
Journal of Computational Physics 217 (2006) 693–708

www.elsevier.com/locate/jcp
Generation of the Maxwellian inflow distribution

Alejandro L. Garcia a,*, Wolfgang Wagner b

a Department of Physics, San Jose State University, Science Building, Room 245, One Washington Square, San Jose, CA 95192-0106, USA
b Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany

Received 23 February 2005; received in revised form 11 January 2006; accepted 17 January 2006
Available online 3 March 2006
Abstract

This paper presents several efficient, exact acceptance–rejection methods for generating the Maxwellian inflow distribu-
tion, the velocity distribution of gas molecules crossing a plane. The new methods are demonstrated to be computationally
faster and more accurate than the schemes commonly used for open boundary conditions in particle simulations.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Random number generation; Direct simulation Monte Carlo; Open boundary conditions; Acceptance–rejection methods
1. Introduction

Stochastic algorithms, commonly referred to as Monte Carlo methods, use random numbers generated
from a variety of distributions. Efficient generators have been developed for the most commonly used distri-
butions (e.g., uniform, Gaussian, and exponential) and general techniques (e.g., inversion) are available for
arbitrary distributions [1,2]. However, generating a complicated distribution by a generic method may not
be efficient or accurate, which is why specialized generators for specific applications are welcome.

This paper discusses the generation of random values z from the distribution
0021-9

doi:10.

* Co
E-m
paðzÞ ¼
2ða� zÞ expð�z2Þ

expð�a2Þ þ a
ffiffiffi
p
p
½1þ erfðaÞ� ; z < a; ð1:1Þ
where a is some real-valued parameter and erf denotes the error function (cf. (A.12)). As shown in Sections 2
and 3, this distribution arises when implementing the inflow boundary condition for particles crossing a sur-
face. Specifically, it is associated with the velocity distribution of particles, Maxwellian distributed in their
moving frame of reference, that pass through a plane. This boundary condition is very common in molecular
simulations of hydrodynamic flows in open systems [3,4]. With this association, we call pa(z) the Maxwellian
inflow distribution. Note that for a = 0 the distribution (1.1) reduces to the Rayleigh distribution, which is
trivial to generate [1].
991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

1016/j.jcp.2006.01.025

rresponding author. Tel.: +1 408 924 5244; fax: +1 408 924 4815.
ail address: algarcia@algarcia.org (A.L. Garcia).

mailto:algarcia@algarcia.org

694 A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708
Section 3 describes the general algorithm for generating the random velocities of particles for an inflow
boundary condition. For the Maxwellian inflow distribution (1.1) there are three methods for random variate
generation that are in common use. The first is inversion (see Section 4), which has the disadvantage of being
computationally expensive. The other two are approximate acceptance–rejection schemes, discussed in [5] and
in Section 5.1, which are more efficient than inversion but not exact.

In Section 5.2, we develop several exact acceptance–rejection schemes that are more efficient than any of the
three methods in common use. The computational efficiency of all the schemes is discussed in Section 6. Their
programming implementation in a practical example is summarized in Section 7. We conclude in Section 8
with some further remarks regarding applications of the present schemes and their extension to other
distributions.
2. Maxwellian inflow

This section establishes the mathematical formulation for inflow boundary conditions. Readers inter-
ested in a more physical introduction, presented in the context of a specific example, are directed to Sec-
tion 7.

The general inflow boundary condition for the Boltzmann equation [6] is
f ðt; x; vÞðv; nðxÞÞ ¼ bðx; vÞ;

where t P 0, x 2 oD and the velocity v 2 R3 is such that (v,n(x)) > 0. Here, oD denotes the boundary of the
spatial domain D; n(x) is the unit inward normal vector at x 2 oD; (v,n) is the scalar (dot) product of vectors v

and n. The function b determines the inflow intensity (waiting time parameter)
k ¼ 1

g

Z
oD

Z
ðv;nðxÞÞ>0

bðx; vÞdvrðdxÞ ð2:1Þ
and the inflow law
1

gk
bðx; vÞ; ð2:2Þ
where r(dx) denotes the uniform surface measure (area) on oD and g is the weight of the incoming particles.
A case of special interest is Maxwellian inflow
bðx; vÞ ¼
M.;V ;T ðvÞðv; eÞ if x 2 C; ðv; eÞ > 0;

0 otherwise,

�

where
M.;V ;T ðvÞ ¼
.

ð2pT Þ3=2
exp �kv� V k2

2T

 !
is the Maxwellian distribution and
e ¼ nðxÞ 8x 2 C � oD;
is the unit normal for some plane part C of the boundary. The inflow intensity (2.1) takes the form
k ¼ 1

g
rðCÞC; ð2:3Þ
where
C ¼
Z
ðv;eÞ>0

M.;V ;T ðvÞðv; eÞdv. ð2:4Þ
According to the inflow law (2.2), the position of the incoming particle is distributed uniformly on C, the in-
flow boundary, and the particle enters the domain by leaving this boundary at a random time [5,7,8]. Its veloc-
ity is generated according to the probability density

A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708 695
qðvÞ ¼ C�1M.;V ;T ðvÞðv; eÞ if ðv; eÞ > 0;

0 otherwise.

(
ð2:5Þ
3. General algorithm

We now turn to the question of how to generate a random variable n according to the probability density
(2.5). Employing a standard substitution, which for completeness is presented in Appendix A, the problem is
reduced to generating from the density
~qðw1;w2;w3Þ ¼
2mðaÞ�1p�1ðaþ w3Þ expð�jjwjj2Þ if aþ w3 > 0;

0 otherwise,

(

where
a ¼ ðV ; eÞffiffiffiffiffiffi
2T
p ð3:1Þ
is the speed ratio and
mðxÞ ¼ expð�x2Þ þ x
ffiffiffi
p
p
½1þ erfðxÞ�; x 2 R. ð3:2Þ
The components of w are independent; the first two components are distributed according to the probability
density
1

p
exp �w2

1 � w2
2

� �
; w1;w2 2 R;
and the third is obtained as
w3 ¼ �z; ð3:3Þ
where z is distributed according to the Maxwell inflow distribution
paðzÞ ¼
2

mðaÞ ða� zÞ expð�z2Þ; z 2 ð�1; aÞ. ð3:4Þ
The random variable n is obtained as (cf. (A.2), (3.3))
n ¼ V þ
ffiffiffiffiffiffi
2T
p

QðeÞ
w�1
w�2
�z�

0
B@

1
CA, ð3:5Þ
where Q is a coordinate rotation matrix (cf. (A.1)). The variables w�1 and w�2 are independent Gaussians with
zero mean and variance 1/2. In the case a = 0, one obtains from the inverse transformation (see Section 4) and
(A.10)
z� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log u

p
; ð3:6Þ
where u is uniformly distributed on (0, 1). The generation of the variable z* in the case a 6¼ 0, which is the point
of this paper, will be discussed in the following sections.
4. Inverse transform

One method to obtain the component z* to be used in (3.5) is by the inverse transform method [1,2], that is,
by solving numerically the equation
Z z

�1
paðxÞdx ¼ u; z < a; ð4:1Þ

696 A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708
where u is uniformly distributed on (0, 1). Denote the left-hand side of Eq. (4.1) by Fa(z). According to (A.9)
(A.10), and (3.4), one obtains
F aðzÞ ¼
1

mðaÞ fexpð�z2Þ þ a
ffiffiffi
p
p
½1þ erfðzÞ�g.
Furthermore, F 0aðxÞ ¼ paðxÞ and
p0aðzÞ ¼
2

mðaÞ expð�z2Þ½2z2 � 2za� 1�.
Thus, the function Fa has an inflection point at
zðaÞ ¼ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2
p

2
; ð4:2Þ
and the function pa takes its maximum there, that is,
max
z<a

paðzÞ ¼ paðzðaÞÞ. ð4:3Þ
Note that z(a) < min(a,0).
Eq. (4.1) is solved by a Newton iteration, starting with the initial guess z0 = z(a). Calculate the error
Ek ¼ F aðzkÞ � u; k ¼ 0; 1; 2; . . . ;
and stop if it is small enough, specifically if |Ek| < Ed. Otherwise, calculate the new guess
zkþ1 ¼ zk �
Ek

F 0aðzkÞ
¼ zk �

mðaÞEk

2ða� zkÞ expð�z2
kÞ
and continue the iteration.
The inversion method, as described above, has the disadvantage of being computationally expensive rela-

tive to other generators, as discussed in Section 6. An alternative to Newton iteration is to pre-compute Fa(z),
use (4.1) to tabulate F �1

a ðuÞ and then generate z by interpolated table lookup. For the Maxwellian inflow dis-
tribution there are several disadvantages to this approach: First, the infinite tail of the distribution must be
treated separately, typically by acceptance–rejection (see the following section). Second, the scheme is not
exact and a large table, costing computer memory, with a good interpolation scheme, costing computer time,
are needed to maintain accuracy. Finally, the table of F �1

a must be recomputed for each different value of a.
Given the computational efficiency of the generators presented in this paper (see Section 6) it is unlikely that
inversion by table lookup, or other table methods [1], would be competitive.

5. Acceptance–rejection

This section discusses the use of the acceptance–rejection technique to generate the component z* to
be used in (3.5). This technique is based on selecting a suitable majorant (envelope) p̂ such that (cf. (3.4))
paðzÞ 6 p̂ðzÞ 8z < a. ð5:1Þ

The component z* is generated according to the probability density
1R a
�1 p̂ðxÞdx

p̂ðzÞ; z < a; ð5:2Þ
and is accepted with probability
paðz�Þ
p̂ðz�Þ ð5:3Þ
so
1R a
�1 p̂ðxÞdx

ð5:4Þ
is the acceptance rate.

A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708 697
The efficiency of the acceptance–rejection method obviously depends on the choice of the envelope function
p̂. Ideally, the acceptance rate will be close to one and the probability density (5.2) is a distribution that can be
generated efficiently.
5.1. Approximate envelopes

This section presents two approximate acceptance–rejection methods that are in common use [5]. The
schemes are approximate because the envelopes do not satisfy (5.1) and thus the distributions they generate
only approximate pa(z).
5.1.1. Box envelope

The first approximate method uses a rectangular box envelope (cf. (4.2), (4.3))
p̂BðzÞ ¼
paðzðaÞÞ; z<ðaÞ < z < z>ðaÞ;
0 otherwise,

�

where z<(a) < z>(a) 6 a are some parameters to be specified later. Note that
Z z

�1
p̂BðxÞdx ¼

0; z < z<ðaÞ;
paðzðaÞÞðz� z<ðaÞÞ; z<ðaÞ < z < z>ðaÞ;
paðzðaÞÞðz>ðaÞ � z<ðaÞÞ; z > z>ðaÞ.

8><
>:
One generates z* as
z� ¼ z<ðaÞ þ ðz>ðaÞ � z<ðaÞÞu
which is accepted with probability (cf. (5.3))
paðz�Þ
paðzðaÞÞ

¼ a� z�

a� zðaÞ expðzðaÞ2 � ðz�Þ2Þ.
This method is approximate since the condition (cf. (5.1))
paðzÞ 6 p̂BðzÞ
is not satisfied for z < z<(a) and for z > z>(a). The actual distribution generated by the box envelope is
~paðzÞ ¼
paðzÞ=mBðaÞ; z<ðaÞ < z < z>ðaÞ;
0 otherwise,

�

where
mBðaÞ ¼
Z z>

z<

paðzÞdz.
5.1.2. Reservoir envelope

The second approximate method uses the envelope
p̂RðzÞ ¼
2

mðaÞ ða� z<ðaÞÞ expð�z2Þ;
where z<(a) < a is some parameter to be specified later. One generates z* according to the probability
density
1ffiffiffi
p
p expð�z2Þ ð5:5Þ

698 A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708
so that z* is a Gaussian with zero mean and variance 1/2. The generated value is rejected if z* > a, accepted
with probability (cf. (5.3))
paðz�Þ
p̂Rðz�Þ

¼ a� z�

a� z<ðaÞ
ð5:6Þ
if z* > z<(a), and accepted with probability one otherwise.
The reservoir method is so named because it has the following physical interpretation: A particle is gener-

ated in a reservoir with position x and velocity v. The position is chosen uniformly from the interval (�L, 0)
and the velocity chosen as v = a � z where z is distributed as (5.5). The particle is accepted if it moves past the
origin during a time interval s, that is,
xþ vs > 0 or ða� zÞs > uL.
Taking
s ¼ L
a� z<ðaÞ
gives us that z is accepted with probability (5.6).
Note that this method is approximate since the condition (cf. (5.1))
paðzÞ 6 p̂RðzÞ
is not satisfied for z < z<(a). The actual distribution generated by the reservoir envelope is
~paðzÞ ¼
1

mRðaÞ
paðzÞ; z<ðaÞ < z < a;

p̂RðzÞ otherwise,

�

where
mRðaÞ ¼
Z a

z<

paðzÞdzþ
Z z<

�1
p̂RðzÞdz.
5.1.3. Truncation errors

The error in these approximate methods is most easily seen from the absolute fractional error in the
moments, that is,
hzii � h~zii
hzii

����
����;
where
hzii ¼
Z a

�1
zipaðzÞdz and h~zii ¼

Z a

�1
zi~paðzÞdz.
This error is shown in Fig. 1 for the box and reservoir envelopes using typical values for the parameters (see
[5,7]) in these approximate envelopes. For the higher moments, the error is large (a few percent) when a < 0.
This error can be reduced by suitable choice of the envelopes’ parameters but at the price of computational
efficiency (see Section 6).
5.2. Exact envelopes

This section presents the main results of this paper, namely, four exact envelope functions, two for each
case of negative and positive speed ratio (a < 0 and a > 0). We later show (see Section 6) that these envelopes
yield efficient acceptance–rejection schemes for the Maxwellian inflow distribution. Of the four envelopes pre-
sented in this section, the first and the third are most efficient for low-speed ratio ðjaj < 1

2
Þ while the other two

are efficient for a broad range of a.

-5 -4 -3 -2 -1 0 1 2 3 4 5

10
-4

10
-3

10
-2

10
-1

10
0

a

F
ra

c.
 e

rr
or

 in
 m

om
en

ts

<z>

<z2>

<z3>

α
1
 = 1

α
1
 = 2

-5 -4 -3 -2 -1 0 1 2 3 4 5
10-6

10-5

10-4

10-3

10-2

10-1

<z>

<z2>

<z3>

a

F
ra

c.
 e

rr
or

 in
 m

om
en

ts

Fig. 1. Absolute fractional error in the first three moments as a function of speed ratio, a. Upper figure is for the box envelope with
z<(a) = min(a � a1, �3), z>(a) = min(a, 3) for a1 = 1 (solid line) and a1 = 2 (dashed line). Lower figure is the reservoir envelope with
z<(a) = min(a � 1, �3).

A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708 699

700 A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708
5.2.1. Envelope 1 (a < 0)

For a < 0, consider the envelope
Fig. 2.
(dashe
p̂1ðzÞ ¼
2

mðaÞ ð�zÞ expð�z2Þ
and note that (cf. (A.10))
Z z

�1
p̂1ðxÞdx ¼ 1

mðaÞ expð�z2Þ. ð5:7Þ
The acceptance rate (5.4) is
mðaÞ
expð�a2Þ
and tends to 1 as a! 0 (see Fig. 2). One obtains from (5.7)
z� ¼ �
ffi
a2 � log u

p
ð5:8Þ
and the acceptance probability (5.3) is
a� z�

�z�
!

0 if z� ! a;

1 if z� ! �1.

�

5.2.2. Envelope 2 (a < 0)

For a < 0, consider the envelope (cf. (4.2), (4.3))
p̂2ðzÞ ¼
p̂1ðzÞ if z < bðaÞ;
paðzðaÞÞ if z 2 ½bðaÞ; aÞ;

�

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

a

A
cc

ep
ta

nc
e

R
at

e

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

a

A
cc

ep
ta

nc
e

R
at

e

Acceptance rates for: Envelope 1 (solid line, a < 0); Envelope 2 (dashed line, a < 0); Envelope 3 (solid line, a > 0); Envelope 4
d line, a > 0).

A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708 701
where the function b satisfies
bðaÞ 6 a.
The previous case is obtained for b(a) = a. One obtains
Z a

�1
p̂2ðzÞdz ¼ 1

mðaÞ ½expð�bðaÞ2Þ þ 2 expð�zðaÞ2Þða� zðaÞÞ½a� bðaÞ��
and the corresponding acceptance rate (5.4). Our particular choice is
bðaÞ ¼ a� ð1� aÞða� zðaÞÞ;

which gives a favorable acceptance rate over a wide range of a (see Fig. 2).

For this piece-wise envelope, with probability
expð�bðaÞ2Þ
expð�bðaÞ2Þ þ 2 expð�zðaÞ2Þða� zðaÞÞ½a� bðaÞ�

;

z* is generated according to the probability density
2 expðbðaÞ2Þð�zÞ expð�z2Þ; z < bðaÞ;

so that (cf. (5.8))
z� ¼ �
ffi
bðaÞ2 � log u

q
;

and accepted with probability
a� z�

�z�
.

With probability
2 expð�zðaÞ2Þða� zðaÞÞ½a� bðaÞ�
expð�bðaÞ2Þ þ 2 expð�zðaÞ2Þða� zðaÞÞ½a� bðaÞ�
z* is generated uniformly on [b(a),a] and accepted with probability

a� z�

a� zðaÞ expðzðaÞ2 � ðz�Þ2Þ.
5.2.3. Envelope 3 (a > 0)

For a > 0, consider the envelope
p̂3ðzÞ ¼
paðzÞ if z 6 0;

2mðaÞ�1ða� zÞ if z 2 ð0; aÞ;

(

and note that (cf. (A.9) and (A.10))
Z a

�1
p̂3ðzÞdz ¼ 1

mðaÞ ða
ffiffiffi
p
p
þ 1þ a2Þ.
The acceptance rate (5.4) is
mðaÞ
a
ffiffiffi
p
p
þ 1þ a2

;

which is shown in Fig. 2 to be close to unity for a < 1.
With probability
a
ffiffiffi
p
p

a
ffiffiffi
p
p
þ 1þ a2

702 A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708
one generates z* according to the probability density
2ffiffiffi
p
p expð�z2Þ; z 6 0;
so that z* is a one-sided Gaussian with parameters 0 and 1/2. With probability
1

a
ffiffiffi
p
p
þ 1þ a2
one generates z* according to the probability density
2ð�zÞ expð�z2Þ; z 6 0;
so that z* is defined in (3.6). With probability
a2

a
ffiffiffi
p
p
þ 1þ a2
one generates z* according to the probability density
2

a2
ða� zÞ; z 2 ð0; aÞ;
so that
z� ¼ að1�
ffiffiffi
u
p
Þ;
and accepts it with probability
expð�ðz�Þ2Þ.
5.2.4. Envelope 4 (a > 0)
For a > 0, consider the envelope
p̂4ðzÞ ¼
paðzÞ if z 6 0;

2mðaÞ�1a expð�z2Þ if z > 0;

(

and note that (cf. (A.10))
Z a

�1
p̂4ðzÞdz ¼ 1

mðaÞ ð2a
ffiffiffi
p
p
þ 1Þ.
The acceptance rate (5.4) is
mðaÞ
2a

ffiffiffi
p
p
þ 1

;

which is shown in Fig. 2 to be favorable over a wide range of values, going to unity as a!1.
With probability
2a
ffiffiffi
p
p

2a
ffiffiffi
p
p
þ 1
one generates z* according to the probability density
1ffiffiffi
p
p expð�z2Þ; z 2 R;
so that z* is Gaussian with zero mean and variance 1/2. With probability
1

2a
ffiffiffi
p
p
þ 1

A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708 703
one generates z* according to the probability density
1 Th
2ð�zÞ expð�z2Þ; z 6 0;
so that z* is defined in (3.6), and accepts it with probability
paðz�Þ
p̂4ðz�Þ

¼
1 if z� 6 0;

1� z�=a if z� 2 ð0; aÞ;
0 if z� P a.

8><
>:
6. Computational efficiency

The computational efficiencies of the different generators were evaluated by measuring CPU time.1 Follow-
ing [5], the relative efficiency was obtained by normalizing these CPU times relative to the CPU time of the box
envelope method (see Section 5.1.1) for a = 0. Parameter values typical of common usage were used, specif-
ically: Ed = 10�5 for inversion; z<(a), z>(a) for box and reservoir envelopes, as in Fig. 1. The Merenne twister
method [16] and the polar Box-Muller method [10] were used to generate uniformly distributed and normal
(Gaussian) distributed random numbers, respectively.

Figs. 3 and 4 present the computational efficiencies of the various methods. The absolute computational
expense may be estimated from the observation that, for the case a = 0, the generator based on Envelope 1
is only slightly more expensive than generating a pair of uniformly distributed random variables.

Fig. 3 shows that a generator that combines Envelopes 1 and 3 (see Sections 5.2.1, 5.2.3 and Table 1) is the
most efficient for low-speed flows (|a|� 1). Fig. 4 illustrates that a generator based on Envelopes 2 and 4 (see
Sections 5.2.2, 5.2.4 and Table 2) is efficient over a wide range of speed ratio.

Inversion is computationally expensive, even though Newton’s method converges quickly and our imple-
mentation uses an efficient polynomial approximation for the error function [10]. For a < �1 the box method
is efficient when a1 = 1 but not accurate (see Fig. 1); for a1 = 2 the box method is not competitive. The res-
ervoir method is very inefficient for a < 0 and not competitive with the method using Envelopes 2 and 4
for a > 0.

7. Practical example

For the convenience of readers wishing to implement the generators described in this paper this self-
contained section illustrates their use in the context of a typical physics application.

Consider particles (mass l) uniformly distributed in space, with number density ., and Maxwell-Boltzmann
distributed in velocity, with mean velocity V = (Vx, Vy, Vz) and temperature T. The probability distribution
for the velocity of particles, v = (vx, vy, vz), crossing the y � z plane in the +x-direction is
pðvÞ ¼ C�1vx expð�jv� Vj2=v2
T Þ; vx > 0;
where vT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=l

p
is the most probable thermal speed, k is Boltzmann’s constant, and C is the normaliza-

tion constant.
From the inflow intensity (cf. (2.3), (2.4) and (A.13)) the mean number of particles crossing a surface area r

during a time interval s is
.rs
vT

2
ffiffiffi
p
p fexpð�a2Þ þ a

ffiffiffi
p
p
½1þ erfðaÞ�g;
where a = Vx/vT is the speed ratio. Typically an open boundary condition is implemented by determining the
number of particles that cross a surface during a time interval and generating those particles at random times,
uniformly distributed in the time interval [5,7]. As shown in [9], the random integer number of particles should
be chosen from a Poisson distribution with the appropriate mean to avoid anomalous correlations.
e programs used Microsoft Visual C++ and were run on an Intel Pentium M processor.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

Speed ratio

E
ffi

ci
en

cy

Envelopes 1 & 3

Envelopes 2 & 4

Inversion

Box (α
1
 = 1)

Box (α
1
 = 2)

Reservoir

Fig. 4. Relative computational efficiency versus speed ratio. Data is for: Envelopes 1 and 3 (circles); Envelopes 2 and 4 (squares); inversion
(stars), box envelope (asterisks for a1 = 1, crosses for a1 = 2), reservoir envelope (triangles).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Speed ratio

E
ffi

ci
en

cy

Envelopes 1 & 3

Envelopes 2 & 4

Inversion

Box (α
1
 = 1)

Box (α
1
 = 2)

Reservoir

Fig. 3. Relative computational efficiency versus speed ratio in the low-speed (|a| < 1) regime. See Fig. 4 caption for legend.

704 A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708

Table 2
Outline of acceptance rejection method using Envelopes 2 and 4

� If a < 0,
1. Set zðaÞ ¼ 1

2
ða�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2
p

Þ and b(a) = a � (1 � a)[a � z(a)]

2. If,
expð�bðaÞ2Þ

expð�bðaÞ2Þ þ 2½a� zðaÞ�½a� bðaÞ� expð�zðaÞ2Þ
> Ru

(a) Compute z� ¼ �
ffi
bðaÞ2 � log R0u

q
(b) If,

a� z�

�z�
> R00u then return z*, else go to step 2

3. Else,
(a) Compute z� ¼ bðaÞ þ ½a� bðaÞ�R0u
(b) If,

a� z�

a� zðaÞ expðzðaÞ2 � ðz�Þ2Þ > R00u then return z*, else go to step 2

� If a P 0,
1. If

1

2a
ffiffiffi
p
p
þ 1

> Ru then z� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log R0u

p
, else z� ¼ 1ffiffi

2
p Rn

2. If
a� z�

a
> R00u then return z*

3. Else go to 1

Recommended generator for general problems.

Table 1
Outline of acceptance rejection method using Envelopes 1 and 3

� If a 6 0,
1. Compute z� ¼ �

ffi
a2 � log Ru

p
2. If

a� z�

�z�
> R0u return z*, else go to step 1

� If a > 0,
1. Set u ¼ Ru

2. If
a
ffiffiffi
p
p

a
ffiffiffi
p
p
þ 1þ a2

> u then return z� ¼ � 1ffiffi
2
p jRnj

3. Else if
a
ffiffiffi
p
p
þ 1

a
ffiffiffi
p
p
þ 1þ a2

> u then return z� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log R0u

p
4. Else,

(a) Compute z� ¼ ð1�
ffiffiffiffiffiffi
R0u

p
Þa

(b) If expð�ðz�Þ2Þ > R00u then return z*, else go to step 1

Recommended generator for low-speed problems.

A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708 705
For the velocity distribution, the y and z components are independent and generated as
vy ¼ V y þ
ffiffiffi
1

2

r
vT Rn; vz ¼ V z þ

ffiffiffi
1

2

r
vT R0n;
where Rn, R0n are independent, normal (Gaussian) distributed random values with zero mean and unit
variance.

For the special case Vx = 0, the normal component is easily generated as
vx ¼ vT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� log Ru

p
;

where Ru is a uniformly distributed random value in the interval (0, 1). In the general case (Vx 6¼ 0), we gen-
erate this component as
vx ¼ ða� z�ÞvT ¼ V x � z�vT ;
where z* is generated from the Maxwell inflow distribution.
From our studies, we recommend generating z* by the method outlined in Table 1 for the low-speed flows in

the approximate range �0.4vT < Vx < 1.3vT (see Figs. 3 and 4). This method uses Envelope 1 (Section 5.2.1)

Table 3
Outline of inversion method

1. Select the desired absolute error, Ed

2. Set u ¼ Ru, k = 0, mðaÞ ¼ expð�a2Þ þ a
ffiffiffi
p
p
½1þ erfðaÞ�

3. Compute initial guess z0 ¼
1

2
ða�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2

p
Þ

4. Compute current absolute error, Ek ¼
1

mðaÞ fexpð�z2
kÞ þ a

ffiffiffi
p
p
½1þ erfðzkÞ�g

5. If |Ek| < Ed, then return z* = zk

6. Else,
(a) Compute new guess, zkþ1 ¼ zk �

EkmðaÞ
2ða� zkÞ expð�z2

kÞ(b) Set k = k + 1 and go to step 4

Table 4
Outline of box envelope method

1. Select z<(a) and z>(a). Typically z<(a) = min(a � a1, �a2), z>(a) = min(a, a2) with a1 = 1 or 2 and a2 = 3

2. Set zðaÞ ¼ 1

2
ða�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 2

p
Þ

3. Compute z� ¼ z<ðaÞ þ ½z>ðaÞ � z<ðaÞ�Ru

4. If
a� z�

a� zðaÞ expðzðaÞ2 � ðz�Þ2Þ > R0u then return z*, else go to step 3

Table 5
Outline of reservoir envelope method

1. Select z<(a). Typically z<(a) = min(a � 1, �aR) with aR = 3

2. If a 6 0, compute z� ¼ � 1ffiffiffi
2
p jRnj, else z� ¼ 1ffiffiffi

2
p Rn

3. If
a� z�

a� z<ðaÞ
> Ru then return z*, else go to step 2

706 A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708
for a 6 0 and Envelope 3 (Section 5.2.3) for a > 0. The method outlined in Table 2, which uses Envelope 2
(Section 5.2.2) for a < 0 and Envelope 4 (Section 5.2.4) for a P 0, is recommended for high speed or mixed
speed flows. For reference, three alternative methods in common use, inversion (Section 4), box envelope (Sec-
tion 5.1.1), and reservoir (Section 5.1.2), are outlined in Tables 3–5.

The various numerical schemes outlined in this paper are summarized in Tables 1–5. In those tables, Ru,
R0u, and R00u are independent, uniformly distributed random values in the interval (0, 1) and Rn is a normal
(Gaussian) distributed random value with zero mean and unit variance.

8. Concluding remarks

To summarize the main results, two new formulations are developed for generating random values from the
Maxwell inflow distribution (1.1). For small-speed ratio, approximately in the range �0.4 < a < 1.3, accep-
tance–rejection using the envelopes in Sections 5.2.1 and 5.2.3 is recommended. For the more general case,
acceptance–rejection using the envelopes in Sections 5.2.2 and 5.2.4 are recommended. These new formula-
tions are simple to implement (see Tables 1 and 2) and are several times faster computationally than the gen-
erators in common use (see Section 6).

The most common application for generators of the Maxwell inflow distribution is the implementation of
open boundary conditions for particle simulations, especially direct simulation Monte Carlo (DSMC) and
related schemes based on the Boltzmann equation [7]. Adaptive algorithm hybrids [11–13], which couple a par-
ticle simulation with a continuum solver, also generate random velocities for particles crossing the algorithms’
interface. Another numerical application is the computation of Master equation trajectories for Brownian sys-
tems, such as the ‘‘adiabatic piston’’ and thermal Brownian motors [14].

Finally, the Maxwell inflow distribution may be used in the construction of generators for other distribu-
tions. For example, [15] describes two iterative methods that use the simple Maxwellian (Gaussian) generator

A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708 707
to produce random values from the Chapman–Enskog distribution. It should be possible to generalize these
methods to generate efficiently the Chapman–Enskog inflow distribution using the Maxwell inflow distribu-
tion schemes presented in this paper.

Appendix A. Inflow functionals and transformations

Let e be given in spherical coordinates as
e ¼ ðcos u sin h; sin u sin h; cos hÞ; u 2 ½0; 2pÞ; h 2 ½0; p�.

Introduce the orthogonal matrix
QðeÞ ¼
cos u cos h � sin u cos u sin h

sin u cos h cos u sin u sin h

� sin h 0 cos h

0
B@

1
CA ðA:1Þ
and note that
QðeÞ0e ¼ ð0; 0; 1Þ;

where Q 0 denotes the transposed matrix. Using the substitution
v ¼ V þ
ffiffiffiffiffiffi
2T
p

QðeÞw; dv ¼ ð2T Þ3=2dw; ðA:2Þ

and taking into account that
ðV þ
ffiffiffiffiffiffi
2T
p

QðeÞw; eÞ ¼ ðV ; eÞ þ
ffiffiffiffiffiffi
2T
p

w3 ðA:3Þ

and
M.;V ;T ðV þ
ffiffiffiffiffiffi
2T
p

QðeÞwÞ ¼ .

ð2pT Þ3=2
expð�kwk2Þ; ðA:4Þ
one obtains
Z
R3

hðvÞqðvÞdv ¼ .
ffiffiffiffiffiffi
2T
p

Cp3=2

Z
R3

hðV þ
ffiffiffiffiffiffi
2T
p

QðeÞwÞ expð�kwk2Þðaþ w3Þvðaþ w3Þdw; ðA:5Þ
where h is any given function, q and a are defined in (2.5) and (3.1), respectively, and v denotes the Heaviside
function.

In particular, (A.5) allows us to calculate functionals of the normal velocity component of the incoming
particles (cf. (2.5)), that is,
UðwÞ ¼
Z
R3

wððv; eÞÞqðvÞdv. ðA:6Þ
Moments are obtained for
wðxÞ ¼ wkðxÞ ¼ xk; k ¼ 1; 2; ðA:7Þ

These moments will quantify the errors in the approximate generators (see Section 5.1.3). One obtains from
(A.5) that
UðwÞ ¼ .
C

ffiffiffiffiffiffi
2T
p

r Z a

�1
wð

ffiffiffiffiffiffi
2T
p
ða� zÞÞða� zÞ expð�z2Þdz. ðA:8Þ
Note that
Z x

�1
expð�z2Þdz ¼

ffiffiffi
p
p

2
½1þ erfðxÞ� 8x 2 R; ðA:9ÞZ x

�1
ð�zÞ expð�z2Þdz ¼ 1

2
expð�x2Þ 8x 2 R; ðA:10Þ

708 A.L. Garcia, W. Wagner / Journal of Computational Physics 217 (2006) 693–708
and
 Z x

0

z2 expð�z2Þdz ¼
ffiffiffi
p
p

4
erfðxÞ � x

2
expð�x2Þ 8x P 0; ðA:11Þ
where
erfðyÞ ¼ 2ffiffiffi
p
p

Z y

0

expð�z2Þdz; y P 0;

erfðyÞ ¼ �erfð�yÞ; y < 0.

ðA:12Þ
Since U(1) = 1 (cf. (A.6)), we obtain from (A.8) (cf. (2.4) and (3.2))
C ¼ .

ffiffiffiffiffiffi
2T
p

r Z a

�1
ða� zÞ expð�z2Þdz ¼ .

ffiffiffiffiffiffi
T
2p

r
mðaÞ. ðA:13Þ
Thus, (A.8) takes the form
UðwÞ ¼ 2

mðaÞ

Z a

�1
wð

ffiffiffiffiffiffi
2T
p
ða� zÞÞða� zÞ expð�z2Þdz. ðA:14Þ
In particular (using (A.11)), one obtains the mean value (cf. (A.7))
Uðw1Þ ¼
2
ffiffiffiffiffiffi
2T
p

mðaÞ

Z a

�1
ða� zÞ2 expð�z2Þdz ¼

ffiffiffiffi
T
2

r ffiffiffi
p
p
½1þ erfðaÞ�ð1þ 2a2Þ þ 2a expð�a2Þffiffiffi

p
p

a½1þ erfðaÞ� þ expð�a2Þ .
References

[1] L. Devroye, Non-Uniform Random Variate Generation, Springer, New York, 1986.
[2] W. Hormann, J. Leydold, G. Derflinger, Automatic Nonuniform Random Variate Generation, Springer, New York, 2004.
[3] J. Koplik, J.R. Banavar, Ann. Rev. Fluid Mech. 27 (1995) 257–292.
[4] E.S. Oran, C.K. Oh, B.Z. Cybyk, Ann. Rev. Fluid Mech. 30 (1998) 403–441.
[5] C.R. Lilley, M.N. Macrossan, Int. J. Num. Meth. Fluids 42 (2003) 1363.
[6] C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988.
[7] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.
[8] S. Rjasanow, W. Wagner, Stochastic Numerics for the Boltzmann Equation, Springer, Berlin, 2005.
[9] M. Tysanner, A.L. Garcia, Int. J. Num. Meth. Fluids 48 (2005) 1337–1349.

[10] W.H. Press, S.A. Teukolsky, Wm.T. Vetterling, B.P. Flannery, Numerical Recipes in C++: The Art of Scientific Computing, second
ed., Cambridge University, Cambridge, 2002 (Section 6.2).

[11] A. Garcia, J. Bell, Wm.Y. Crutchfield, B.J. Alder, J. Comput. Phys. 154 (1999) 134.
[12] O. Aktas, N.R. Aluru, J. Comput. Phys. 178 (2002) 342.
[13] P. Koumoutsakos, Ann. Rev. Fluid Mech. 37 (2005) 457–487.
[14] P. Meurs, C. Van den Broeck, A.L. Garcia, Phys. Rev. E 70 (2004) 051109.
[15] A.L. Garcia, B. Alder, J. Comput. Phys. 140 (1998) 66.
[16] M. Matsumoto, T. Nishimura, ACM Trans. Model. Comput. Simul. 8 (1998) 3–30.

	Generation of the Maxwellian inflow distribution
	Introduction
	Maxwellian inflow
	General algorithm
	Inverse transform
	Acceptance-rejection
	Approximate envelopes
	Box envelope
	Reservoir envelope
	Truncation errors

	Exact envelopes
	Envelope 1 (a lt 0)
	Envelope 2 (a lt 0)
	Envelope 3 (a gt 0)
	Envelope 4 (a gt 0)

	Computational efficiency
	Practical example
	Concluding remarks
	Inflow functionals and transformations
	References

