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Spatial correlations of thermal fluctuations in a model system are examined. The system is a one-dimensional chain of cells
containing a dilute gas and connected by Knudsen apertures. A Monte Carlo simulation is described in which the long range
correlations observed agree quantitatively with a general master equation formulation.

Interesting modifications to the dynamic correla-
tions of thermodynamic fluctuations in fluids sub-
jected to a thermal gradient has been predicted by
both fluctuating hydrodynamics [ 1] and kinetic the-
ory [2]. This phenomenon is observed experimen-
tally in the linear dependence on temperature
gradient of the asymmetry in Brillouin light scatter-
ing [3,4]. The master equation formalism which has
been so successful with composition fluctuations in
chemical systems [5] has recently been applied to the
study of thermal problems [6,7]. Nicolis and Malek
Mansour [8] have examined a one-dimensional sys-
tem of M identical, thermally coupled cells (of vol-
ume AV and heat capacity C,) connected to two
reservoirs held at different temperatures. The instan-
taneous state of the system is described by the vector
E where E, is the energy of cell k, the energy of the
boundary cells, £, and E,,., ,, being held fixed. The
transition rate W for a cell to transfer an amount of
energy € to a neighbor cell is assumed to be indepen-
dent of the state of the neighboring cells; i.e.

W(E +e€ Eir) —€nEy, Exyy)=WI(Ey, €). (1)

One obtains an expression for this quantity from the
condition of detailed balance at equilibrium,

W(E, €) =gp(e)exp(—elkp Ty), (2)

Where 7, is the instantaneous temperature, kg is the

oltzmann constant and ¢(€) is an unspecified func-
tion. By definition, the quantity 1 is related to the
drift f and the diffusion Q of the Fokker—Planck
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equation as follows [9]:

|
f(Ek):A—I;Jde eW(E,, ¢€), (3a)

Q(Ek):ALVJde eEW(E,, €). (3b)

From eq. (2), a further relation is

J

= G T

HEL). (4)
One imposes that the average temperature { 7> obey

the heat equation (with constant thermal diffusivity
K), written in discrete form as

d
3 (T =k (T + <oy =2(T). (5)

Identifying this macroscopic law with the drift com-

. ponent of the Fokker-Planck equation, the evolu-

tion is entirely specified by eqs. (4) and (5). From
(5), the temperature gradient is linear and its ampli-
tudeisy= (T s —To)/ (M+1). After some algebra,
one arrives at the static correlation function for the
temperature fluctuations,

kBék/n<Tk>2+ kByz
C.AV C(M+1)

<6Tk8 Tm > =

Xk(M+1-m), k<m,

Xm(M+1—-k), m<k (6)
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The first term is the local equilibrium part of the static
correlation function; the second is the nonequilib-
rium contribution. Note the presence of long range
linear correlations with an amplitude proportional to
the square of the temperature gradient.

As discussed by Nicolis and Malek Mansour, from
€gs. (2)~(3), one could solve explicitly for W(E,,
€). However, the condition that x be a constant inde-
pendent of temperature leads to the unphysical result
@(€)~1/e. This prevents one from constructing a
numerical Monte Carlo simulation for this model
since the transition rate implies an infinitely fre-
quent exchange of an infinitesimal amount of energy.

A markovian system for which the transport
mechanism is exactly derivable from microscopic
arguments was numerically simulated in order to see
if the results predicted by the above theory could be
reproduced. Consider a chain of cells filled with a
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dilute gas and connected by very small apertures, If
the size of the apertures is on the order of a mean free
path, the flow between the cells will be Knudsen. We
make the strong assumption that the form of the ¢cor.
relation function is invariant for different systems
with only a model dependent scale factor. The single
cell (M=1) result for the Knudsen system [6] fixes
this scale factor. If N, is the number of particles in
cell k then the static correlation function for a Knud-
sen system is

6km<Tk>2+ ‘1‘5&))2
TN N (M+1)

<6Tk6Tm > =

Xk(MA+1-m), k<m,

xm(M+1-k), m<k (7)
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Fig. 1. Plot of the nonequilibrium contribution to the temperature fluctuation correlation of cell k=5 with cell 1 versus the position of
cell m. The solid line is obtained from the second term in eq. (7). The points are data from the Monte Carlo simulation; the error bars

are 90% confidence intervals,
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Note that this implies that there are no spatial cor-
relations induced by a particle gradient (see also ref.
[10]).

For Knudsen flow, the rate at which particles of
energy € leave cell k is

W(Ek, €) =DN, T [*[e/(ksTy)?]
XCXP(—f/kBTk)(l—%Jk,o—%dk,/vtﬂ), (8)

where D is a geometrical factor for the aperture. Note
that W(E,, €) is only a function of the state of the
cell &, which is consistent with the above discussion.
If the states of the boundary cells are chosen such that
Nov/To=Nasrs1+/Thrs, these boundary conditions
imply that the temperature gradient is linear and the
mass flux through the system is zero. Integrating eq.
(8), the total rate at which particles leave cell k is
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The formulation of the Monte Carlo simulation is as
follows [11]: from {£,}, choose the cell i in which
the next event will take place as

i— 1 i

Z Qk<RQ):< Z Qk, (10)
k=i k=21

where R is a uniformly distributed random number
in(0,1],2_,=0and
M1

Q=3 Q. (11)
k=0

Since the process is markovian, the time between
events is an exponentially distributed random num-
ber; the time until the next event 7 is chosen as

T=—In(R')/Qy. (12)

The probability that a particle leaving a cell has

Q=DN T}*(1 =430~ 40 knri1). (9) energy e is
k =8
" ;
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Fig. 2. Same as fig. | for cell A=8.
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n(Ey, €)=[¢/(kgTi)*lexp( —e/kyTy), (13)

the energy of the particle which leaves cell / is chosen
as [12]

e=kyT,In(RR"). (14)

The neighboring cell to which the particle moves is
taken at random and the two cells are updated. The
state of the boundary cells is always held fixed.

A one-dimensional system of sixteen cells between
two reservoirs was simulated numerically. An equi-
librium run (Ny=N,, Ty=T,;) was made to verify
that the program yielded the correct equilibrium cor-
relations. For the nonequilibrium run, the reservoirs
were set to Ny=900, 7,=400, N,,=246.2,
T\;=15345, giving a linear temperature gradient of
about 300 degrees per cell. The simulation was run
for over 200 million total events. The measured tem-
perature correlations are shown in figs. | and 2 along
with the theoretical prediction from eq. (7). Note that
there are no free parameters; the good agreement is
truly quantitative, Similar results were also obtained
for a smaller (10 cell) system. Molecular dynamics
simulations [13] and an approximate simulation of
the Kac model for a dilute gas [14] have yielded
qualitatively similar results [15].

From the single cell calculation for the Knudsen
system, we know that the nonequilibrium contribu-
tions to the number and number-temperature cor-
relations { (SN, B N,,,> and (8N,07,,) ) are about an
order of magnitude smaller than the contribution to
(8T8 T,>. These other correlation functions are of
interest as they are directly related to the amplitude
of the Rayleigh line but unfortunately their nonequi-
librium components are difficult to observe. We do
expect all the correlations to be similar in form, that
is, long ranged with an amplitude proportional to the
square of the temperature gradient. This is in agree-
ment with theoretical predictions of the modifica-
tions to the Rayleigh line in light scattering [4,16].

[ wish to thank Professors I. Prigogine, G. Nicolis,
M. Malek Mansour and C. Van Den Broeck for help-
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J3ds f{1,8)x(s)fts

" In connection with
; tories for the descripti
b surfaces [1,2], the f¢
arises:

LI = JDX(Z) (5[)‘6((

{see also ref. [3]), wt
ried out over all x(¢),
is the delta functional
written out explicitly,

. lj J
lim —}..
Noooe—-0 €

KT)=

r Ne=T

y 5<X_ﬁ__—2
€ 2
with Xo =O, XN+1 =0
is to be taken as the
€q. (1). The integrat
obtains /(T to be e
inverse of a Fredholr
I(T)=lim e "JAn
Nooo
where (A) = —29;
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