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Abstract. We construct a hybrid particle/continuum algorithm for linear diffusion in the fluctuating hydrodynamic limit. The
particles act as independent random walkers and the fluctuating diffusion equation is solved by a finite difference scheme.
At the interface between the particle and continuum computations the coupling is by flux matching, and yields exact mass
conservation. This approach is an extension of Adaptive Mesh and Algorithm Refinement [J. Comp. Phys. 154 134 (1999)]
to stochastic partial differential equations. We present results from a variety of numerical tests, and in all cases the mean
and variance of density are obtained correctly by the stochastic hybrid algorithm. A non-stochastic hybrid (i.e., using only
deterministic continuum fluxes) results in the correct mean density, but the variance is diminished except in particle regions
away from the interface. Extensions of the approach to other applications are discussed.

INTRODUCTION

An increasingly important and growing class of computational problems involves systems where the detail required for
an accurate and effective description differs (possibly significantly) from one spatial region to another. One efficient
approach to solving these spatio-temporal, multi-scale problems is to perform detailed calculations, using an expensive
algorithm, only where absolutely required and coupling this computation to a simpler, less expensive method, which
is used in the rest of the domain. Such “hybrid” methods typically couple (at least) two structurally (physically and
algorithmically) different computational schemes, which are used in different regions of the problem (e.g., near and far
from a shock or combustion front). One class of hybrids involves matching a continuum partial differential equation
(PDE) solver to a particle method, such as Direct Simulation Monte Carlo ([1]-[7]) or Molecular Dynamics ([8]-[12]).
Such a multi-algorithm approach, also known as Algorithm Refinement, is advantageous when the computational
expense of a hybrid calculation is much less than that of performing the entire calculation using the more expensive of
the two algorithms.

To make Algorithm Refinement a reliable numerical tool, one must address a variety of issues. From a numerical
analysis perspective, one issue is how the marriage of two very different algorithms affects the accuracy of both the
individual and combined methods. Another issue is that of noise. Until now, the testing of Algorithm Refinement
schemes has focused on mean values such as average density, temperature, etc. Yet for simulations of microscopic
systems, one is also interested in the variations of these quantities due to spontaneous fluctuations. This is likely to be
important for modelling phenomena where the fluctuations themselves drive (or initiate) a large scale process, such as
the onset of instabilities and the nucleation of phase transitions.

Here we address the issue of fluctuations in hybrids, focusing specifically those schemes that combine a particle
algorithm with a partial differential equation solver. We consider both deterministic and stochastic partial differential
equations. Our investigation deals with Fickian diffusion since much is known about solving the linear diffusion
equation (LDE) in both its deterministic and stochastic forms. In addition, the microscopic particle process of
independent random walkers rigorously converges to the LDE in the hydrodynamic scaling limit.

The outline of the paper is as follows: First we comment on the random walk model and the linear diffusion
equation (LDE) including its stochastic form. Then numerical schemes for simulating this model and for computing
this stochastic PDE are described. Following that we discuss ways to couple the two representations and present the



results of our numerical investigations, closing with a discussion of our results and a list of further directions.

SIMPLE DIFFUSION: PARTICLE AND CONTINUUM THEORIES

Consider the well-known random walk model. Specifically, take a system of N independent (i.e., non-interacting)
particles that evolve according to the following stochastic dynamics

dXk(t) = DdWk, (1)

where Xk is the location of particle k, D is the diffusion constant and W is a standard Wiener process [13].
Define the density of particles in a region

ρ(x, t) =
N

∑
k=1

δ (x−Xk(t)). (2)

The Fokker-Planck equation for the random walker dynamics, in the hydrodynamic limit, yields the one-dimensional,
fluctuating diffusion equation, [13]

∂ρ
∂ t

= −∂F
∂x

= D
∂ 2

∂x2 ρ − ∂ f
∂x

, (3)

where F is the total particle flux, whose deterministic component is given by Fick’s law, −D∂ρ/∂x. Its fluctuating
component, f , is a Gaussian white noise with zero mean and correlation

〈 f (x, t) f (x′, t ′)〉 = A(x, t)δ (x− x′)δ (t − t ′), (4)

where the angle brackets indicate an ensemble average. The noise amplitude, A(x, t), is related to the equal-time
correlation of density fluctuations, which is taken to be,

G(x,x′) = 〈δρ(x, t)δρ(x′, t)〉 = ρ̄(x, t)δ (x− x′)+C, (5)

where δρ = ρ − ρ̄ and the deterministic density is given by the solution of

∂ ρ̄
∂ t

= D
∂ 2ρ̄
∂x2 , (6)

with the same initial and boundary conditions as (3). For an open system (a system in contact with a particle or density
reservoir) the constant C = 0; for a closed system of length L,

C = − N
L2 ; N =

∫ L

0
ρ(x, t)dx =

∫ L

0
ρ̄(x, t)dx, (7)

due to mass conservation. Given (5), the noise amplitude is [13]

A = 2Dρ̄(x, t). (8)

Note that for open systems the variance in the number of particles within an interval equals the mean number in that
interval, as with the Poisson distribution; for closed systems the variance is reduced due to mass conservation.

SIMPLE DIFFUSION: PARTICLE AND CONTINUUM ALGORITHMS

The numerical simulation of the random walk model is straightforward: integrating both sides of (1) over a time
increment ∆t yields

Xk(t +∆t)−Xk(t) =
√

2D∆t ℜk, (9)

where ℜk are independent, Gaussian distributed random values with zero mean and unit variance. At each time step
every walker is given a random displacement, as in Equation (9).



If we discretize space and time in the continuum formulation, we may write the stochastic diffusion equation, (3),
as

ρi;n+1 −ρi;n

∆t
= −

(
F+

i;n −F−
i;n

∆x

)
, (10)

where ρi;n = ρ(xi, tn) with xi = (i− 1
2 )∆x, i = 1, . . . ,M, and tn = n∆t, n = 0,1, . . .. The discretized fluxes (right and

left) are

F±
i;n = ∓D

(
ρi±1;n −ρi;n

∆x

)
+ f±i;n. (11)

The discretized correlation of the fluctuating particle flux may be written as [14]

〈 f +
i;n f +

j;m〉 =
(Ai;n +Ai+1;n)δi, jδn,m

2∆x∆t
; 〈 f−i;n f−j;m〉 =

(Ai;n +Ai−1;n)δi, jδn,m

2∆x∆t
, (12)

and F+
i;n = F−

i+1;n, so

f +
i;n = f−i+1;n =

√
(Ai;n +Ai+1;n)

2∆x∆t
ℜi;n, (13)

where ℜi;n are independent, Gaussian distributed, random variables with zero mean and unit variance.
Collecting the above yields a Langevin-type numerical scheme for the density,

ρi;n+1 = ρi;n +
D∆t
∆x2 (ρi+1;n +ρi−1;n −2ρi;n) (14)

−
√

D∆t
∆x3

(√
ρ̄i;n + ρ̄i+1;n ℜi;n −

√
ρ̄i;n + ρ̄i−1;n ℜi−1;n

)
,

since Ai;n = 2Dρ̄i;n.
This scheme is essentially the same as that presented in reference [14] for the Fourier (heat) equation except for the

form of the noise amplitude. For mass diffusion the amplitude is linear in the density while for temperature diffusion it
is quadratic in the temperature, which leads to long-ranged spatial correlations of equal-time fluctuations [14, 15, 16].

Using (14), the equal-time correlation function Gi, j ≡ 〈δρi;nδρ j;n〉, is

4

(
1− D∆t

∆x2

)
Gi, j −

(
1− 2D∆t

∆x2

)
(Gi, j+1 +Gi, j−1 +Gi+1, j +Gi−1, j)

− D∆t
∆x2 (Gi+1, j+1 +Gi+1, j−1 +Gi−1, j+1 +Gi−1, j−1) (15)

=
1

∆x
(BiB jδi, j −BiB j−1δi, j−1 −Bi−1Bjδi−1, j +Bi−1Bj−1δi−1, j−1),

where Bi =
√

ρ̄i;n + ρ̄i+1;n. Note if the deterministic density is linear (i.e., ρ̄i+1;n − ρ̄i;n is independent of i) then

BiB jδi, j −BiB j−1δi, j−1 −Bi−1Bjδi−1, j +Bi−1Bj−1δi−1, j−1

= 4ρ̄i;nδi, j − (ρ̄i;nδi, j+1 + ρ̄i;nδi, j−1 + ρ̄i+1;nδi+1, j + ρ̄i−1;nδi−1, j). (16)

In the limit ∆t → 0, the static correlation is Gi, j = ρ̄i;n∆x−1δi, j +C, in agreement with the continuum result, equation
(5).

The above formulation is somewhat cumbersome in that the deterministic PDE (6) must be evaluated separately
to obtain the space and time dependent ρ̄ , since the noise amplitude is A = 2Dρ̄ . For the linear, stochastic diffusion
equation we may extend the additive noise to be multiplicative, that is, A = 2Dρ(x, t), in the limit where the fluctuations
about the mean are small [17]. In the discrete numerical scheme, (14), we may replace ρ̄i;n with ρi;n in the noise terms;
this generalization is tested and validated by the numerical simulations in SIMULATION RESULTS section.
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FIGURE 1. Algorithm Refinement for simple diffusion. A random walk simulation is performed in the region on the left and
a PDE solver is used on the right. The methods are coupled at the interface I; new particles (open circles) are generated in the
“handshaking” region (right) and at the Dirichlet boundary (left).

PARTICLE/CONTINUUM HYBRID ALGORITHM

Having presented the stochastic PDE corresponding to independent, random-walk particle dynamics and outlined the
numerical schemes for each representation (particle and continuum), we now describe how to couple the two numerical
methods. Figure 1 illustrates a typical hybrid calculation with a particle region within the interval from x = 0 to I;
elsewhere the continuum density is specified at discrete grid points. For the purpose of statistical measurements and
plotting only, the density in the particle regions is evaluated on the same grid as the discretized continuum calculation.
Specifically,

ρi;n =
1

∆x

N

∑
k1

δ [xi − 1
2 ∆x < Xk;n < xi + 1

2 ∆x], (17)

where Xk;n is the position of particle k at time t = n∆t; the boolean delta function is defined as δ [A] = 1 if A is true, and
0 otherwise. Initially, a density is assigned to all M grid points and particles are generated within the particle region.

At the beginning of a time step, the particle region is extended by one grid point into the continuum region. This
added “handshaking” region is uniformly filled with Ni;n particles according to the density of the underlying grid point,
taking Ni;n = ρi;n∆x, rounded to an integer. Other ways of filling the region were tested (nonuniform distribution of
particle positions using ∇ρ , Poisson distribution for Ni;n with mean ρi;n∆x, etc.) but were found to give equal or poorer
results. All particles, in the handshaking region and elsewhere, are then displaced as Xk;n+1 = Xk;n + δXk;n where the
distance δXk;n =

√
2D∆t ℜk;n (see equation (9)). The number of particles crossing the interface gives the number flux

at I, this flux is recorded and used in the continuum portion of the computation (see below) . Any particles that end
their move outside the particle region are removed from the simulation.

Once the particle update is complete, (11) is used to compute the left and right number fluxes for each continuum
grid point except for the grid point adjacent to the particle region. For that point, the number flux recorded during the
particles’ motion is used instead of F−. The number density on the continuum grid is computed using (10), which is
equivalent to using (14) for non-interface grid points. This completes one time step for the hybrid.

Notice that because the particle region and discretized continuum regions use the same time step and because the
former is updated before the latter, no separate synchronization (i.e., “refluxing”) is required at the end of a time step.
The algorithm can also be formulated using different time steps; the region using the larger time step (typically the
continuum calculation) is evaluated first and refluxing (i.e., correcting the density according to the actual flux across
the interface) is performed when the two parts are synchronized [7].

Both stochastic and non-stochastic (i.e., deterministic) PDE solvers are tested. In the former, the noise amplitude is
computed using the instantaneous value of the local density; in the latter, Ai;n = 0. The deterministic method is similar
to that used earlier in particle/continuum hybrids for fluid mechanics (e.g. the DSMC/Euler hybrid in [7]).

Dirichlet boundary conditions are used in our simulations, that is, ρ1;n and ρM;n have fixed (mean) values. If either of
these cells is within the particle region, then the cell is re-initialized with a number of particles selected randomly from
a Poisson distribution with means ρ1;n and ρM;n, respectively. The particles are then distributed in the same fashion as
the handshaking region. If the density is fixed at a boundary grid point in the stochastic PDE region, then the density
at each time step is drawn from a Poisson distribution with the appropriate mean value.
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FIGURE 2. Variance of density in a cell, Gi,i = 〈δρ2
i;n〉, for the open, equilibrium system. The data from the particle/stochastic-

PDE hybrid (left) and from the particle/deterministic-PDE hybrid (right) are shown; solid line is 〈δρ2
i;n〉 = ρ0/∆x; dashed line

indicates particle/PDE interface.

SIMULATION RESULTS

Open, equilibrium system

The first test case is an open system in equilibrium. Specifically, we have Dirichlet boundary conditions with (mean)
density ρ0 at the endpoints. The deterministic steady state is taken as the initial condition so ρi;1 = ρ̄i;n = ρ0. For both
the particle/stochastic-PDE and particle/deterministic-PDE hybrids we take ∆x = 0.5, M = 40, ∆t = 0.001, ρ0 = 40,
and the diffusion constant D = 1.0. From x = 0 to x = L/2 there are independent random walkers and from x = L/2 to
x = L the diffusion equation is computed on a grid of 20 cells. Our statistics are long-time averages over 10 independent
samples. In both cases, the mean value of the density agrees with the expected value 〈ρi;n〉 = ρ0.

The stochastic and deterministic hybrids give different results for the spatial dependence of the variance, as seen
in Fig. 2 . The stochastic hybrid is within statistical errors of the expected value of the variance, 〈δρ2

i;n〉 = ρ0/∆x
(i.e., Poisson distribution). In the deterministic hybrid, the variance is close to zero in the continuum region while in
the particle region it is significantly reduced in the cells near the interface. Note that for both the deterministic and
stochastic-PDE hybrids the fluctuations in the cells near the Dirichlet boundary (where ρ1;n is fixed) are not reduced.

Open, steady-state, non-equilibrium system

The second test case is a system in which a (constant) density gradient is maintained. We take Dirichlet boundary
conditions, but with different (reservoir) densities at the endpoints; ρ1,n = ρ0, and ρM,n = ρL. The system is initialized
with the linear density profile, ρi,1 = ρ0 +(ρL −ρ0)(i−1)/(M−1), which is the steady state, ρ̄i. (This initialization
leads to faster convergence of statistics; any other would lead to the correct steady-state.) Both particle/stochastic-
PDE and particle/deterministic-PDE hybrids were tested. Again, for both cases ∆x = 0.5, ∆t = 0.001 and the diffusion
constant, D = 1.0; densities at the endpoints were ρ0 = 40, M = 40, ρL = 80. From x = 0 to x = L/2 there are
independent random walkers and from x = L/2 to x = L the diffusion equation is computed on a grid of 20 cells. As
before, in the stochastic case, for the noise amplitude we use the instantaneous value of the local density.

Figure 3 shows the mean density as a function of position for the hybrids using the stochastic and deterministic PDE
solvers, respectively. Our statistics are long-time averages over 10 independent samples. In both cases, the mean value
of the density agrees with the expected value of 〈ρi;n〉 = ρ̄i, which is linear in x. For the stochastic hybrid the variance
is within statistical errors of its exact value, 〈δρ2

i;n〉 = ρ̄i/∆x (see Fig. 4). The variance in the particle region of the
non-stochastic hybrid is significantly reduced near the interface and goes quickly to zero within the continuum region.
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FIGURE 3. Mean density, 〈ρi;n〉, for the open, non-equilibrium system. The data from the particle/stochastic-PDE hybrid (left)
and from the particle/deterministic-PDE hybrid (right) are shown; solid line is 〈ρi;n〉 = ρ̄i; dashed line indicates particle/PDE
interface.

0 2 4 6 8 10 12 14 16 18 20
70

80

90

100

110

120

130

140

150

160

170

x

 <
 δ

 ρ
(x

)δ
 ρ

(x
) 

>
 

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

x

 <
 δ

 ρ
(x

)δ
 ρ

(x
) 

>
 

FIGURE 4. Variance of density in a cell, Gi,i = 〈δρ2
i;n〉, for the open, non-equilibrium system. The data from the

particle/stochastic-PDE hybrid (left) and from the particle/deterministic-PDE hybrid (right) are shown; solid line is 〈δρ2
i;n〉= ρ̄i/∆x;

dashed line indicates particle/PDE interface.

CONCLUDING REMARKS

Our aim in this study was to determine how accurately particle/continuum hybrids, such as those used in Algorithm
Refinement, could model hydrodynamic fluctuations. Our results show that such hybrids, constructed to solve the
linear diffusion PDE and the random walk particle model, are capable of capturing some fluctuations correctly for both
equilibrium and nonequilibrium problems. We find that the mean density is given correctly by particle/PDE hybrids
using either stochastic or deterministic PDE solvers; a longer exposition, with more results, will appear elsewhere [19].
The variance can be recovered everywhere with a particle/stochastic-PDE hybrid but is only correct within the particle
region far from the coupling interface when the continuum solver does not contain stochastic fluxes. This reduction
of the density variance in the particle region when coupled with a deterministic PDE necessitates placing the interface
further away from regions where accurate fluctuations are required. If such measures are not taken, we believe this can
have a deleterious effect when using a deterministic PDE solver in hybrids that simulate strongly interacting systems
(e.g., nonequilibrium solids and dense liquids).

It is important to note that the linear diffusion equation is a particularly simple PDE, and while the results presented
here are encouraging, one should not assume that particle/continuum hybrids will do equally well for other physical
systems. For simple fluids, the extension of the present formulation to the stochastic PDEs of linearized fluctuating



hydrodynamics is straightforward [14, 20]. Furthermore, different hybrid coupling schemes will have different effects
on the fluctuations, even for the linear diffusion equation. [21]

In our study of fluctuations in simple diffusion we focused our attention on the variance of density but for
other physical systems equal-time correlations are also of interest. A common feature found in the stochastic PDEs
arising from fluctuating hydrodynamics is the existence of long-range correlations of equal-time fluctuations at non-
equilibrium steady-states [22]. The linear diffusion equation for density does not have such long-range correlations
but one does find them in other simple cases, such as the linear Fourier equation [14] and the Train Model for viscous
diffusion [23]. Preliminary studies of the Train Model indicate that the correlation of equal-time fluctuations in a
stochastic PDE hybrid are identical to those obtained in a pure particle simulation while a deterministic PDE hybrid
preserves the long-range nature of the correlations but with diminished amplitude. [24]

Though we find that a hybrid scheme constructed with a simple, explicit stochastic-PDE solver can reproduce
the correct fluctuations, it is not our intent to promote the present scheme as being optimal. A topic for future
study is the analysis of a variety of stochastic-PDE schemes to establish the most accurate and efficient methods for
particle/continuum hybrids. In particular, the details of how the coupling is implemented may affect the convergence
properties of a hybrid.

In this paper we consider explicit schemes because these are the most commonly used methods for the continuum
calculations in hybrids. Elliptic PDEs, such as the diffusion equation, are often solved by implicit methods (e.g.,
Crank-Nicolson). Because such schemes introduce a non-local coupling, the modification to the fluctuations may
be significant especially in hybrids using deterministic-PDEs. While semi-implicit PDE solvers have been used in
particle/continuum hybrids [7], the study of implicit, stochastic hybrids is a topic best treated in a separate paper.

Finally, we have not addressed the question of how one selects the regions in a calculation that should be computed
by a microscopic, particle scheme versus a macroscopic, continuum method. For example, when a hybrid is fully
“adaptive” the particle regions can grow, shrink, shift, merge, and fission throughout the calculational domain. In
adaptive mesh refinement, gradient detection is a commonly used refinement criteria (e.g., using a fine grid near
a shock front). Spontaneous fluctuations in a stochastic or particle-based algorithm can trigger such criteria, even
in regions that are at thermodynamic equilibrium, causing unnecessary refinement. Preliminary studies using an
adaptive DSMC/Euler hybrid indicate that this problem may be overcome by a judicious choice of multiple refinement
criteria [25] but this important computational issue merits further study.
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