\ Tz + Pz\E (VT = T,)
M 2M 8 (p\ Ty + po\To)? 18p1\ Ti+p\T,
T o 29m(T T AT T p T T 3T~ )
3 Tt T, LYY T TR, T2 (p\ T2+ pT) 4T
e (21)

As required, the average speed is zero at equilibrium, whemoves towards the high temperature region and its speed
T,=T,. Note also that the average speed depends on the deimcreases with the temperature difference.

sities of the gases solely through their rapig p,. This im-
plies that, forT,; and T, fixed, varying the densities will not o
modify the steady-state velocity when operating at mechani- A. Motivation

cal equilibrium. In Figs. @a) and 2b), we illustrate the de- The systematic motion observed in the adiabatic piston is
pendence of(V) on the temperatures: the piston alwaysnot entirely surprising since the piston is embedded in a non-

IV. THERMAL BROWNIAN MOTOR

051109-5
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(a) 0+do
0.02 o
NG
o 015 ™ S F(0) do
£
/> 0.01 e
ST €L X
0.005 total

f circumference -
¢ S :

FIG. 3. A closed and convex object with total circumferegce
The length of the surface with an orientation betwéemd 6+d6 is
S H6)d6, defining the form factoF(6).

2
J doF(#) =1, normalization, (22b)
0

2 2m
f doF(6)sin o= f doF(#)cosh=0, objectis closed.
0 0

FIG. 2. Stationary average speed of the adiabatic piston accord- (229

ing to Eq.(21). Top: Forp;=0.25 andT;=2.0 fixed, the speed is

shown as a function of,. Note thatp, is determined by the con- To simplify notation we will write (sin6) instead of
dition of mechanical equilibriuntp;T;=p,T,) and that the piston fzﬂdgp(g)sin 0.

always moves to the higher temperature region. Bottom: the speed \y/e suppose that the object, with total maésand veloc-

of the piston as a function of; and T,, for p;=0.25 andp, L3 . .
= p,T1/T,. The velocity vanishes wheFy =T, and is maximal for a ity V, has no rotational degree of freedom and a single trans-

large temperature difference. The following parameter values Wer!.@tlonal degree of freedom. Ch9osmg the latter oriented fol-

used: mass of the gas particles 1, mass of the pistoM =100 and  lowing the x-axis, we can writev=(V,0). Collisions of the

ks=1 by choice of units. gas particles, of mass and velocityv, with the object are
supposed to be instantaneous and perfectly elastical. Hence,
pre- and postcollisional velocities of the obje®t, and V,

equilibrium state with an explicit spatial asymmetry of its and of a gas particleu’:(v;,v;) andv=(vy,vy), are linked

surroundings. More interesting is the case of the thermaly conservation of the total energy and the momentum in the

Brownian motor, which was introduced and studied by mo-x-direction,

lecular dynamics in a recent papgl6]. While the spatial N T T T I N T

environment is perfectly symmetric here, the object itself has ~ 3MV'“+ 5mu "+ smuy” = MV + smul + smoy, (23)

a spatial asymmetry. The nonequilibrium conditions are gen-

erated by its interaction with tw@r more ideal gases that

are not at the same temperature. The perturbative analysis, "MV = +

presented for the adiabatic piston, can be repeated here but is Mo+ MVE= Moy MV 24

more involved because the problem is now genuinely two+urthermore, we assumegshort-ranggcentral force, imply-

dimensional. ing that the component of the momentum of the gas patrticle
along the contact surface of the object is conserved:

B. Presentation of the model

Consider a two-dimensional convex and closed object v -§=v-§, (25
with total circumferenc&. Suppose thalSis a small part of
the surface, inclined at an angte measured counterclock-
wise from thex-axis (see Fig. 3. We define the form factor
F(6) as the fraction of the surface with orientatién This
means thaB H6)dé is the length of the surface with orien- m
tation betweerg and 6+d6. One can immediately verify that 2—sir 0
F satisfies V=V +———(v; - V' -vjcoth). (26)
1+ sir g

M

with € =(cos#,sin ¢), see Fig. 3. This yields for the postcol-
lisional speedv:

F(#) =0, positivity, (229
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the linear Boltzmann equatiqd), which is exact in the ideal
gas limit, to describe the motion of the object. The object
consists of rigidly linked(closed and convéxparts, each
sitting in a reservoiii containing an ideal gas with uniform
particle densityp; and Maxwellian velocity distributior); at

temperatureT;:

di(vyv y)

to W(V|V’) of the surface section of siz#S, with orienta-
tion in [0, 0+d6], exposed to the gas mixturds

-m(v2+ v§)>

27
2kgT; 27

PHYSICAL REVIEW E 70, 051109(2004)

FIG. 4. Four different realizations of the ther-
mal Brownian motor, each consisting of two rig-
idly linked units. The units are simple convex ob-
jects: a bar of lengtl, a disk of radiusk or an
isosceles triangle with apex anglé,2zand basé..
(a) was introduced if16] and will be referred to
here asTriangula

dvv,(v|v'):sFi(a)daf xdv,'(f xdv{,H[(\e/’—*’)-éi]

X[V =0") - €, |piti(vy,vy)

m
2— st 0
X8 V-V'- (v)'(—V’—v)'/COtﬁ) ,
m
1+—sirf g
M

(28)

with H the Heaviside functiong the Dirac distribution and

€, =(sin §,—cos#) a unit vector normal to the surfageee
Fig. 3). The total transition probability is then given by
Examples of the construction with two reservoirs are sche-
matically represented in Fig. 4. The transition probability
W(V|V') is then the sum of the contributions of the different
units of the object and can be calculated, starting from the
basic arguments of the kinetic theory. The contributit

W(V|V') = Esp.\/z T ((V’—V)H[V’—VJ
2
m(V’+%[(V—V’)<1+mS'\iAn2 0>D sir?

sin >0

’ _\/! ) M
+(V=-VHH[V-V'] Sin0<o)d0|:|(0)<msn0

xXexp| -

2KgT;
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2m
W(V|V’):Ef0 dW(V|V'). (29

The integrals over the speed of the colliding gas particles can
be performed explicitly, resulting in

2
+ sin 0)

(30)
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The remaining integral depends on the shape of the object. keTi 2 T, _
Following the general setup, we switch to the dimension- d{x*) = 2 Spi o -4 P et (x?) |(sir? ),
eff

less variablex=\M/kgTeV, cf. (5), with the effective tem-

peratureT.; to be determined from the conditiofx?)=1. T, Toi _
The exact expression for theth rescaled jump moment +2 x) ?<X3> (sir® O);e
AL(X), cf. (7), is then € :
2
+2\/7 ( +5(x? Tett s ) sin 6
- o <>3T<x><| he?
n(X) ( 1)n2(3n 1)/22 S B ( ) 8—n/2 .
N Tett +2| - < X) + 24 = <x3) (sirP 6);e3
X f + (= 1)”[ )dBF-(G) 2 A
( sin <0 sin >0 I + —<— 16<X2> + —ﬁf(X“)
ar 6 Ti
TexSIF O, g?sing \"
xXexp| - X“e > 1 '|'eff
2T; 1+&%sif 6 o\ T (x8) |(sinf @).e* | + O(&9). (33
n n 1 Teysino _ _ _
x(T 1+§ o1+ 2% T Note that a term of ordes in the series fov(x) is zero
' because of the propert22c). Such a term would correspond
. [2Teg | 3+N to a constant, velocity-independent, force acting on the ob-
+exsinf\| —1TI'| — . . . .
T, 2 ject. It should indeed be zero, since each gas mixture sepa-
2 rately is in equilibrium. From Eq32) we also immediately
x@{?’ N 3 TerSIN 0, 2}) (31)  recognize to lowest order inthe linear relaxation law, writ-
2 2 2T ten in original variables akld{V)=—-yV), with y==;v, and

v, the linear friction coefficient, due to the section of the

. . t itting i ixture:
with T' the Gamma functioril2) and ® the Kummer func- mofor Sitling in gas mixture

tion (13).
_ [kgTim (27 .
C. Stationary speed % =43p; o fo doF;(9)sir? 6. (34)

The equations of moment8), together with the explicit
expressions for the jump momer(&l), provide the starting . . . .
point for a straightforward series expansion in terms of thef*t this 1evel of the perturbation, the speed of the object is
small parametee. The equations for the first and second 2870: N0 rectification takes place at the level of linear re-

moments, expanded up to ordet and 4, respectively, are SPONSe. _ . L
given by (r=¢2) In order to find the first nonzero contribution to the veloc-

ity (X), we need the terms up to order From the definition
of T, by the condition(x?)=1 up to lowest order i, we

K 2 find from Eq.(33)
700 =2 Sp\ 7 2 [ \/;<sin2 (%)
i ZinTi
( \/ = T eff<x2>)<sm3 e Tert = Tyy. (35)

—\ﬁ(ex )- 9”<x3>)<swf* Oe? .

3V T The lowest nonzero term for the average velocity then fol-
T - lows from Eq.(32) and reads in the original variablé

- ( \/ = - —eff<x2>)<sin5 O)ie®
Teff i

* \F( 200+ 3220 (hff ° ) > ( 1>f2ﬂd0F-(0)sin36
T (X 3 T X+ T; o) V)= /m /WkBTeﬁ i i 0 I
. - M ] 2w
X(sin® Oe* + ( \/ Ji_ Ef<x2>)<sin7 '9>i85:| > Spin/ ik f doF;(6)sind(6)
Teff Ti i Teff 0

+0(&%), (32 +ooee (36)
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This speed is equal to the expansion parameter times the
thermal speed of the motor and further multiplied by a factor 2 P.( >
: . . \/7 lquBTe Test (sin® 0)

that depends on the geometric properties of the object. Note (V)=
that the Brownian motor ceases to function in the absence of E o | T (sir? 0>
a temperature differend@vhen T;=T for all i) and in the "V T
macroscopic limitM — o [since(V)~ 1/M]. Note also that (38)
the speed is scale independent, i.e., independent of the actual
size of the motor units(V) is invariant under the rescalirgy  In this caseT is independent oF(6) and the drift velocity
to CS. To isolate more clearly the effect of the asymmetry ofis proportional to(sin® 6)/(sir* 6), with the average defined
the motor on its speed, we focus on the case where the uniwith respect toF(6). The latter ratio is in absolute value
have the same shape in all compartments, Egg) =F(6) always smaller than 1, a value that can be reached for
andS=S One finds “strongly” asymmetric objects as will be shown below on
specific examples. The resulting speed is then very large, i.e.,
comparable to the thermal speed.

Calculation of the average speed up to orderequires
the evaluation ofx?), (x3), (x*, (x%, and(x8), up to orders

3/2
Te= — = = 'p'T (37) &% &3, &% e, andel, respectively, cf. Appendix B. This cal-
2 |P|\T| culation has been carried out using symbolic manipulations,
and the resulting expressions have been used in Table IV and
Fig. 5. However, since the analytic expressions are very in-
and volved, we only reproduce the result here up to orefer

T
i in® 6), i(l - _I) in° 0),
m WkBTef‘f ; Sp ( 1) <SI 0> m 32 WkBTeff 2 Sp TEff <SI 0>
VM=Nw M 8M T
2 Sp, \ i o) 2 Spi\ 7 (sirt o)
eff i eff
T, . T 7\ . .
(2 Sei\/ T_<S'n4 '9>i) (2 SPi(T_ - 5)(3”13 9>i> > Spi(sir® );
i eff i eff i
[T 2 ’ [ T;
{E Spi\/ = (sir? 9>i| > Spi\/ = (sirf 6,
i Teff i Teff
-\ 3/2 Ti ) Ti )
2 SPi(Z(TLeIﬁ) + % \/%)(sin“ 0); W(Z Spia<sm3 0%)(2 Spi(.l__eﬁ - 1)<Sm3 0>i>

+

% _r
[T 2 [T, . 2
> S T_I<Sin2 0)i {E Spi T_<Sm2 0>iJ
i eff i eff
2
Ssosit oy \2 S Sey it o) s Sp.( ( ! ) NI —)<sm3 0,
T i 1 Ti Tesf 2 Tegt
+ " - -3 = : +.... (39
> Spi \/ T_I<Si|"2 O)i > Spi \/T_I<Si”2 O)i 2 Sp V -|—_I<Sm2 O
i eff i eff i eff
[
D. Special cases calculated for these objects. Note that the friction coefficient

of the bar is in agreement with the result of the adiabatic
The above analytic result, E¢39), is valid for any con-  piston problem, cf. Eq(18).
vex shape of the constituting pieces. To illustrate the type of A thermal Brownian motor can only operate under non-
explicit results that are obtained, we focus on simple shapesquilibrium conditions, which can be achieved if at least two
like a disk, a bar, and a triangle. In Table | the circumferenceof such units are each located in a reservoir containing an
S, the form factorF(¢) and the friction coefficienty are  ideal gas at a different temperature. The two units are rigidly
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erate any net motion. One of the simplest motors one can
imagine was introduced ifi16] and will be referred to as
Triangula [see Fig. 4a)]. Two identical rigidly linked isos-
celes triangles(with apex angle 8, pointing in the
x-direction are each located in a reservoir containing a gas
separately in equilibrium at a different temperature. The low-
est order contribution to the average velocity Tafangula
follows from Eq.(36), cf. Table I

(@)

V2mkgm (T =TT =Ty
<V>Triangula: ————(1-sinby) = =
4M [p1\T1+ po\ Tyl
(40)

The fact that the combination of the asymmetry and the tem-
perature gradient is necessary to generate the systematic mo-
tion is contained in Eqi40). If either T;=T, or 6,=1/2 (the
triangle becomes a bar and thus the asymmetry disappears
the average velocity vanishes. The corrections of osdéo
this formula can be found in Appendix B. The dependence of
the speed on the temperatures and densities are reproduced in
Fig. 5. Note that from Eq(40) it may be concluded that the
speed of Triangula is maximal fquv'lepz\r’ﬂ. Figure 4
also shows some other variations of the thermal Brownian
motor. Their drift speed up to lowest orderdrcan be found
in Table Il. One can easily verify that each thermal Brownian
motor ceases to function when the spatial asymmetry or the
temperature difference vanishes. In this context it is some-
times stated that equilibrium is a point of flux reversal. This
FIG. 5. Average speed dfriangulaaccording to Eq(B4). Top: is indeed the case for our m_icroscopic model except W_he_n
the dependence of the velocity on the densitiés=1.0 andT, there are speua_l symmetries in the system.. Whgn the units in
=5.0. Bottom: The stationary speed increases with the temperaturg1e ,tWO reservoirs are not the same, the dl.rectlon of the net
difference(p,;=p,=0.0023. The following parameter values were motlon changes when the .tempe.ratu.re dlﬁerence changes
used: mass of the gas particles=1, total mass of the motayt ~ Sign. From the models depicted in Fig. 4, orilyiangula

=100, apex angle of the trianglegg /18 andkg=1 by choice of keeps its original direction of motion. In this latter case, the
units. speed exhibits a parabolic minimum as a function of the

temperature, with zero speed at equilibrium. The reason for
linked and can move as a single degree of freedom along théis peculiar behavior derives from the permutational sym-
x-direction. Besides the nonequilibrium constraint, a spatiametry of identical units, implying that the speed must be
asymmetry is also required to yield a net motion. In particu-invariant under the interchange ®f, p; with T,, p,. In par-
lar, a construction with only bars and/or disks will not gen-ticular it must be an even function df—T, whenp;=p,.

(b)

TABLE I. The circumference, the form factor=(6) and the friction coefficieny in a gas with density and temperatur&, for a vertical
bar of lengthL, a disk with radiusk and an isosceles triangle with basend apex angle @, pointed in thex-direction.

Shape Circumferenc® Form factor K6) Friction coefficienty

1 T 3
= _Z -2 kgTm
Bar 2 2(5[9 2]*’5[9 2]) 8Lpy /-2
2m
. kgTm
Disk 27R 1/27 47Rp
2

1 +sin6, 28 6- 3] sin b+ SL0- 6] + L6 (- 6p)]
Triangle sin 6, 2(1 +sin6y)
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TABLE Il. Analytic result for the lowest order contribution &) for the different constructions depicted in Fig. 4.

Shape Figure Stationary veloci{y) (ordere)
i i [2mkgm T~ TH)OT - \T,

Triangula Fig. 4(@) Y27 ) _ gin g 22221 TDOTL AT

all [P\ T1+ po\To]
Triangle-bar Fig. ) 2T ) _ i gy —22P2 U= TD

am [2p1\ Ty + po\To(1 + sinp) 12
Triangle— ) [27kgm T - T)NT, +\T,
tri Qll Fig. 4(c) V£7Kg (1—sin¢90)plp2( il PI 1+ 2)
rangie 4M [pNT1+ po\ T
V2mkgm 7R P12\ To(T1 = T))
(1 - sirf 6p)—
2
Triangle—disk Fig. &) aMm LR — .
—p VT + (1 +5sin 00)[)2\’/1—_2
L
V. COMPARISON WITH SIMULATIONS important phenomenon, we note that the motion of the motor

The analytic results for the adiabatic piston and the theryvIII generate sound waves that will reimpact on it. Taking

mal Brownian motor are compared with the results of thethls !nto acc_ount, the speeds observed_ in the moIeCl_JIar dy-
numerical solution of the Boltzmann equation in Tables Il namics are in reasonable agreement with the theoretical and

and IV, respectively. To improve the precision of these Sir,nu_numerlcal results obtained from the Boltzmann equation.

lations, we used a special technique for solving a MasteP'Otably the_speed of the thermal motor in the hard disk gases
equation, based on the introduction of a simple envelopd® Systematically larger by roughly 20 to 40%, for reasons

procesgsee Appendix C for detailsThe agreement between that are unclear to us.

theory and simulations is very satisfactory, and only breaks

down, as expected, for small ratio¥ M where the pertur-

bative result becomes inaccurate. We have also included for VI. DISCUSSION

completeness the results obtained by molecular dynamics

simulations, cf[16] for more details. We used low densities ~ The problem of the Maxwell demon has been haunting

for the hard disksp=0.0022, a regime in which one comes the imagination and theoretical efforts of physicists for more

close to the properties of an ideal gas. Nevertheless one ethan 100 years. While there is a consensus that one cannot

pects strong finite size effects, due to the fact that the reserectify fluctuations at equilibrium, it is comforting that one

voirs containing the gases are not very large. To cite just onean construct microscopic models, involving interactions

with ideal gases only, for which this thesis can be verified

TABLE IIl. Stationary average speed of treliabatic piston  €Xplicitly. The same models can be used as test cases for

from the perturbative solution method up to ordere®, and 5, another important field of interest, namely the rectification of

compared with the result from a numerical solution of the Boltz-thermal fluctuations in nonequilibrium, also referred to as

mann equation. The following parameter values were used: particlBrownian motors. In this respect we claim that our model is

densitiesp; =102 and p,=1, temperature3; =100 andT,=1, and  a genuine Brownian motor: the rectification appears at the

mass of the gas particles=1. kg=1 by choice of units. level of nonlinear response, where the usual separation be-
tween systematic and noise terms, as made explicit in a lin-

Mass Theory Theory Theory Bolizmann  ear Langevin equation, is no longer possible. Hence the op-

M (ordere) (orders+s®) (orders+e3+s%  equation eration of our Brownian motor falls outside the scope of

linear irreversible thermodynamics. It belongs to the realm of

1 564 782 2044 141l microscopic theory in which nonlinearity and noise form an
1.13 0.590 0.8158 0.7289 intertwined part of the microscopic dynamics. This is in con-
20 0.282 0.2484 0.2519 0.2511  trast to most of the Brownian motors discussed with mesos-
50 0.113 0.1074 0.1076 0.1076  copic theory. For example, the prototype model of one class
100 0.0564 0.05505 0.05508 0.0554 of Brownian motors referred to as flashing ratchet can be
200 0.0282 0.02786 0.02787 0.0280 described by diffusion in an external pOtential, a standard

problem in linear irreversible thermodynamics.
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TABLE |V. Stationary average speed of the thermal Brownian mdt@ngula from the perturbative
solution method up to ordes, 3, and &® compared with the result from a numerical solution of the
Boltzmann equation. The following parameter values were used: particle dengitips=0.002 22, tem-
peraturesr;=1.9 andT,=0.1, mass of the particles=1 and apex angle of the triangl&g 7w/18.kg=1 by
choice of units. For comparison, we also include the speed observed in molecular dynam[d€] $ee

more details.

Mass Theory Theory Theory Boltzmann Molecular

M (orderg) (ordere+¢9) (ordere+&3+¢%) equation dynamics

1 0.38 -1.23 11.66 0.057 0.12

5 0.076 0.011 88 0.1150 0.0470 0.064

20 0.0190 0.015 02 0.016 63 0.0157 0.024

50 0.007 62 0.006 974 0.007 077 0.0071 0.0093

100 0.003 81 0.003 648 0.003 661 0.0035 0.0043

200 0.001 90 0.001 864 0.001 866 0.0017 0.0021

APPENDIX A: DETAILS ON THE CALCULATION KT+ T k /
\ m( \NT,T (U
FOR THE ADIABATIC PISTON (V3 = BT” + # 21 2+ A \T,)?
Expansion of the rescaled jump momeAt$x) (11) in the 12 Y

moment equationéd) yields the following power series ex- - 1("11-1 :pZTZ ngTZ) kB”j
pansion ins=ym/M, with the first and second moments ex- 2 p\Ti+pn\T, M
panded up to fifth and fourth order in [cf. Egs.(16) and [y 12 122 32
(17)], respectively, and the higher momexis), (x*, (x5), X(\TlTZ _2(paTy +/£2T5 2)£I'1T2)
and(x® up toe?, €2, &, ande? respectively: 4 3 (PN T+ po\Tp)?

297 372 (VT, - \T,)*
_ _(V’T_l_ \;FZ)Z _onm Whim Vi)

3.0 = 6(2f[312](x) — f[1/2(x%)) - 3(4g[2] + g[0}x*))e 48 16 \T,T,
+ (= B6A[3/2100) + 24f[1/2]0%) ~ [~ 1/2)7)) & , 357 P+ poT 2 (VT1 = VT
+9(4g[2] + g[0J(x*)e3 + O(e%), (A1) 48 p\Ti+p\T,  TiT,

1 (plT13/2 + P2T23/2)(T1T )3/2
"8 pNTL+ T,

a4x% = 8(3F[3/2](x) - f[1/2)(x*)) — 4(129[2](x) + g[O]

L7 (T P2T§1/2)T1T2> .
X(x%)e + 4(l6f[5/2] — 44£[3/2() 24 p\Ti+p\T, ’

+ 12 1/2](x* - éf[— 1/2]<x6>>82 +0(&%),

3 k3 mar = ==  V kgmg’ﬂ
(Vo) = 2 2M2 > T - \TO\TiT,+ VE
\’

%% = 10(4f[3/2)(x%) — f[1/2](x°)) — 5(249[2)(x?)

8 — — 3 —
+ g[o]<X6>)8 + 0(82)1 X <_ 5(\‘"1—1 - \’/T_z) Y Tsz - TqT(\/T_l - \”T2)3

7 (VTl - T2)(P1T5/2 + PzTS/Z)
9,(x® = 12(5f[3/2)(x* - f[1/2)(x8)) + O(e). T

4 (p1V T1 +paV Tz) VTiT,

A2
In the stationary regime thesc_a equations form, toget_her with . ksvﬁ 2 kém - - h(2 )
Eqgs.(16) and(17), an algebraic set of equations, which can (V%) =3 v ) TwET AT T, - T(\Tr VTp)
be solved to find the stationary average velocity up to
order &% The result in terms of the original variabMé P T2+ p, T3
=VkgTesi/ Mx is given in Eq.(21). The corresponding results ><VTlTZ + 4ﬁ '
for the higher order moments read pivTitpaNla
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Jkéme 5 APPENDIX B: DETAILS ON THE CALCULATION
,\B/|3 r(\’Tl \TYT, T, + FOR A THERMAL BROWNIAN MOTOR
OF A GENERAL SHAPE

(V) =~

AT T A perturbative series i is given for the moments, ob-
(V) = 15( BVl 2) +oen tained by the expansion of Eq&), together with the jump
M moments defined iill). The resulting expressions for the
first and second moment up to ord€rande*, respectively,

Note that the lowest order terms are consistent with the obré given in Eqs(32) and(33). Calculation ofV) up to &°

servation that the velocity distribution itself is Gaussian atrequires furthermordx®), (x*, (x*), and (x°) up to order

the lowest order, cf{14]. g3, &2, e, ande?, respectively:

. -\ 32 ]
3.3 = E Spi\/— ke, {6\/%(2%&) - <x3>><sin2 6); + 3(— 4(_:—') +74/ _l:r—'<x2) - %(x“))(sin3 O)e
eff eff i
2 T -\ 3/2
+ \/j<— 56_|_—'<x> +24(x3) — eff<><5>><sm4 O)e? + 3(12<T ) - 21\/ <x2> +3 eff<x4>><sm5 O)ie30+ O(e?),
™ eff

\3/2 _
0,6y =43 Sp kBT{ T8y -6 it (-2 T 020y Ty o0 i
Test eff i
e ( ) 4T+ 110 - 312800 i a>i82}+o<s3>,

T, \%? T, T
94X = 52 Sm <x3> <x5>)<sm2 6>.+(- 4(—') (%) +134/ (X - —‘*“<X*"’>><sin3 O)e(+0(s?),
Teff Teff Ti

a.x8) = 122 ST/RY ey { \/E( Tlﬁ<x4> - <x6>)<sin2 0>i} +0(e). (B1)

In the stationary regime, these equations form together with Bgs.and(33) an algebraic set of equations from which the
average velocity can be obtained up to orgerThe analytical expression in the original variableip to €2 is reproduced in
Eqg. (39). The corresponding power series for the higher moments of the stationary velocity distribution function are

( T 3/2
2Sp| =2 —| +-
keTer KemTerr | Test
(V?) = + \
M M? i
2 Spi\ [ —(sir? o),
\ Teff \
T.\> 137, 5 T, 2
(S sosie o)\ S sp| -2 — | +—— -~ fsirt oy | -2 S sp—(si o)
I I Teff 2Teff 2 Teff
—— > + s
4 2
J
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> Spi<— 2<l)z+ 5T _ §)(sm3 o),

POEPNEREE)
i eff

<V4> 3< kBI\-/lreff) T (BZ)
T \2 75T, )
i\ =200 == | + = - — [(sir® O);
AN Mol
“Vm\ M 2 . ‘
> Spi T_I<Sin2 0);
i eff
=g et |
For the particular case dfriangula [see Fig. 4a)] one can verify that
T o= PlTi/z‘* p2T3”
T+ Pz\“'Fz,
(B3)
. _ (_ 1)[1 Sin 00+ S”"f1 90
(sirf' 6) = 1 +sing, '
The average speed dfiangula up to €3 reads:
_ m WkBTeff (m)SI WkBTeff S|n4 00 - 1
(V)= \/; —m 2 NAI=hlOD(sin 6o - 1) + v N om 5 (o] - h[l])—Sin fo+ 1
+ %[O](_ h[1]? - h[0]h[2] + ?h[o]h[l] - gh[o]z)(sin O 13+ (%h[l/Z]h[l] - Zh[l/Z]h[O] +h[0]h[3/2]
1 3 2 (sin 6y — 1)(1 + sir? 6p)
+ 3h[ 1/2]h[2] 4h[ 1/2]h[1] + 3h[ 1/2]h[0]> L+sing, } (B4)

with W(VIV') =R(V)P(V|V"),
piT1+ P13 12
hn]= plvT1+p2\rT2T : (BS) whereR(V')=/dV WV|V’) is the total rate and(V|V') is
the conditional probability. Stochastic trajectories\bfnay
be easily produced if the probabilify can be easily realized,
APPENDIX C: SIMULATION OF THE MASTER that is, !f it is simple to generat'e random valugs Wlth that
EQUATION distribution. However, for complicate@/ and P this direct

approach is often not possible and an alternative construction
Consider a Markov process, defined by the transition ratés necessary.
W(V|V'), for transitions from stat&” to V. We decompose We introduce an “envelope” procest, (V|V’), for which
the transition rate as follows, W' =W for all V,V’, cf. [20]. The difference
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(4) Return to stegl) until the required number of itera-
tions are performed.

is called the “null” process. The envelope process is chosen Note that the probability of a transitiow’ — V being se-

such thaR’ is a constant and th&" has a simple fornte.g.,
a Gaussian distribution

The simulation of trajectories oV then proceeds as fol-
lows:

(1) Given the current stat¥’, find the time to the next
transition for the envelope process as

r=-In(R)/R,

wherefR is a uniformly distributed random value i@, 1).
The random variable is exponentially distributed witk7)
=1/R".

(2) Choose the new statey, from the distribution
P (V|V").

(3) With probability W(V|V")/W'(V|V’) the transition

lected in step(2) is P"(V|V’) and the probability of that
transition being accepted in st} is W/W' so the net prob-
ability of the accepted transition is

W(VIV') WVV) 1 ,
)—W Vv P VIV Vv) TR W(V|V).

Since the total rat¢éaccepted plus null transitionss R the
algorithm produces the stochastic process with the desired
transition rateV(V|V’).

Clearly, the method will be inefficient if the ratl//W' is
small since most transitions would be rejected. On the other
hand, the method is only correct W/W <1 for all V,V’
since the probability of acceptance cannot be greater than 1
(i.e., the null process cannot have negative probability for

P (V|V’ P (VIV')

V' —V occurs, otherwise, the event is a null event and theanyV’). As such, the form of the envelope proce¢ss., the
stateV'’ is unchanged. In either case, the time is advancethean and variance of the Gausgianust be chosen with

by 7.

care.
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