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A hybrid particle/continuum algorithm is formulated for Fickian diffusion in the
fluctuating hydrodynamic limit. The particles are taken as independent random walk-
ers; the fluctuating diffusion equation is solved by finite differences with determin-
istic and white-noise fluxes. At the interface between the particle and continuum
computations the coupling is by flux matching, giving exact mass conservation. This
methodology is an extension of Adaptive Mesh and Algorithm Refinement to stochas-
tic partial differential equations. Results from a variety of numerical experiments are
presented for both steady and time-dependent scenarios. In all cases the mean and
variance of density are captured correctly by the stochastic hybrid algorithm. For
a nonstochastic version (i.e., using only deterministic continuum fluxes) the mean
density is correct, but the variance is reduced except in particle regions away from
the interface. Extensions of the methodology to fluid mechanics applications are
discussed. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Numerical modeling of complex systems has benefited tremendously from recent ad-
vances in both computational power and algorithm sophistication. However, for a very
important and growing class of so-called multiscale (space and/or time) applications, hard-
ware developments alone will not be sufficient. Moreover, conventional, single-method
algorithmic approaches will simply be unable to capture the relevant phenomena occurring
over the many space and time scales.
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An efficient approach for multiscale problems is to perform detailed calculations, using
an expensive algorithm, only where absolutely required and to couple this computation to
a simpler, less expensive method, which is used in the rest of the domain. Such “hybrid”
methods typically couple (at least) two structurally (physically and algorithmically) different
computational schemes, which are used in different regions of the problem (e.g., interior
and exterior of a shock wave). One class of hybrids involves matching particle methods
to continuum partial differential equation (PDE) solvers [1–12]; other hybrids combine
stochastic systems with deterministic ones, explicit schemes with implicit ones, etc.

This multi-algorithm approach, also known as Algorithm Refinement, is advantageous
when the computational expense of a hybrid calculation is much less than that of performing
the entire calculation using the more expensive of the two algorithms. Assuming that the
computational cost increases linearly with physical volume, which is typical for explicit
methods, this criterion can be expressed as

V1C1 + V2C2 + V↔C↔ � V C1,

where C1, C2, and C↔ are the computational cost per unit volume for each algorithm
(C1 � C2) and for the interface region between the two methods, respectively; V1, V2, and
V↔ are the respective volumes modeled by each method, and V is the total physical volume
(V1 + V2 ≤ V ≤ V1 + V2 + V↔). This criterion is approximately

V↔
V − V1

C↔
C1

� 1.

We see the benefit of a hybrid even if the algorithmic interface is computationally more
expensive than either algorithm, as long as the interface region and the region using the
more expensive method are each small fractions of the total volume.

An important question is whether (and how) the coupling of two algorithms affects the
accuracy of either method. Until now, the testing of Algorithm Refinement schemes has
focused on mean values such as average density, temperature, etc. Yet for simulations of
microscopic systems, one is also interested in the variations of these quantities due to
spontaneous fluctuations. This is likely to be important for modeling phenomena where
the fluctuations themselves drive (or initiate) a large-scale process, such as the onset of
instabilities and the nucleation of phase transitions.

In this paper we address the issue of fluctuations in hybrid schemes, specifically those
schemes that combine a particle algorithm with a partial differential equation solver. Since
our interest is in fluctuations, we consider both deterministic and stochastic partial differ-
ential equations. Our investigation focuses on the problem of simple diffusion since much
is known about solving the linear diffusion equation (LDE) in both its deterministic and
stochastic forms. Moreover, there is a microscopic particle process, namely independent
random walkers, which rigorously converges to the LDE in the hydrodynamic scaling limit.
Thus we have an ideal testbed for investigation.

In Section 2 we comment on the random walk model and the linear diffusion equation
(LDE) including its stochastic form. In Section 3 we describe numerical schemes for sim-
ulating this model and for computing this stochastic PDE. Following that, in Section 4 we
discuss ways to couple these two very different representations. Section 5 presents the re-
sults of our numerical investigations, and Section 6 describes a way to analyze systems that
couple stochastic and deterministic components. We close in Section 7 with a discussion of
our results and a list of further directions.
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2. SIMPLE DIFFUSION: PARTICLE AND CONTINUUM THEORIES

Consider the well-known random walk model. Specifically, take a system of N indepen-
dent (i.e., noninteracting) particles that evolve according to the stochastic dynamics

d Xk(t) = DdWk, (1)

where Xk is the location of particle k, D is the diffusion constant, and W is a standard
Wiener process [13].

Define the density of particles in a region

ρ(x, t) =
N∑

k=1

δ(x − Xk(t)). (2)

The Fokker–Planck equation for the random walker dynamics, in the hydrodynamic limit,
yields the one-dimensional, fluctuating diffusion equation [13]

∂ρ

∂t
= −∂ F

∂x
= D

∂2

∂x2
ρ − ∂ f

∂x
, (3)

where F is the total particle flux, whose deterministic component is given by Fick’s law,
−D∂ρ/∂x . Its fluctuating component, f , is a Gaussian white noise with zero mean and
correlation

〈 f (x, t) f (x ′, t ′)〉 = A(x, t)δ(x − x ′)δ(t − t ′), (4)

where the angle brackets indicate an ensemble average. The noise amplitude, A(x, t), is
related to the equal-time correlation of density fluctuations, which is taken to be

G(x, x ′) = 〈δρ(x, t)δρ(x ′, t)〉 = ρ̄(x, t)δ(x − x ′) + C, (5)

where δρ = ρ − ρ̄, and the deterministic density is given by the solution of

∂ρ̄

∂t
= D

∂2ρ̄

∂x2
, (6)

with the same initial and boundary conditions as (3). For an open system (a system in
contact with a particle or density reservoir), the constant C = 0; for a closed system of
length L ,

C = − N

L2
; N =

∫ L

0
ρ(x, t) dx =

∫ L

0
ρ̄(x, t) dx, (7)

due to mass conservation. Given (5), the noise amplitude is [13]

A = 2Dρ̄(x, t). (8)

Note that for open systems the variance in the number of particles within an interval equals
the mean number in that interval, as with the Poisson distribution; for closed systems the
variance is reduced due to mass conservation.
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3. SIMPLE DIFFUSION: PARTICLE AND CONTINUUM ALGORITHMS

The numerical simulation of the random walk model is straightforward: intergrating both
sides of (1) over a time increment 
t yields

Xk(t + 
t) − Xk(t) =
√

2D
t �k, (9)

where �k are independent, Gaussian-distributed random values with zero mean and unit
variance. At each time step every walker is given a random displacement, as in Eq. (9).

If we discretize space and time in the continuum formulation, we may write the stochastic
diffusion equation, (3), as

ρi;n+1 − ρi;n

t

= −
(

F+
i;n − F−

i;n

x

)
, (10)

where ρi;n = ρ(xi , tn) with xi = (i − 1
2 )
x , i = 1, . . . , M , and tn = n
t , n = 0, 1, . . . . The

discretized fluxes (right and left) are

F±
i;n = ∓D

(
ρi±1;n − ρi;n


x

)
+ f ±

i;n. (11)

The discretized correlation of the fluctuating particle flux may be written as [14]

〈 f +
i;n f +

j;m〉 = (Ai;n + Ai+1;n)δi, jδn,m

2
x
t
; 〈 f −

i;n f −
j;m〉 = (Ai;n + Ai−1;n)δi, jδn,m

2
x
t
, (12)

and F+
i;n = F−

i+1;n , so

f +
i;n = f −

i+1;n =
√

(Ai;n + Ai+1;n)
2
x
t

�i;n, (13)

where �i;n are independent, Gaussian-distributed, random variables with zero mean and
unit variance.

Collecting the above yields a Langevin-type numerical scheme for the density,

ρi;n+1 = ρi;n + D
t


x2
(ρi+1;n + ρi−1;n − 2ρi;n)

−
√

D
t


x3
(
√

ρ̄i;n + ρ̄i+1;n�i;n − √
ρ̄i;n + ρ̄i−1;n�i−1;n), (14)

since Ai,n = 2Dρ̄i;n.
This scheme is essentially the same as that presented in reference [14] for the Fourier

(heat) equation except for the form of the noise amplitude. For mass diffusion the amplitude
is linear in the density while for temperature diffusion it is quadratic in the temperature,
which leads to long-ranged spatial correlations of equal-time fluctuations [14–16].
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Using (14), the equal-time correlation function Gi, j ≡ 〈δρi;nδρ j;n〉 is

4

(
1 − D
t


x2

)
Gi, j −

(
1 − 2D
t


x2

)
(Gi, j+1 + Gi, j−1 + Gi+1, j + Gi−1, j )

− D
t


x2
(Gi+1, j+1 + Gi+1, j−1 + Gi−1, j+1 + Gi−1, j−1)

= 1


x
(Bi B jδi, j − Bi B j−1δi, j−1 − Bi−1 B jδi−1, j + Bi−1 B j−1δi−1, j−1), (15)

where Bi = √
ρ̄i;n + ρ̄i+1;n . Note that if the deterministic density is linear (i.e., ρ̄i+1;n −

ρ̄i;n is independent of i), then

Bi B jδi, j − Bi B j−1δi, j−1 − Bi−1 B jδi−1, j + Bi−1 B j−1δi−1, j−1

= 4ρ̄i;nδi, j − (ρ̄i;nδi, j+1 + ρ̄i;nδi, j−1 + ρ̄i+1;nδi+1, j + ρ̄i−1;nδi−1, j ). (16)

In the limit 
t → 0, the static correlation is

Gi, j = ρ̄i;n

x

δi, j + C, (17)

in agreement with the continuum result, Eq. (5).
The above formulation is somewhat cumbersome in that the deterministic PDE (6) must

be evaluated separately to obtain the space- and time-dependent ρ̄, since the noise amplitude
is A = 2Dρ̄. For the linear, stochastic diffusion equation we may extend the additive noise
to be multiplicative, that is, A = 2Dρ(x, t), in the limit where the fluctuations about the
mean are small [17]. In the discrete numerical scheme, (14), we may replace ρ̄i;n with ρi;n
in the noise terms; this generalization is tested and validated by the numerical simulations
in Section 5.

4. PARTICLE/CONTINUUM HYBRID ALGORITHM

Having presented the stochastic PDE corresponding to independent, random walk par-
ticle dynamics and outlined the numerical schemes for each representation (particle and
continuum), we now describe how to couple the two numerical methods. Figure 1 illus-
trates a typical hybrid calculation with a particle region within the interval from x = 0 to
I ; elsewhere the continuum density is specified at discrete grid points. For the purpose of
statistical measurements and plotting only, the density in the particle regions is evaluated

FIG. 1. Algorithm Refinement for simple diffusion. A random walk simulation is performed in the region on
the left and a PDE solver is used on the right. The methods are coupled at the interface I ; new particles (open
circles) are generated in the “handshaking” region (right) and at the Dirichlet boundary (left).
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on the same grid as the discretized continuum calculation. Specifically,

ρi;n = 1


x

N∑
k=1

δ

[
xi − 1

2

x < Xk;n < xi + 1

2

x

]
, (18)

where Xk;n is the position of particle k at time t = n
t ; the boolean delta function is defined
as δ[A] = 1 if A is true, and = 0 otherwise. Initially, a density is assigned to all M grid points,
and particles are generated within the particle region. For steady-state problems, the specific
initialization process does not affect the final answer. For investigation of time-dependent
phenomena, of course, the initial distribution is relevant and will be described in detail in
the following section.

At the beginning of a time step, the particle region is extended by one grid point into the
continuum region. This added “handshaking” region is uniformly filled with Ni;n particles
according to the density of the underlying grid point, taking Ni;n = ρi;n
x , rounded to an
integer. Other ways of filling the region were tested (nonuniform distribution of particle
positions using ∇ρ, Poisson distribution for Ni;n with mean ρi;n
x , etc.) but were found
to give equal or poorer results. All particles, in the handshaking region and elsewhere,
are then displaced as Xk;n+1 = Xk;n + δXk;n , where the distance δXk;n = √

2D
t�k;n (see
Eq. (9)). The number of particles crossing the interface gives the number flux at I ; this flux
is recorded and used in the continuum portion of the computation (see below). Any particles
that end their move outside the particle region are removed from the simulation.

Once the particle update is complete, (11) is used to compute the left and right number
fluxes for each continuum grid point except for the grid points adjacent to the particle region.
For those points, the number flux recorded during the particles’ motion is used instead of
F−. The number density on the continuum grid is computed using (10), which is equivalent
to using (14) for noninterface grid points. This completes one time step for the hybrid.

Notice that because the particle region and discretized continuum regions use the same
time step and because the former is updated before the latter, no separate synchronization
(i.e., “refluxing”) is required at the end of a time step. The algorithm can also be formulated
using different time steps; the region using the larger time step (typically the continuum
calculation) is evaluated first, and refluxing (i.e., correcting the density according to the
actual flux across the interface) is performed when the two parts are synchronized [9].

Both stochastic and nonstochastic (i.e., deterministic) PDE solvers are tested. In the
former, the noise amplitude is computed using the instantaneous value of the local density;
in the latter, Ai;n = 0. The deterministic method is similar to that used in particle/continuum
hybrids for fluid mechanics (e.g., the DSMC/Euler hybrid in [9]).

Two types of boundary conditions are used in our simulations: periodic and Dirichlet.
In the former, the points x = 0 and x = L are equivalent (e.g., F−

1 = F+
M ) and the system is

closed so
∑M

i ρi;n = N/L is constant. With Dirichlet boundary conditions, ρ1;n and ρM;n
have fixed (mean) values. If either of these cells is within the particle region, then the cell is
reinitialized with a number of particles selected randomly from a Poisson distribution with
means ρ1;n and ρM;n, respectively. The particles are then distributed in the same fashion as
in the handshaking region. If the density is fixed at a boundary grid point in the stochastic
PDE region, then the density at each time step is drawn from a Poisson distribution with
the appropriate mean value.
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5. SIMULATION RESULTS

5.1. Open, Equilibrium System

The first test case is an open system in equilibrium. Specifically, we have Dirichlet
boundary conditions with (mean) density ρ0 at the endpoints. The deterministic steady
state is taken as the initial condition so ρi;1 = ρ̄i;n = ρ0. Figures 2 and 3 show the mean
density as a function of space for the particle/stochastic-PDE and, particle/deterministic-
PDE hybrids, respectively. For both cases 
x = 0.5, M = 40, 
t = 0.001, ρ0 = 40, and the
diffusion constant D = 1.0. From x = 0 to x = L/2 there are independent random walkers
and from x = L/2 to x = L the diffusion equation is computed on a grid of 20 cells. Our
statistics are long-time averages over 10 independent samples. In both cases, the mean value
of the density agrees with the expected value 〈ρi;n〉 = ρ0.

The stochastic and deterministic hybrids give different results for the spatial dependence
of the variance, as seen in Figs. 4 and 5. The stochastic hybrid is within statistical errors
of the expected value of the variance, 〈δρ2

i;n〉 = ρ0/
x (i.e., Poisson distribution). In the
deterministic hybrid, the variance is close to zero in the continuum region while in the
particle region it is significantly reduced in the cells near the interface. Note that for both
the deterministic- and stochastic-PDE hybrids the fluctuations in the cells near the Dirichlet
boundary (where ρ1;n is fixed) are not reduced.

FIG. 2. Mean density, 〈ρi;n〉, for the open, equilibrium system. Circles with error bars are the data from the
particle/stochastic-PDE hybrid; solid line is 〈ρi;n〉 = ρ0; dashed line indicates particle/PDE interface.
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FIG. 3. Mean density, 〈ρi;n〉, for the open, equilibrium system. X-marks with error bars are the data from the
particle/deterministic-PDE hybrid; solid line is 〈ρi;n〉 = ρ0; dashed line indicates particle/PDE interface.

FIG. 4. Variance of density in a cell, Gi,i = 〈δρ2
i;n〉, for the open, equilibrium system. Circles with error bars are

the data from the particle/stochastic-PDE hybrid; solid line is 〈δρ2
i;n〉 = ρ0/
x ; dashed line indicates particle/PDE

interface.
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FIG. 5. Variance of density in a cell, Gi,i = 〈δρ2
i;n〉, for the open, equilibrium system. X-marks with error

bars are the data from the particle/deterministic-PDE hybrid; solid line is 〈δρ2
i;n〉 = ρ0/
x ; dashed line indicates

particle/PDE interface.

5.2. Closed, Equilibrium System

The second test case is a closed system in equilibrium; the computation is the same as for
the open system described above except that periodic boundary conditions are used at x = 0
and L . The particle/stochastic-PDE and particle/deterministic-PDE hybrids give similar
results for the mean density and are in agreement with the expected value 〈ρi;n〉 = ρ0 but
give different results for the variance. The variance measured in the stochastic hybrid is in
good agreement with the expected value, 〈δρ2

i;n〉 = ρ0/
x − ρ0/L (see Fig. 6). Note that the
variance in the closed system is reduced due to mass conservation by a factor of (M − 1)/M ,
and this effect is observed correctly in the hybrid because the scheme conserves mass exactly.
The variance in the particle region of the deterministic hybrid is significantly reduced near
the interface and goes quickly to zero within the continuum region, as shown in Fig. 7.

5.3. Open, Steady-State, Nonequilibrium System

The third test case is a system in which a (constant) density gradient is maintained.
We take Dirichlet boundary conditions, but with different (reservoir) densities at the end-
points; ρ1,n = ρ0, and ρM,n = ρL . The system is initialized with the linear density profile,
ρi,1 = ρ0 + (ρL − ρ0)(i − 1)/(M − 1), which is the steady state, ρ̄i . (This initialization
leads to faster convergence of statistics; any other would lead to the correct steady state.)
Both particle/stochastic-PDE and particle/deterministic-PDE hybrids were tested. Again,



56 ALEXANDER, GARCIA, AND TARTAKOVSKY

FIG. 6. Variance of density in a cell, Gi,i = 〈δρ2
i;n〉, for the closed, equilibrium system. Circles with error bars

are the data from the particle/stochastic-PDE hybrid; solid line is 〈δρ2
i;n〉 = ρ0/
x − ρ0/L; dashed line indicates

particle/PDE interface.

FIG. 7. Variance of density in a cell, Gi,i = 〈δρ2
i;n〉, for the closed, equilibrium system. X-marks with error

bars are the data from the particle/deterministic-PDE hybrid; solid line is 〈δρ2
i;n〉 = ρ0/
x − ρ0/L; dashed line

indicates particle/PDE interface.
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FIG. 8. Mean density, 〈ρi;n〉, for the open, nonequilibrium system. Circles with error bars are the data from
the particle/stochastic-PDE hybrid; solid line is 〈ρi;n〉 = ρ̄ i ; dashed line indicates particle/PDE interface.

for both cases 
x = 0.5, 
t = 0.001, and the diffusion constant, D = 1.0; densities at the
endpoints were ρ0 = 40, M = 40, and ρL = 80. From x = 0 to x = L/2 there are independent
random walkers, and from x = L/2 to x = L the diffusion equation is computed on a grid of
20 cells. As before, in the stochastic case, for the noise amplitude we use the instantaneous
value of the local density.

Figures 8 and 9 show the mean density as a function of position for the hybrids using the
stochastic and deterministic PDE solvers, respectively. Our statistics are long-time averages
over 10 independent samples. In both cases, the mean value of the density agrees with the
expected value of 〈ρi;n〉 = ρ̄i , which is linear in x . For the stochastic hybrid the variance is
within statistical errors of its exact value, 〈δρ2

i;n〉 = ρ̄i/
x (see Fig. 10). The variance in the
particle region of the nonstochastic hybrid is significantly reduced near the interface and
goes quickly to zero within the continuum region, as shown in Fig. 11.

5.4. Time-Dependent System

The final test case investigates the ability of the hybrid to capture time-dependent phe-
nomena. In particular, we investigate a system initially with a uniform average density ρ0

upon which is superimposed a delta function spike of amplitude Ns at x0. In this case we
prescribe Dirichlet boundary conditions, fixing the density to ρ0 at x = 0 and L . The spike
is placed within the particle region so at t = 0 there are Ns particles at x = x0. As time
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FIG. 9. Mean density, 〈ρi;n〉, for the open, nonequilibrium system. X-marks with error bars are the data from
the particle/deterministic-PDE hybrid; solid line is 〈ρi;n〉 = ρ̄ i ; dashed line indicates particle/PDE interface.

FIG. 10. Variance of density in a cell, Gi,i = 〈δρ2
i;n〉, for the open, nonequilibrium system. Circles with error

bars are the data from the particle/stochastic-PDE hybrid; solid line is 〈δρ2
i;n〉 = ρ̄ i /
x ; dashed line indicates

particle/PDE interface.
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FIG. 11. Variance of density in a cell, Gi,i = 〈δρ2
i;n〉, for the open, nonequilibrium system. X-marks with error

bars are the data from the particle/deterministic-PDE hybrid; solid line is 〈δρ2
i;n〉 = ρ̄ i /
x ; dashed line indicates

particle/PDE interface.

progresses, the spike decays and by the method of images,

〈ρ(x, t)〉 = ρ0 + Ns

∞∑
j=−∞

G
(
x − x s

j , t
)
, (19)

where x s
j = (−1) j x0 + ( j + 1

2 + (−1) j+1 1
2 )L is the location of the spike and its images, and

G(x, t) = 1√
4π Dt

e−x2/(4Dt) (20)

is the Green’s function for the infinite system. The sum of images is required by the Dirichlet
boundary conditions but for short times (t � L2/D), the solution is well approximated by
just the j = 0 term.

The expected mean density is

〈ρi;n〉 = Ns


x
νi;n + ρ0, (21)

and the time-dependent density variance within a cell of size 
x is

〈
δρ2

i;n
〉 = Ns


x2
νi;n(1 − νi;n) + ρ0


x
= 〈ρi;n〉


x
− Ns


x2
ν2

i;n, (22)

where νi;n is the probability of a particle, initially in the spike (or one of its images), moving



60 ALEXANDER, GARCIA, AND TARTAKOVSKY

into cell i for which xi − 1
2
x ≤ x ′ ≤ xi + 1

2
x and is given by

νi;n =
∞∑

j=−∞

∫ xi + 1
2 
x

xi − 1
2 
x

G
(
x ′ − x s

j , n
t
)

dx ′ (23)

≈
∫ xi + 1

2 
x

xi − 1
2 
x

G(x ′ − x0, n
t) dx ′, (24)

for t � L/D. Note that this formulation of the variance, using the random walk stochastic
process, yields a variance that is not Poissonian, that is, with 〈δρ2

i;n〉 �= ρ̄i;n/
x .
The system is initialized with the uniform density profile, ρi;1 = ρ0, plus a fixed num-

ber of particles, Ns = 20, placed initially at the point x0 = 8.25; which is the center of cell
i = 17. Both particle/stochastic and particle/deterministic PDE hybrids were tested. The sys-
tem parameters are the same as in the above examples, namely, 
x = 0.5, and 
t = 0.001.
From x = 0 to x = L/2 there are independent random walkers and from x = L/2 to x = L
the diffusion equation is computed on a grid of 20 cells. As before, in the stochastic case,
for the noise amplitude we use the instantaneous value of the local density.

Figures 12 and 13 show the mean density as a function of space. Our statistics are averages
over 40,000 independent samples. To test the validity of the hybrid, we choose a time, t = 0.8,
which satisfies the condition t � L2/D = 400. More importantly, the time is long enough
to have a significant portion of the pulse decaying into the continuum region, leading to a
time-dependent gradient across the interface. In both the stochastic and deterministic cases,
the mean value of the density agrees with the expected value of 〈ρi;n〉 given by Eq. (21). For

FIG. 12. Time-dependent mean density, 〈ρi;n〉, for the decaying pulse. Circles with error bars are the data
from the particle/stochastic-PDE hybrid; solid line is given by (21); dashed line indicates particle/PDE interface.
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FIG. 13. Time-dependent mean density, 〈ρi;n〉, for the decaying pulse. X-marks with error bars are the data
from the particle/deterministic-PDE hybrid; solid line is given by (21); dashed line indicates particle/PDE interface.

the stochastic hybrid (Fig. 14) the variance is within statistical errors of its exact value. But
again, the variance in the particle region of the deterministic hybrid (Fig. 15) is significantly
reduced near the interface and goes quickly to zero in the continuum region.

6. ANALYTICAL RESULTS FOR STEADY-STATE VARIANCE

The various cases examined in the previous section reveal that the deterministic version
of the particle/continuum hybrid (i.e., without the stochastic flux) gives the correct mean
density but not the right variance. Specifically, the variance in the particle region of the
deterministic hybrid is significantly reduced near the interface and decays quickly to zero in
the continuum region (see Figs. 5, 7, 11, and 15). In this section we introduce an approximate
model that reproduces this effect.

Consider the discretized Langevin scheme for the fluctuating diffusion equation (see
Eq. (14)),

ρi;n+1 = ρi;n + D
t


x2
(ρi+1;n + ρi−1;n − 2ρi;n)

−
√


t

2
x3
(
√

Ai;n + Ai+1;n�i;n − √
Ai;n + Ai−1;n�i−1;n). (25)

In this section we analyze a model for which

Ai;n =
{

2Dρ̄i;n i ≤ M/2

0 otherwise.
(26)
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FIG. 14. Time-dependent density variance, Gi,i = 〈δρ2
i;n〉, for the decaying pulse. Circles with error bars are

the data from the particle/stochastic-PDE hybrid; solid line is given by (22); dotted line is 〈δρ2
i;n〉 = 〈ρi;n〉/
x;

dashed line indicates particle/PDE interface.

FIG. 15. Time-dependent density variance, Gi,i = 〈δρ2
i;n〉, for the decaying pulse. X-marks with error bars are

the data from the particle/deterministic-PDE hybrid; solid line is given by (22); dotted line is 〈δρ2
i;n〉 = 〈ρi;n〉/
x ;

dashed line indicates particle/PDE interface.
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That is, the noise amplitude is zero for the cells in the right half of the system. We will refer
to this as a “half-stochastic” PDE solver.

This half-stochastic model is equivalent to a hybrid that combines a stochastic PDE
solver with a nonstochastic PDE solver. The fluctuations in this model are qualitatively
similar to those in a particle/deterministic PDE hybrid, with the stochastic PDE solver
mimicking the particle computation. The model is not equivalent to a particle/deterministic
PDE hybrid because the fluctuating particle flux for random walkers is not a white noise
process. Nevertheless, this model is ideally suited for testing the effects of noise, since we
are coupling two systems of the same type (both PDE solvers).

By construction, the half-stochastic model gives the same mean density as a deterministic
PDE solver, that is, 〈ρi;n〉 = ρ̄i;n . The equal-time correlation function, Gi, j , for this model
is given by Eq. (15) with

Bi =




√
ρ̄i;n + ρ̄i+1;n i < M/2

√
ρ̄i;n i = M/2

0 otherwise,

(27)

and Eq. (15) easily may be solved numerically (e.g., by relaxation [18]).
We again consider the first test case discussed in the previous section: an open system

at equilibrium. Recall that the density at the end points is fixed to ρ1;n = ρM;n = ρ0 with
ρ0 = 40. For an open system, the variance at equilibrium should equal 〈δρ2

i;n〉 = ρ0/
x = 80.
Solving (15) using (27) gives the results shown in Fig. 16; this result was verified using a

FIG. 16. Density variance, Gi,i = 〈δρ2
i;n〉, in an open system at equilibrium for the half-stochastic PDE model

(solid line) and the particle/nonstochastic PDE hybrid (points; same as Fig. 5); dashed line indicates the interface.
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stochastic-PDE/deterministic-PDE hybrid and perfect agreement was found. As discussed
above, the half-stochastic model is qualitatively similar to a particle/deterministic-PDE
hybrid, which is seen in Fig. 16, where the results from such a hybrid are also shown.
Similar results are found when we compare the half-stochastic model with the deterministic
hybrid for the other cases presented in the previous section. Given that such half-stochastic
models are much simpler than the discrete/continuous stochastic process underlying the
construction of a deterministic hybrid, we believe that they will be very useful in the study
of other particle/continuum hybrids.

7. CONCLUDING REMARKS

Our aim in this study was to determine if particle/continuum hybrids, such as those used
in Algorithm Refinement, could accurately model hydrodynamic fluctuations. Our results
show that such hybrids, constructed to solve the linear diffusion PDE and the random walk
particle model, are capable of capturing some fluctuations correctly for equal-time equi-
librium, nonequilibrium steady-state, and time-dependent problems. We find that the mean
density is given correctly by particle/PDE hybrids using either stochastic or deterministic
PDE solvers. The variance can be recovered everywhere with a particle/stochastic-PDE
hybrid but is only correct within the particle region far from the coupling interface when the
continuum solver does not contain stochastic fluxes. This reduction of the density variance
in the particle region when coupled with a deterministic PDE necessitates placing the inter-
face further away from regions where accurate fluctuations are required. If such measures
are not taken, we believe this can have a deleterious effect when using a deterministic PDE
solver in hybrids that simulate strongly interacting systems (e.g., nonequilibrium solids and
dense liquids).

It is important to note that the linear diffusion equation is a particularly simple PDE,
and while the results presented here are encouraging, one should not assume that parti-
cle/continuum hybrids will do equally well for other physical systems. For simple fluids,
the extension of the present formulation to the stochastic PDEs of linearized fluctuating hy-
drodynamics is straightforward [14, 19]. Furthermore, different hybrid coupling schemes
will have different effects on the fluctuations, even for the linear diffusion equation [20].

For highly nonlinear equations or for systems with more general multiplicative noises,
deterministic hybrids can have mean values that differ across the coupling interface, even
in equilibrium. In these cases great care must be taken in the construction of the hybrid;
renormalized noises or effective potentials (from which the PDE is derived) may prove
useful. This is likely to play an important role in nonlinear time-dependent Ginzburg–
Landau models of solids and is currently under investigation. It will be interesting to consider
models such as those in the previous section (stochastic-PDE/deterministic-PDE hybrid)
for nonlinear equations. Results found in these models should be qualitatively similar to
those for particle/deterministic PDE hybrids, but the theoretical and numerical studies are
easier to perform.

In our study of fluctuations in simple diffusion we focused our attention on the variance
of density, but for other physical systems equal-time correlations are also of interest. A
common feature found in the stochastic PDEs arising from fluctuating hydrodynamics
is the existence of long-range correlations of equal-time fluctuations at nonequilibrium
steady states [21]. The linear diffusion equation for density, however, does not have such
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long-range correlations (although we find them in the linear Fourier equation [14]). For
systems with long-range correlations we expect that the influence of the continuum solver
on the fluctuations in the particle region will be enhanced; we are currently conducting a
study of hybrids for such systems.

Clearly, any macroscopic formulation will have limited fidelity to the underlying mi-
croscopic processes. Stochastic PDEs of physical processes are typically formulated to
guarantee only the correct single-time fluctuations. For example, in fluctuating hydrody-
namics the amplitude of the noise is fixed by matching the variances at thermodynamic
equlibrium [19]. The inability to capture even single-time current fluctuations (a higher
order moment) is already observed in the linear diffusion equation. To reproduce such
statistics a more complex formulation, such as extended irreversible thermodynamics, may
be needed. A related question is whether time-correlations of fluctuations can be recovered,
even with a stochastic-PDE hybrid; we are currently exploring this issue.

While the advantages of a particle/continuum hybrid are evident, unfortunately, for some
physical systems either an accurate microscopic particle algorithm is available or a stochastic
macroscopic model is known, but not both. Even when both elements are available, the
two methods may not be compatible for coupling together. The construction of hybrids is
particularly challenging for these systems.

Though we find that a hybrid scheme constructed with a simple, explicit stochastic-PDE
solver can reproduce the correct fluctuations, it is not our intent to promote the present
scheme as being optimal. A topic for future study is the analysis of a variety of stochastic-
PDE schemes to establish the most accurate and efficient methods for particle/continuum
hybrids. In particular, the details of how the coupling is implemented may affect the con-
vergence properties of a hybrid.

In this paper we consider explicit schemes because these are the most commonly used
methods for the continuum calculations in hybrids. Elliptic PDEs, such as the diffusion
equation, are often solved by implicit methods (e.g., Crank–Nicolson). Because such
schemes introduce a nonlocal coupling, the modification to the fluctuations may be sig-
nificant especially in hybrids using deterministic-PDEs. While semi-implicit PDE solvers
have been used in particle/continuum hybrids [9], the study of implicit, stochastic hybrids
is a topic best treated in a separate paper.

Finally, we have not addressed the question of how one selects the regions in a calculation
that should be computed by a microscopic, particle scheme versus a macroscopic, continuum
method. For example, when a hybrid is fully “adaptive” the particle regions can grow, shrink,
shift, merge, and fission throughout the calculational domain. In adaptive mesh refinement,
gradient detection is a commonly used refinement criterion (e.g., using a fine grid near a
shock front). Spontaneous fluctuations in a stochastic or particle-based algorithm can trigger
such criteria, even in regions that are at thermodynamic equilibrium, causing unnecessary
refinement. Preliminary studies using an adaptive DSMC/Euler hybrid indicate that this
problem may be overcome by a judicious choice of multiple refinement criteria [22], but
this important computational issue merits further study.
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