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ABSTRACT

We study properties of the consistent Boltzmann algorithm
for dense gases, using its limiting kinetic equation. First,
we derive an H-theorem for this equation. Then, following
the classical derivation by Chapman and Cowling, we find
approximations to the equations of continuity, momentum,
and energy. The first order correction terms with respect to
the particle diameter turn out to be the same as for the Enskog
equation. These results confirm previous derivations, based
on the virial, of the corresponding equation of state.
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580 GARCIA AND WAGNER
1. INTRODUCTION

Direct Simulation Monte Carlo (DSMC) is presently the most widely
used numerical algorithm in kinetic theory.”™! In this method, a system of
simulation particles

(xi(t)’ vi(t))s = ls"'aNs t=> 09

is used to approximate the behaviour of the real gas. Independent motion
(free flow) of the particles and their pairwise interactions (collisions) are
separated using a splitting procedure. During the free flow step, particles
are moved according to their velocities,

I+At
Xt + A = x(0) + / (s ds,
t

and boundary conditions are taken into account. During the collision step,
particle pairs (x, v), (y, w) are randomly chosen in small cells of the position
space, according to the collision probability for the interparticle potential.
The post-collision velocities

Vi=v+te(e,w—v), w'=w—e(e,w—v) (1.1)

are determined by randomly selecting a direction vector ¢ from the unit
sphere S>CR*. Here (-,-) denotes the scalar product in R’. The number
of collisions at each time step Atz is computed from the local collision
frequency.

Recently, the Consistent Boltzmann Algorithm (CBA) was intro-
duced as a simple variant of DSMC for dense gases.!"! The main advan-
tages of CBA over Enskog-based schemes (see Refs. [8,12]) are its
simplicity in implementation and almost negligible effect on computational
efficiency for a standard DSMC program. Transport properties are in
good agreement with molecular dynamics data even at high density.”
Besides the standard problems in kinetic theory, CBA has proved useful
in the study of granular materials!'” and nuclear physics.!'!"13!

Although CBA can be generalized to other potentials,'”) here we will
only consider the hard sphere gas with particle diameter o. In CBA the
collision process is as in DSMC with two modifications. First, when
a pair collides each particle is displaced a distance o into the direction
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KINETIC EQUATION FOR CBA 581

e or —e (cf. Eq. (1.1)), i.e.,

OV =w)—(—w)

X=x+o ,
107 =w) == 12
. == —w) '
= — O N
S TC T B CRtyT|
where || - || denotes the Euclidean norm in R>. Second, the dense hard sphere

collision frequency, which contains a factor y depending on the local density,
is used. The function y is equal to unity for a rarefied gas, and increases with
increasing density, becoming infinity as the gas approaches the state of close-
packing. Approximations to its value may be found in Ref. [7, Ch. 16.21].
A theoretical foundation of this variant of DSMC has been established
in Ref. [9] by deriving the limiting (as N — o0) kinetic equation of CBA,

ad
_p(taxa V)+(V, Vx)p(la X, V) = / dW/ deB(V, Wae)
ot R} s

x [x(o(t, x™) p(t, x*,v*) p(t, x*, w*) — x(o(t, x)) p(t, x, v) p(t, x, w)],
(1.3)

where p is the one-particle distribution function, B denotes the collision
kernel, and

o(t,x) = /723 p(t, x,v)dv

is the density. Note that, in the case x=1, 0=0, Eq. (1.3) reduces to the
Boltzmann equation

0
& p(t’ X, V) + (Va Vx)p(ta X, V)
_ / dw f deB(v, w, ¢) [ (i, x,v") p(t, 3, w*) — plt, X, V) p(t, x, W]
R3 S2

The purpose of this paper is to study some properties of Eq. (1.3) in
relation to corresponding properties of the Enskog equation (cf. Ref. [7,
Ch. 16.3))

%f(t, x, )+ (v, V) f(t, x,v)

= / dwf deo*(e,w — v)[x(g(t, X+ lUe))f(t, X,V f(t,x +oe,w")
r o Js2 2

—X(Q(l,x—%oe))f(l,x,v)f(l,x—oe,w)]. (1.4)
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582 GARCIA AND WAGNER

Here f is the one-particle number density function, and the notations
Si = S%r(v, w) = {e:(e,w —v)>0}, S = fe:(e,w—v)<0} (1.5)

are used. Taking into account Eqgs. (1.1), (1.2), and the hard sphere collision
kernel, Eq. (1.3) takes the form

)+ 0,V 1)
= / dw/ de o*(e, w — v)[)((g(t, x+oe)f(t,x +oe,v")
R S

x f(t,x +oe,w*) — x(o(t, X)) f (1, x,v) f (1, x, w)]. (1.6)

In Sec. 2, following ideas from Ref. [14] for the Enskog equation, we derive
an H-theorem. In the Enskog case, such result turned out to be useful for
studying the existence problem and the trend to equilibrium (see, ¢.g., Refs.
[3.4]). In Sec. 3, following the classical derivation by Chapman and Cowling,
Ref. [7, Ch. 16], we find approximations to the equations of continuity,
momentum and energy. The first order correction terms with respect to
the particle diameter turn out to be the same as for the Enskog equation.
These results confirm previous derivations, based on the virial, of the
corresponding equation of state.[!

2. H-THEOREM

According to Eq. (1.1), the displacements Eq. (1.2) take the form
X=x+v(we)), Y=y —v,we),
where the notation
Y (v,w,e) = oesign(e,w — v)
is used. Note that
YO, we) = (v, w,e) =y (w,v,e) (2.1)
and

B(v,w,e) = B(v,w*,e) = B(w,v,e) = B(v,w, —e), (2.2)
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KINETIC EQUATION FOR CBA 583

for B(v,w, e) = const|(e,w — v)|. Using Egs. (2.1), (2.2), one obtains

/ dx / dv f dhw f deg((x.¥) B(v.w.) x(0( X)) p(t.* ) plt, " w)
R3 R3 R3 SZ

:/ dx/ dv/ dw [ de
R} R} R s?

X @(x =Y (v,w,e),v) B(v,w,e) x(o(t,x) p(t,x,v*) p(t,x,w")
- / dx / v / dw / deg(x*v*) By, w,€) x(0(t,2)) p(t, x, ) p(t, %, ).
R3 r? R3 s?
Thus, the weak form of Eq. (1.3) is

4 / o5, V) plt, %, v) dx
dt Jgixr?

= /72»&733(‘}’ (Vi @)(x, ) p(t, x,v) dxdv—i—/n3 dx/w a’v/R3 dw g de
X (e(t,0)) B(v.w, )] @, v) = o ) (e, . v) pla, x, w),

or, equivalently,

d
dt 3w

= / (v, (Vy @)(x,v) p(t, x,v)dx dv + 1/ dx/ dv/ dw | de
RIxR? 2 Jr R3 R? s

X X(@(1,20) B w, ) o+ ¥ (1,00, 9) + glx = (v, €),0)

@(x, v) p(t, x,v) dx dv

= 906, 1) = 96, W) (2. %, ) pla, ). 23)
The form (2.3) is convenient for deriving an H-theorem. We consider

@(x,v) = logp(t, x,v)

and

H(t) = / / p(t, x,v) logp(t, x,v)dvdx.
R} R}
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584 GARCIA AND WAGNER
Note that

/ (v, V. log plt, x, W) pl, . v) dx dv
RIxR?

_ / (v, Vop(, X, 7))
RxR?

Py p(t, x,v)dxdv = 0.

Using the elementary inequality
a(logb —loga)<b—a, a,b>0,

one obtains

d 1

EH(Z):E/dex,/Rz dv/;z}dw/szdex(g(t,x))B(v,w,e)
X {log[p(t,x—i—l//(v, w,e), v ) p(t,x — ¥ (v, w,e),w*)]
—log [p(t,x, v)p(t, x, w)] }p(t,x, v)p(t,x,w)

S%fR;dx/RgdV/R;dW/SzdeX(Q(t’x))B(V’W’e)
x [p(t’x"i_l//("’ w,e), v ) p(t,x — (v, w,e),w) — p(t,x,v)p(t, x, W)]

=l/ dx/ dv/ dw/ de x(o(t,x)) B(v,w,e)
2 Jrs R» =3 S?

X [p(t,x —v(v,w,e),v)p(t,x+ ¥ (v,w,e),w)—p(t,x,v)p(t,x, w)]
=:1(1).

With the notations (1.5), the correction functional takes the form

I(t) = / dx[ dv/ dw/ de x(o(t, x)) B(v,w,e)
R‘ R3 R3 S2(v,w)
pt,x =y (v,w,e),v)p(t,x + ¥ (v,w,e),w) — p(t, x,v) p(t, x, W)]

X
:/ dx/ dv/ dw/ de x(o(t, x)) B(v,w,e)
r3 R3 R} S2(v,w)

X -p(l, x—=vy,we),v)plt,x+ ¥ (v,w,e),w)—p(t,x,v)ptx, w)]

= dx/ dv/ dw/ de x(o(t,x)) B(v,w,e)
R3 R R3 82 (v, w)

X -p(l, x —oe,v) p(t,x 4+ ae,w) — p(t, x,v) p(t, x, w)].
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KINETIC EQUATION FOR CBA 585

Introducing the functional
t
H(t)=H(t) — / 1(s)ds,
0
one obtains
d -~
— H(1) <0.
TH(@) <

Note that, in the Boltzmann case o = 0, one obtains /(¢) = 0.

A similar functional has been suggested in Ref. [14] in the case of the
Enskog Eq. (1.4). It was proved in Ref. [4] that this counterpart of the
Boltzmann H-functional decreases for global solutions which are known to
exist for small data. This result was used in Ref. [3] for studying the trend to
equilibrium.

3. EQUATIONS OF CONTINUITY,
MOMENTUM, AND ENERGY

With the short-hand notations

f(X) :f(t,x, V)a ﬁ(X):f(l,X, Vl)a
f*(x) :f(tr X, V*)a fl*(x) :f(lr X, VT)a

and v-w = (v,w), Eq. (1.6) takes the form

B
Ay

- / / [f*(x +oe) i (x + 0e) — f(0) (x)] o2e(v, — V) - ededv,.
(3.1)

Here integration de is over S%r(v, v) (cf. Eq. (1.5)) and integration dv; is over
R>. For simplicity we set x = 1. The uniform steady state is

A first approximation to the solution of Eq. (3.1)is f = f © a4 second
approximation is

SO =700 + o), (3.3)
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586 GARCIA AND WAGNER
where @V is a linear function of the first derivatives of number density n,
temperature 7', and mass velocity ¢,. In the following derivations we neglect
all products of derivatives and derivatives of higher order (cf. Ref. [7,
Ch. 16]).

3.1. Left-Hand Side of the Kinetic Equation

Consider the left-hand side of Eq. (3.1):

I:E+V.Vx:|f(l) = [§+V~Vx:|f(0) :f(0)|:3+v~ VX] logf(o).

ot ot
Note that
%logf(o) =%%n—%% T+2]:nT2 % T||v—c0||2+%(v—co)%co
and
Viog /O = v 2 v G T = P+ L (T — ).
n 2T 2kT? kT

Multiplying with ¢ = 1 and integrating with respect to v, one obtains

0 _3n8T 3n 9

3
© 0 _0 3o 3nd
/dvf g/ =gy Tt T

and

f dvfOy. vV log f©

3n mn 3kT .
=Cp - Vxn _ﬁ Coy - VXT+W [N V\T 7+nd1V(Co)
=c¢g - V.n+ ndiv(c).
Finally,
o3 o_D -
avf +v-V,|log YV =— n+ ndiv(c) (3.4)
ot Dt
where
D 0
D_9 . (3.5)

Dt ot
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KINETIC EQUATION FOR CBA 587

Multiplying with ¢ = v — ¢y and integrating with respect to v, one
obtains (cf. Eq. (A.2))
d d
RN o _,9.
/dv(v co)f o log f n 5 €0
and (cf. Egs. (A.2), (A.4), (A.3))

/dv(v—co)f(o)v-vx logf(o)

kT 3kn

— (0)
—;vxn—% Tt [ 0= a6 — ) VT I = ol

27 [ A= eSO (= ) (Vo) v = <o)

o [ = s e - a)

kT 3kn m KT\’ m kTn
=—Vin—VT+—->-5n—| V.T V,
m T o e n(m) T €o(Vxco)
kT k
WV n+n V. T +n(cy - Vy)co.

Note that V¢ is a matrix, ((3/0x;) ¢ 1)1/ , and

d a d
[co(Vxco)li = co1 7 co.i+ 0.2 5 Co.i + 0.3 77— Co.i = (o - Vi)Co,i-
x4 90X, 8x3
Finally one obtains (cf. Eq. (3.5))
|9 ©)
dv(v—cy)f &—I—%Vx log f
ad kT k D 1
=n—co+n(cy-Vy)cg+— V,n —i—n—VxT =n—cy+— V. (knT).
ot m m Dt m
(3.6)

Multiplying with ¥ = ||v — ¢||* and integrating with respect to v, one
obtains (cf. Eq. (A.5))

0
/ dv v — col* 1O o, log 1o

_0,3KT 3 8 L KT om0 (KT
Tt m 2T ot m  2kT? ot
3kT o 9%n o 15kn 9 3kT 0 3kn 0

T a' T mow m oot m oo moa
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588 GARCIA AND WAGNER
and (cf. Egs. (A.5), (A.6))

f vy —col*fOv-V, log

3kT 9% KT\’
=2 V=2 e VT ey VLT 15 (5
m om € k 2 m

T / dvllv— ol SO (v = ¢0) - (Vaco)(v — o)

3kT 9%k 1
=—¢- Vxn——nco~VxT+ Snk
m 2m 2m

KT\ 2
VT+k 5n< )dlv(co)

3kT 3kn SnkT
—7 Co - V\Cl’l-l- V T

div(cy).
Finally one obtains (cf. Eq. (3.9))

/dv v — co||2f(0)|:£ +v- vx] log 1

3kTD +@£T+5nkT
m Dt m Dt

div(cg). 3.7

3.2. Right-Hand Side of the Kinetic Equation

Consider the term in brackets at the right-hand side of Eq. (3.1).
Expanding f;, /' by Taylor’s theorem, and retaining only the first deriva-
tives, gives

(ST =Sf)+oe-(STV ST+ [TV (3.8)

Substituting from Eq. (3.3) into the first term on the right of Eq. (3.8)
(neglecting terms as before) gives

0) (0 )* " 1 1
f( )fl( )<(D( ) q>(l — (D( )_ Q)(l ))’ (39)
since
* (0" 0

The second term on the right of Eq. (3.8) involves space-derivatives. Thus we
may write f © i place of f(l)and obtain

o o O o o O O o o
SO Vg £ 4 £ 1 Vo 1O =1 O 09 dog 11 1]
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KINETIC EQUATION FOR CBA 589

and

V. log[ £ 1]

2 3
=-—Vin——=V.T+—5
n

= VT + 2 VT (I8 = ol + 1 = <o)
+ kﬂ(vxco)(w’f — )+ 0" — )
= s VT (I = <ol + v = ol
+ ﬁ(VxCO) ((Vl — )+ (v— Co))-

The integral on the right-hand side of Eq. (3.1) gives
= //ae~ (f(o)f(lo) VXlog[f(lo)*f(o)*])o2 (vy —v)-ededv,

2
:_G3f(0)/f(10)/€'vxn(vl —v)-ededv;
303f(0)/‘f(10)/e-VXT(vl —v)-ededv,
+2kT2 f(o)/f(o)/e V. T<||V1—Co|| +lv=coll )(vl —v)-ededv,

0 [ [e (Ve (04— = )0 =)-edean.
(3.10)
According to Ref. [7, Formula 16.8,2] we have

/e(vl —v)~ede:2—n(v1 —).

3
Thus, Eq. (3.10) implies
1= 20 [100, =9 Vo

2” 2ot / 00, — ) V. Ty

271 m
Sl ffﬁ(” (1 =) VT (I = ol + Iy = ol )b
2 m

F T L[5 000 T (00— )+ 0= )i

G3.11)
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590 GARCIA AND WAGNER
Note that (cf. Eq. (3.2))
[0 = vt (1 = e+ Iy = Py =,
[0 = vt (1 = e + 1y = @l
=0 =¢p)- vxTn[%T+ Iv— Co||2:|,
(cf. Eq. (A.1))
[0 = e T (00— )+ 0= o))y
= [0 = ) Fea)n = cordvy = diveeo)
and

[0 = @ (on = e+ 0 )
= n(v — ¢p) - (Vio)(v — ¢o).

Thus, Eq. (3.11) implies

27 2 2w 3
I=—Z26 O =) Van+ = 2 & fO n(v — ¢p) - V, T

3 n 37T
2t m 3 £(0) 3kT 2

- —¢) VoTn| ==+ |v—c
+ 512 OO0 = ) VT | == Iy =
27 m kT .
Sl [n — divley) = n(v = o) - (Vo) (v = cO)}
2 2

:——7Tna3f(0)—(v—co)-vxn

3 n
27 3 m

-5 n0’ [0 = o) VXT[—ZT g V- Co||2}

2 . m
+ =m0 1O divieg) = 2= (0 = o)+ (Vo) = ).
3 kT

When multiplying with ¥ = 1, v —¢;, ||v — ¢ol/*and integrating with
respect to v, many terms vanish. One obtains (cf. Eq. (A.1))

m

2 . kTn .
fdv] =3 no’ [n div(cq) — T om dlv(co)i| =0, (3.12)
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KINETIC EQUATION FOR CBA 591

(cf. Egs. (A.2), (A.4), (A.3))

2 32 kTn 27 3 3 kTn
= — -—V — — — VT
3 n * 3 2T ¥
2r 3 m kT\*
- — Sn{— ) V.T
3 2kT? <m> *
2r 5 2kT v +27rn Sy T 3kn  Skn
= — — _— — NO _—
3 m " 3 2m 2m
2 2kT 2 2
:——nna3LVxn——nna3@VxT:——n o> V. (kn*T)
3 m 3 m 3m

(3.13)
and (cf. Eq. (A.6))

2
/dv lv—coll*1 :2;1103 div(cy) 3kTn —2—7Tn 3 g, (k—T> div(cy)
m

m 3 7 kT
2 Tn 5kT
:—ﬂna3div(co)|:3k n_k ”}
3 m m
= 27 e div(eg) 2T (3.14)
3 m

Note that the corresponding integrals of the term Eq. (3.9) are zero.

3.3. Comparison of Both Sides
From Egs. (3.4), (3.12), one obtains

D .
" + ndiv(cy) = 0. (3.15)

This equation is identical with Ref. [7, (16.33,3)].
From Egs. (3.6), (3.13) one obtains

D 1 2
N co+— Vi(knT) + L &>V (kni®T) = 0,
Dt m 3m

or

D 1 27'[ 3
no o+ Vx[knT[l+?a nH —0. (3.16)
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Introducing (cf. Ref. [7, (16.33,2)])
2 3
:knT[l +3 o n] (3.17)
and up to some notations, Eq. (3.16) is identical with Ref. [7, Formula
16.33,4]. This equation of state is in agreement with that obtained from

the virial.'"
From Egs. (3.7), (3.14), one obtains

kT D kn D kT 2kT
KT D 3 T+5” dlv(co)—i——na div(cy) ”_o
m Dt m Dt
or, using Eq. (3.15),
3kn D 2
— Di T + kT div(cy) [1 +? no3] =0,
ie.,
D 2 2
o T+3 Tdiv(co)[l +?” na3i| — 0. (3.18)

Taking into account Eq. (3.17), this equation is identical with Ref. [7,
formula 16.33,5].

Equations (3.15), (3.16), (3.18) are the first order approximations to the
equations of continuity, momentum, and energy. These are the Euler equa-
tions with the hydrostatic pressure given by Eq. (3.17) and they are identical
to those obtained for the Enskog equation (recall that for simplicity x was
taken as unity). For future work, the Chapman-Enskog analysis may be
continued to evaluate the transport coefficients (cf. Ref. [6, Ch. V.6]) by
computing the collisional transfer of momentum, energy, and for CBA,
mass. We anticipate that, as with the Enskog equation, the resulting viscosity,
thermal conductivity, and self-diffusion coefficient will be in good agreement
with the results already obtained by Green-Kubo analysis (cf. Ref. [1,15]).

APPENDIX: MOMENTS OF A GAUSSIAN VARIABLE

Let € = v —¢y. Then

kTn
/dv_f(0)§~A$=/dvf()Z§] jk&— la; 1 +arr+ass], (A
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[ar@ees= [arOsn="""0, (A2)
[arOss ae= [0 g =0, (A3)

J-k

2
[rrOse-vier = [anr g =nn () 0141431
2
[arrOuert = a6+ =150(57) (A3)
and

/ dvf O e At = f drf O1ER S g a6 = f OV &Y
J.k i J

kT\?
=nm\ - [Bai1+ayr+az3+a +3as+az3+a ) +ax,+3as 3]

kT\*
=5n<m) [H1,1+az,2+a3,3]~ (A6)

These formulas follow from elementary properties of one-dimensional
Gaussian random variables, in particular, En* = 3(En)?, i..,

1 1 2 kT 2
- f dof I51* = 3[; / dvf ||si||2] = 3(;> :
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