
Fluctuating Hydrodynamics and Debye-Hückel-Onsager Theory for
Electrolytes

Aleksandar Donev

Courant Institute of Mathematical Sciences, New York University, New York, NY, 10003

Alejandro L. Garcia

Department of Physics and Astronomy, San Jose State University, San Jose, CA, 95192

Jean-Philippe Péraud, Andy Nonaka, John B. Bell
Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720

Abstract

We apply fluctuating hydrodynamics to strong electrolyte mixtures to compute the concentration corrections

for chemical potential, diffusivity, and conductivity. We show these corrections to be in agreement with the

limiting laws of Debye, Hückel, and Onsager. We compute explicit corrections for a symmetric ternary

mixture and find that the co-ion Maxwell-Stefan diffusion coefficients can be negative, in agreement with

experimental findings.
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1. Introduction

Due to the long-range nature of Coulomb forces between ions it is well-known that electrolyte solutions

have unique properties that distinguish them from ordinary mixtures [1]. Colligative properties, such as

osmotic pressure, and transport properties, such as mobility, have corrections that scale with the square

root of concentration [2, 3, 4, 5]. This macroscopic effect has a mesoscopic origin, specifically, due to the

competition of thermal and electrostatic energy at scales comparable to the Debye length.

The traditional derivation of the thermodynamic corrections is by way of solving the Poisson-Boltzmann

equation. For example, an approximate solution gives the Debye-Hückel limiting law for the activity coef-

ficient [2, 6]. The derivation of the transport properties, as developed by Onsager and co-workers [7, 8, 9],

has a similar starting point but is much more complicated. Here, we present an alternative approach using

fluctuating hydrodynamics (FHD) [10]. This paper generalizes our previous derivation for binary elec-

trolytes [11] to arbitrary solute mixtures, and, as an illustrative example, calculates transport properties for

a ternary electrolyte. It should be noted that our FHD approach extends closely-related density functional
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theory calculations of relaxation corrections to the conductivity [12] of binary electrolytes to account for

advection, which enables us to also compute the electrophoretic corrections [2].

First formulated by Landau and Lifshitz to predict light scattering spectra [13, 14], more recently FHD

has been applied to study various mesoscopic phenomena in fluid dynamics [10, 15, 16, 17]. The current

popularity of fluctuating hydrodynamics is due, in part, to the availability of efficient and accurate numerical

schemes for solving the FHD equations [18, 19, 20, 21, 22, 23, 24, 25, 26]. While in this work we give analytical

results for dilute electrolytes under simplifying assumptions, numerical techniques can in principle be used

to compute the transport coefficients for moderately dilute solutions.

From the work of Onsager et al. [7, 8, 9] we can obtain the Fickian diffusion matrix for sufficiently

dilute electrolytes. For neutral multispecies mixtures, especially non-dilute ones, using binary Maxwell-

Stefan (MS) diffusion coefficients (inverse friction coefficients) [27, 28] is preferred because generally they

are positive and depend weakly on concentration. In this paper we use our FHD formulation to calculate

the effective macroscopic (renormalized) co-ion and counter-ion MS coefficients for binary and symmetric

ternary electrolytes. For sufficiently dilute binary electrolytes both theory and experiments show that the

counter-ion MS friction coefficient diverges as the inverse square root of the ionic strength [28]. This strong

concentration dependence implies that there are cross-diffusion terms that couple the electrodiffusion of the

different species even in the absence of an (external) electric field. Such effects are not captured in the

widely-used Poisson-Nernst-Planck (PNP) model of electrodiffusion, which is only accurate for very dilute

solutions. Our results show that for a symmetric ternary mixture all MS friction coefficients diverge as

the inverse square root of the ionic strength and the co-ion coefficient can be negative, in agreement with

experimental findings.

Obtaining MS coefficients as a function of concentration is quite difficult for multicomponent electrolytes,

and in practice various empirical fits are used following the work of Newman and collaborators [3], especially

in modeling electrodes in Li-ion batteries [29, 30, 31, 32]. These fits have sometimes been informed by tracer

diffusion coefficients of ions in binary electrolyte solutions [33]. Some authors have computed MS coefficients

by Green-Kubo formulas using molecular dynamics [34, 35]. Asymptotic expansions for dilute solutions can

be computed using our FHD-based approach and thus ground empirical fits of the concentration dependence

used in chemical engineering.

A complete model of transport in electrolyte mixtures must also account for advection and thus include

the momentum conservation (velocity) equation. This is commonly not done for dilute solutions based on

arguments that the velocities are negligible (small Peclet number), but these arguments have often been

flawed. This is because there is a Lorentz force in the momentum equation that induces nontrivial velocities

even in the electroneutral bulk [36]. Here we demonstrate that the coupling between charge fluctuations

and velocity fluctuations via the Lorentz force is responsible for the so-called electrophoretic correction to

the diffusion coefficients; it is this correction that can make the co-ion MS coefficient negative. Even more

unexpected couplings between mass and momentum transport have been uncovered in double layers, where
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charges are nonzero and applied electric fields can introduce pressure gradients that then drive nontrivial

barodiffusion [37].

This paper is organized as follows. Section 2 presents the FHD equations for a strong electrolyte; we

show that the equilibrium solution leads to the Debye-Hückel limiting law for activity. The non-equilibrium

solutions derived in Section 3 yield the relaxation and electrophoretic corrections to conductivity and dif-

fusion originally derived by Onsager [7, 8]. An additional renormalization correction due to correlations of

concentration and velocity fluctuations is also derived [15]. Section 4 highlights an interesting co-ion cross-

diffusion effect found in a ternary mixture. Section 5 outlines FHD applications for electrolytes that go far

beyond re-deriving classical results.

2. Fluctuating hydrodynamics for electrolytes

We consider an electrolyte solution with Nsp solute species and let wi(r, t) be the mass fraction for

species i at position r and time t. The charge of a molecule (ion) is eVi, where Vi is the valence and e is the

elementary charge; we also write it as mizi where mi is the molecule mass and zi is the specific charge. We

denote the vectors w = (w1, . . . , wNsp)T and similarly z = (z1, . . . , zNsp)T , where (·)T denotes transpose.

The fluid mixture is assumed incompressible with constant mass density ρ, isothermal with temperature

T , and, on average, locally electroneutral (
∑
i zi〈wi〉 = 0).

2.1. Stochastic transport equations

For dilute ionic solutions, the transport (conservation) equation for solute species i is

∂twi = −∇ · (F i + F̃ i), (1)

where F i is the hydrodynamic (dissipative and advective) flux, and F̃ i is the stochastic flux. The diffusive

flux is given by the Nernst-Planck equation so the total hydrodynamic flux is

F i = −D0
i

(
∇wi + eViwi

kBT
∇φ

)
+ vwi, (2)

where v is the fluid velocity, D0
i is the “bare” Fickian diffusion coefficient,1 φ is the electric potential, and kB

is Boltzmann’s constant. The dielectric permittivity ε is taken as constant so φ is defined by the electrostatic

equation

−ε∇2φ = q, where q = ρe
∑
i

wiVi
mi

= ρ
∑
i

wizi (3)

is the charge density.

The stochastic species flux is

F̃ i =

√
2D0

imiwi
ρ

Zi, (4)

1The term bare refers to the fact that D0
i will later be renormalized by the fluctuations to its macroscopic value Di.
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where Z is a Gaussian white noise vector field with independent components that are uncorrelated in time and

space. This flux has zero mean (〈F̃ i〉 = 0) and its variance satisfies the fluctuation-dissipation theorem [10].

We will refer to (1,2,3,4) as the (fluctuating) Poisson-Nernst-Planck (PNP) equations [22]. Note that

summing (1) over all species gives the continuity equation ∇ · v = 0.

The equation for momentum transport is

ρ∂tv = −ρ∇ · (vvT )−∇p+ µ∇2v + qE +
√
µkBT ∇ · (V + VT ), (5)

where p is pressure, µ = νρ is the shear viscosity, and E = −∇φ is the electric field. The last term in (5) is

the divergence of the stochastic stress tensor, where V is a white noise tensor field.

2.2. Structure factor

The static structure factor Sfg(k) characterizes the cross-correlations between the fluctuations of two

scalar quantities f(r) and g(r),

Sfg(k) = 〈δf̂(k)δĝ(k)∗〉 (6)

where f̂(k) is the Fourier transform of f(r) and (·)∗ denotes conjugate transpose. By Plancherel’s theorem,

〈(δf)(δg)∗〉 = 1
(2π)3

∫
dk Sfg(k). (7)

Here the quantities of interest are the fluctuations of the mass fractions δwi = wi − w̄i from their average

w̄i = 〈wi〉, and the fluctuations of the fluid velocity2 δv. In the non-equilibrium situations considered here

we are only interested in the velocity component in the direction of the applied thermodynamic force (e.g.,

external electric field). This is taken as the x-direction so only vx is retained in the structure factors.

A central quantity in our calculations is the (Nsp + 1)× (Nsp + 1) Hermitian matrix of structure factors

S =

 Sww Swv

Swv
∗ Svv

 , (8)

where the matrix Sww = 〈(δŵ)(δŵ)∗〉 and the vector Swv have elements

[Sww]ij = Swi,wj = 〈(δŵi)(δŵj)∗〉 and [Swv]i = Swi,vx = 〈(δŵi)(δv̂x)∗〉, (9)

and Svv = 〈(δv̂x)(δv̂x)∗〉.

The structure factor is easily calculated by linearizing (1) and (5) and transforming into Fourier space,3

∂tÛ = MÛ + N Ẑ, (10)

2We take the average fluid velocity as zero so δv = v; the notation emphasizes that velocity is a fluctuating quantity.
3The double curl operator is applied to the Fourier transform of (5) to eliminate the pressure term using the incompressibility

constraint [10].

4



where Û = (δŵ1, . . . , δŵNsp , δv̂x)T . This stochastic ODE describes an Ornstein-Uhlenbeck process, so the

structure factor is the solution of the linear system [38]

MS + SM∗ = −N N ∗. (11)

The right hand side is a diagonal matrix with elements,

[N N ∗]ii = 2
ρ

 k2D0
imiw̄i i ≤ Nsp

k2
⊥νkBT i = Nsp + 1

, (12)

where k2
⊥ = k2 − k2

x = k2 sin2 θ, and θ is the angle between k and the x axis.

At thermodynamic equilibrium,

Meq =

 Meq
ww 0

0 −νk2

 , (13)

where

[Meq
ww]ij = −D0

i

(
k2δij + zj

zi

Ii
λ2

)
. (14)

Here the Debye length λ is

λ =
√
εkBT

I
, where I = ρ

∑
i

miwiz
2
i (15)

is the ionic strength and Ii = miwiz
2
i /
(∑

jmjwjz
2
j

)
is the relative ionic strength. This can easily be

derived from the Fourier transform of the PNP equations. In particular, from (3) and the condition of local

electroneutrality, the fluctuations in the electric field can be expressed in terms of species fluctuations,

δÊ = −ιkδφ = − ιk

εk2 δq̂ = −ρ ιk
εk2

∑
i

ziδŵi, (16)

where ι =
√
−1.

Solving (11) at thermodynamic equilibrium gives Seq
wv = 0 and Seq

vv = sin2(θ)kBT/ρ. In the case where

the solutes are neutral (Vi = 0 for all species), which we denote by superscript “n”, the matrix Seq,n
ww is

diagonal with S(eq,n)
wi,wi = miw̄i/ρ independent of k. For a mixture involving ionic species, [22]

Seq
ww = Seq,n

ww −
1

1 + k2λ2 Π where Πi,j = λ2

εkBT
(miziw̄i) (mjzjw̄j) . (17)

2.3. Renormalization of chemical potentials

It is well-known that the colligative properties (e.g., vapor pressure) of electrolyte solutions depend on

their ionic strength, i.e., that the chemical potential of the ions are different from those in a dilute mixture

of neutral species. Specifically, ionic interactions contribute to the Gibbs free energy and this leads to a

correction for the activity.

The average increase in the electrostatic energy is ∆G = 1
2 〈δqδφ〉. Using (7,16) we obtain

∆G = ρ2

2ε(2π)3

∫
zT (Seq

ww − S
eq,n
ww ) z

k2 dk, (18)
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where we have subtracted Seq,n
ww to avoid an ill-defined integral that is actually zero due to the overall

electroneutrality. From (17), the renormalization of the free energy due to fluctuations is

∆G = − kBT8πλ3 = − I
8πελ. (19)

As shown in [2], this result leads directly to the limiting law of Debye and Hückel for point ions. The

integration in (18) is over all wavenumber; however, FHD is a mesoscopic theory so it does not apply below

molecular scales. Introducing an upper bound kmax ∼ π/a, where a is an effective ion radius, reduces the

correction ∆G by a fraction ∼ a/λ for a� λ, in agreement with the Debye–Hückel limiting law for finite-size

ions.

3. Fluctuations and Transport

Non-equilibrium systems are driven by thermodynamics forces, such as a gradient of concentration or an

applied electric field. Transport coefficients such as diffusivity and conductivity are obtained from the linear

response, namely the fluxes resulting from weak thermodynamic forces. The linear response is modified due

to correlations in the hydrodynamic fluctuations,

F̄ i = 〈F i(w,v)〉 = F i(〈w〉, 〈v〉) +D0
i

eVi
kBT

〈δwiδE〉+ 〈δvδwi〉

≡ F̄
0
i + F̄ relx

i + F̄ adv
i (20)

to quadratic order in the fluctuations. The term F̄
relx
i is the relaxation correction and F̄ adv

i the advection

correction. The term “relaxation” refers to the average force experienced by an ion from its asymmetric

ionic cloud relaxing due to thermal fluctuations [2].

In what follows we obtain expressions for 〈δwiδE〉 and 〈δvδwi〉 from the structure factor and show that

F̄ i can be written as (2) with renormalized diffusion coefficients that depend on the ionic strength. As

we shall see, fluctuating hydrodynamics yields the same relaxation and electrophoretic corrections as those

obtained by Onsager and co-workers [7, 8], plus an additional advection enhancement that is given by a

Stokes-Einstein formula [15] and is independent of the valences.

For this analysis it is useful to write the matrix M as

M = Meq + M′ +O(X 2), (21)

where X is the applied thermodynamic force. In this expansion Meq is O(X 0) and M′ is O(X 1). Similarly,

we can write the structure factor as S = Seq+S′+O(X 2). The noise covariance matrix N N ∗ is unchanged,4

so expanding (11) in powers of X gives the correction to the structure factors to linear order in X as the

solution of the linear system

MeqS′ + S′(Meq)∗ = −M′Seq − Seq(M′)∗. (22)

4This is the so-called local equilibrium assumption, which is valid when the applied gradients are not too large.
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3.1. Renormalization of diffusion

For neutral species, diffusion can be analyzed by imposing a concentration gradient separately for each

species and formulating the linearized response. For charged species, however, the concentration gradient of

a given species must be balanced by the other concentration gradients in order to preserve electroneutrality

in the mean,
∑
i zi∇w̄i = 0; as mentioned, we assume all concentration gradients are in the x-direction.

For an imposed concentration gradient X ≡ ∇xw̄ in the absence of an external electric field (〈E〉 = 0),

the relaxation of composition fluctuations follows the linearized equations

∂tδwi = D0
i

∇2δwi −
Ii
λ2zi

∑
j

zjδwj

− D0
imizi
kBT

δEx∇xw̄i − δvx∇xw̄i. (23)

The linearized momentum equation is the same as in equilibrium. Using (16) we obtain the linear correction

to the relaxation matrix,

M′ =

 ι cos θ
k

ρ
εkBT

πzT −∇xw̄

0 0

 , (24)

where the column vector π has elements πi = D0
imizi∇xw̄i.

3.1.1. Advective correction

The advective correction F̄ adv
i to the fluxes due to nonzero correlation 〈δvδwi〉 in (20) can be calculated

rather easily since S′wv solves

Meq
wwS

′
wv − νk2S′wv = kBT

ρ
sin2 θ ∇xw̄. (25)

Using the constraint zT∇xw̄ = 0 gives

S′wv = −kBT sin2 θ

k2ρ
Diag(D0

i + ν)−1 ∇xw̄. (26)

Integrating over k and using (7) then yields

F̄
adv
i = 〈δvδwi〉 = − kBT

3πρ(D0
i + ν)ai

∇w̄i, (27)

where we have introduced a molecular length ai to set an upper bound of π/ai for the wavenumber in order

for the integral (7) to converge. One can interpret ai as the molecular hydrodynamic diameter that enters

in the Stokes-Einstein formula [15].

The advective contribution to the fluxes (27) can be absorbed into the PNP equations by redefining or

renormalizing the diffusion coefficients from their bare values D0
i to

Di = D0
i + kBT

3πµai
, (28)
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3.1.2. Relaxation correction

The relaxation correction F̄ relx
i due to the nonzero correlation 〈δwiδE〉 in (20) can be computed in

principle by solving for S′ww the linear system

Meq
wwS

′
ww + S′ww(Meq

ww)T = −ι cos θ
k

ρ

εkBT
(πzTSeq

ww − S
eq
wwzπ

T ). (29)

This can be simplified further to the system

DΩS′ww + S′wwΩTD = ι
kλ2 cos θ

ρ (1 + k2λ2)
(
πκT − κπT

)
, (30)

where D = Diag(D0
i ), the column vector κ has elements κi = miwizi, and the matrix Ω = k2λ2 (zTκ) I +

κzT . The solution S′ww is a purely imaginary anti-symmetric matrix with zeros on the diagonal.

Given a solution to (29), we can use (9,16) to obtain

F̄
relx
i = D0

i

eVi
kBT

〈δwiδE〉 = −D0
i

eVi
εkBT

ρ

8π3

∑
j

zj

∫
dk

ιk

k2S
′
wi,wj

. (31)

Since all computations are linear, the final result can be written as a correction to Fick’s law, F̄ relx
x =

−Drelx∇xw̄, where, in general, Drelx is not diagonal and includes cross-diffusion terms. As done earlier

with (18), introducing an upper bound kmax ∼ π/a in (31) reduces the relaxation correction by a fraction

∼ a/λ, in agreement with Onsager’s calculations for finite-size ions. One can also express the results in terms

of corrections to the binary Maxwell-Stefan diffusion coefficients (see Section 4 and the Appendix) [28, 11].

In general, it is difficult to solve (29) in closed form; an explicit but lengthy formulation for the relaxation

correction to diffusion is given by Onsager and Kim [8] in terms of solutions to eigenvalue problems.5 In

Appendix A we give explicit results for a binary electrolyte, and in Section 4 for a symmetric ternary

electrolyte mixture.

3.2. Renormalization of conductivity

By Ohm’s law, the electrical conductivity Λi for species i is given by ziF̄ i = ΛiEext, where Eext is the

applied electric field. In [11], we derived the renormalization of the conductivity of a 1:1 electrolyte solution

with ions of equal mobility. To generalize that result we follow the same procedure as for the renormalization

of the diffusion coefficients, except that instead of imposing concentration gradients we apply an external

electric field X ≡ Eext = Eextex. From the linearized PNP equations in the presence of an applied field one

can easily obtain

M′ =

 −ιk cos θ
kBT

α 0

Eext sin2(θ)zT 0

 , (32)

where α = Diag
(
D0
imiziEext

)
.

5Note that in our calculation only a linear system needs to be solved and integrals performed, without actually computing

eigenvalues.
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3.2.1. Advective correction

As in the derivation in subsection 3.1.1, the advective correction to the fluxes is computed by solving for

S′wv the linear system

Meq
wwS

′
wv − νk2S′wv = −λ

2k2 sin2 θ

1 + λ2k2 Seq,n
ww zEext, (33)

to obtain

S′wi,v = λ2 sin2 θ

1 + λ2k2
miw̄izi

ρ(D0
i + ν) Eext. (34)

This gives via (7) the flux correction

F̄
adv
i = 〈δvδwi〉 ≈

(
1

3πai
− 1

6πλ

)
miw̄izi
µ

Eext, (35)

for Schmidt number Sc� 1 and λ� a, as suitable for dilute solutions in a liquid.

The advection contribution to the conductivity coming from (35) has two terms. The first contribution

involves the molecular cutoff a and is consistent with the renormalization of the diffusion coefficient in (28).

The second contribution involves the Debye length and is precisely the electrophoretic term obtained by

Onsager and Fuoss [7]; it leads to strong cross-species corrections to the PNP equations of order square root

in the ionic strength.

3.2.2. Relaxation correction

For the relaxation contribution we need to solve for S′ww the system

Meq
wwS

′
ww + S′ww(Meq

ww)∗ = −ι k cos(θ)
kBT (1 + k2λ2) (α Π−Π α) . (36)

This can be simplified further to the system

DΩS′ww + S′wwΩTD = ι
kλ2 cos θ

ρkBT (1 + k2λ2)
(
ωκT − κωT

)
Eext, (37)

where we used the same notation as in (30), and the column vector ω has elements ωi = D0
im

2
i z

2
iwi. The

solution S′ww is a purely imaginary anti-symmetric matrix with zeros on the diagonal.

After solving for S′ww, the flux correction can be obtained by performing an integral over k. We give

explicit results in Appendix A for a general binary case, and in Section 4 for a symmetric ternary case.

4. Symmetric Ternary Ion Mixture

We now consider a ternary system with one cation and two anions (valences V1 = +1, V2 = V3 = −1) in a

solvent. To simplify the analysis we take the ions to have equal masses mi = m (and thus equal charges per

mass z = e/m) and “bare” diffusivity D0
i = D0. By the electroneutrality condition the average composition

of the mixture can be written as w̄ = w0(1, f, 1 − f)T , where f(r) is the relative fraction between the two

anions.

For this symmetric ternary mixture, instead of the concentrations (w1, w2, w3), we introduce as variables:

the total mass fraction of solutes n = w1 + w2 + w3, the mass fraction of net charge c = w1 − (w2 + w3),
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and the difference in mass fractions between the anions s = w2 −w3. These have average values 〈n〉 = 2w0,

〈c〉 = 0, and 〈s〉 = w0(2f − 1). The corresponding hydrodynamic fluxes are
F n

F c

F s

 = −D0


∇n

∇c

∇s

+ D0mz

kBT
E


c

n

−s

+ v


n

c

s

 . (38)

In the basis (n, c, s, vx) the equilibrium matrix Meq is

Meq =


−D0k2 0 0 0

0 −D0k2 −D0λ−2 0 0

0 − 1
2D

0(1− 2f)λ−2 −Dk2 0

0 0 0 −νk2

 , (39)

and the noise covariance matrix is

N N ∗ = 2k2D0mw0

ρ


2 0 (2f − 1) 0

0 2 (1− 2f) 0

(2f − 1) (1− 2f) 1 0

0 0 0 sin2(θ)νkBT
D0mw0

 . (40)

4.1. Renormalization of diffusion coefficients

We first set the applied electric field to zero and write the gradients of concentrations in terms of the

independent gradients of saltiness ∇w̄0 and label (or color) of the anions ∇f ,

∇xw̄ = (∇xw̄0, f (∇xw̄0) + w̄0(∇xf), (1− f) (∇xw̄0)− w̄0(∇xf)) . (41)

In the basis (n, c, s, vx),

M′ =


0 0 0 −2 (∇xw̄0)

0 ι cos(θ)D0

kw̄0λ2 (∇xw̄0) 0 0

0 ι cos(θ)D0

2kw̄0λ2 g12 0 g12

0 0 0 0

 , (42)

where g12 = (1− 2f) (∇xw̄0)− 2w̄0 (∇xf).

The relaxation contributions to the fluxes are obtained from (31),

F̄
relx
n = F̄

relx
c = 0, F̄

relx
s = D0m(2−

√
2)

24πρλ3 ∇f. (43)

The advective contributions are obtained from (27) and are simply found to be consistent with the PNP

equations after a renormalization of the diffusion coefficients according to (28). In particular, there is no

electrophoretic contribution to F̄ adv when the thermodynamic forces are due to concentration gradients.
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4.2. Renormalization of conductivity

Next we consider the case where there is an applied electric field with ∇n = ∇c = ∇s = 0. In this case,

M′ =


0 −ιD

0mz
kBT

k cos(θ) 0 0

−ιD
0mz
kBT

k cos(θ) 0 0 0

0 0 ιD
0mz
kBT

k cos(θ) 0

0 z sin2(θ) 0 0

Eext. (44)

After solving for the structure factor deviation S′, the hydrodynamic fluxes of quantities n, c, and s can be

evaluated. The contributions from the relaxation term are
F̄

relx
n

F̄
relx
c

F̄
relx
s

 = D0m2z(2−
√

2)
48πkBTρλ3


0

−2

2f − 1

Eext, (45)

and for large Schmidt number the contributions from the advection term are
F̄

adv
n

F̄
adv
c

F̄
adv
s

 ≈
(

1
3πa −

1
6πλ

)
mw0z

µ


0

2

1− 2f

 Eext. (46)

The first part of this correction (∼ a−1) can be absorbed into the PNP equations with a renormalization of

the diffusion coefficients according to (28), while the second part (∼ λ−1) is an electrophoretic correction

that is consistent with the calculations of Onsager and coworkers [7, 8].

4.3. Renormalization of Maxwell-Stefan coefficients

From (43,45,46), one can obtain the complete non-diagonal Fickian diffusion matrix for the ternary

electrolyte. In the Fickian formulation the gradient of chemical potentials is represented by the vector g

with gi = ∇w̄i + (eViw̄i)(∇φ̄)/(kBT ) (c.f. (2)). Specifically, we can write (20) in the form

F̄ = −DFick g = −
(
D I +Dadv +Drelx

)
g (47)

where the renormalized diffusion coefficient is D = D0 + kBT/(3πµa). The advective correction to the

Fickian diffusion matrix is

Dadv = − kBT

12πλµ


1 −1 −1

−f f f

(−1 + f) 1− f 1− f

 , (48)

while the relaxation correction is

Drelx = −mD
0(2−

√
2)

96πλ3ρw0


1 −1 −1

−f 2− f −f

−1 + f −1 + f 1 + f

 . (49)
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One can convert the Fickian coefficients to binary Maxwell-Stefan coefficients Ðij , which are preferred

to the Fickian diffusion coefficients [28]. To leading order in the ionic strength,

Ðij = −12πViVjD2
[
kBT

µ
− ViVj

mD0(2−
√

2)
8ρw̄0λ2

]−1
ms

m
λw̄0, (50)

where ms is the mass of the solvent molecules and the valencies are plus or minus one. Equation (50) can

be considered the final result of our calculation since once the full MS diffusion matrix is known one can

compute all of the fluxes given the thermodynamic driving forces.

It is important to note that both the electrophoretic and relaxation corrections to the transport coefficients

are proportional to the inverse square root of the ionic strength. They are both positive for counter-ions but

have opposite signs for co-ions. Furthermore, the co-ion MS coefficient in a symmetric ternary mixture can be

negative (without violating any laws of physics), unlike the MS coefficients between uncharged species. This

result is corroborated by experimental measurements showing that the Maxwell-Stefan coefficient between

co-ions can be negative [28, 39, 40]. Finally, the fact that the MS coefficients both depend on concentration

very strongly and can be negative makes them less attractive for electrolyte mixtures; however, we are not

aware of any better alternatives.

5. Concluding Remarks

Fluctuating hydrodynamics is a powerful modeling tool at mesoscopic scales, as demonstrated here by

the calculation of the thermodynamic and transport corrections for electrolytes originally derived by Debye,

Hückel, Onsager, and co-workers. Our straightforward calculations showed that the (fluctuating) PNP

equations need to be corrected to order square root in the ionic strength, and are thus valid only for very dilute

solutions. The FHD formulation reveals the physics behind these corrections, such as the electrophoretic

correction in conductivity arising from a correlation between velocity and concentration fluctuations. Yet

fluctuating hydrodynamics has many applications beyond this elegant and insightful formulation of classic

results. One of the strengths of FHD is being able to model complex non-ideal multi-species mixtures

including contributions due to mean fluid flow, temperature gradients, boundary conditions (e.g., see [12]),

etc.

The present analysis was taken only to linear order but the extension to higher order is possible (e.g.,

corrections for strong fields are predicted for the relaxation term [12]). Using “one-loop” renormalization

theory, in this work we were only able to compute the leading-order corrections ∼
√
I in the ionic strength I.

Theoretical approaches have also been developed to go beyond dilute solutions [41]. Logarithmic corrections

to transport coefficients have been computed by Chen and Onsager [9], but to our knowledge the exact

formula for the coefficients is not yet agreed upon [42]. It remains to be seen if a higher-order (analytical

or numerical) perturbation analysis of the FHD equations can produce higher-order logarithmic corrections

∼ I ln I [9]. The next order terms are affected by molecular details such as ion pair formation [43, 42] and

are thus likely beyond the reach of hydrodynamic theories.
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It is important to point out that at higher concentrations one must use a complete multicomponent trans-

port model including nonideality of the solution and the flux of the solvent that comes from the conservation

of mass [28, 41, 44]. In our work [22] we have summarized the complete mass and momentum transport

equations consistent with nonequilibrium thermodynamics, without the need to single out a solvent species

or assume a dilute solution. Ion crowding can be modelled with additional (e.g. fourth order) terms not

included in traditional models [45]. Here we treated strong electrolyte solutions but the extension to weak

electrolytes, as well as general electrochemistry, is straight-forward. Another important extension of this

work is to consider the AC conductivity of electrolytes as a function of frequency [46]; this is in principle a

straighforward but tedious extension of the approach.

We should also mention some limitations of our calculations. In the analytical perturbative approach

followed here, all corrections to the linearized fluctuating PNP equations appear additively, not multiplica-

tively as they should. For example, the g appearing in (47) should include contributions from (19). Similarly,

we wrote the relaxation corrections in terms of bare diffusion coefficients D0, but in reality the bare coeffi-

cients are simultaneously renormalized by the advective correction. Multiplicative effects like these can be

important and are easily computed by nonlinear computational fluctuating hydrodynamics (e.g., see [15]).

Numerical methods for solving the FHD equations are well-established and these are especially useful for

including the effects of boundary conditions (e.g., conductivity corrections are predicted for the relaxation

term in a confined binary mixture [12]) and nonlinearities. Care is needed, however, to avoid double-counting

the contribution of the fluctuations to transport. In computational formulations the renormalization depends

on the coarse-graining scale (e.g., grid size) and this must be carefully evaluated by stochastic numerical

analysis. With this caveat, fluctuating hydrodynamics promises to be a powerful mesoscopic formulation for

electrolytes.
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Appendix A. Binary Electrolytes

In this appendix, we generalize the binary electrolyte theory presented in [11] by letting the two ionic

species have different physical properties, in particular, unequal diffusion coefficients. We still assume equal

valences, V1 = V2 = V , because it simplifies the expressions greatly while retaining the interesting features.
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The general expressions for the advective contributions due to the 〈δwiδv〉 term were derived in Sections 3.1

and 3.2 so here we focus on the relaxation contribution from the 〈δwiδE〉 term.

We first consider an applied concentration gradient ∇xw̄ = (1,m2/m1)∇xw̄1. The calculation of S′ is

tedious but straight-forward; the diagonal terms are zero, and the off-diagonal terms are

S′12 = −ιm2(D0
1 −D0

2)
ρ(D0

1 +D0
2)

kλ2 cos(θ)
(k2λ2 + 1)(2k2λ2 + 1) ∇xw̄1. (A.1)

Using this and (31) the relaxation contribution to the flux of species 1 is

F̄
relx
1 = D0

1m1z1

kBT
〈δw1δE〉 = −Drelx

1 ∇w1, (A.2)

where

Drelx
1 = (2−

√
2)m1D

0
1(D0

2 −D0
1)

48πρw̄1λ3(D0
1 +D0

2) , (A.3)

with a similar expression for species 2. As expected, this contribution is zero when the mobilities are equal.

We now consider an applied external electric field. Performing the calculation from Section 3.2 we obtain

F̄
relx
i = D0

imizi
kBT

〈δwiδE〉 = − (2−
√

2)D0
im

2
i zi

48πkBTρλ3 Eext, (A.4)

which is in exact agreement with the result obtained by Onsager and Fuoss.

From these results, one can compute the Maxwell-Stefan binary diffusion coefficients. To leading order

in ionic strength, the corrections to the pairwise diffusion coefficients between the ions and the solvent can

be shown to have an electrophoretic correction for unequal ions,

Ð1s = D1 + kBT (D0
1 −D0

2)
12πλµD0

2
, (A.5)

and similarly for Ð2s. The cross-diffusion coefficient between the two ions has both an electrophoretic and

a relaxation correction,

Ð12 = 12πD1D2

[
kBT

µ
+ (2−

√
2)m1

4ρw1λ2
D0

1D
0
2

D0
1 +D0

2

]−1
ms

m1
λw̄1 (A.6)

so Ð12 ∝ I−1/2. This is the generalization of the result for symmetric ions derived in [11], and matches (50)

for dynamically-identical counter-ions. As explained in the Conclusions, the bare diffusion coefficients in

these formulas should actually be replaced by their renormalized values throughout once one accounts for

nonlinear (multiplicative) effects.
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