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Abstract

We present predictions for the statistical error due to finite sampling in the presence of thermal fluctuations in

molecular simulation algorithms. Specifically, we establish how these errors depend on Mach number, Knudsen

number, number of particles, etc. Expressions for the common hydrodynamic variables of interest such as flow velocity,

temperature, density, pressure, shear stress, and heat flux are derived using equilibrium statistical mechanics. Both

volume-averaged and surface-averaged quantities are considered. Comparisons between theory and computations using

direct simulation Monte Carlo for dilute gases, and molecular dynamics for dense fluids, show that the use of equi-

librium theory provides accurate results.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently much attention has been focused on the simulation of hydrodynamic problems at small scales
using molecular simulation methods such as Molecular Dynamics (MD) [1,2] or the direct simulation

Monte Carlo (DSMC) [3,4]. Molecular Dynamics is generally used to simulate liquids while DSMC is a

very efficient algorithm for simulating dilute gases. In molecular simulation methods the connection to

macroscopic observable fields, such as velocity and temperature, is achieved through averaging appropriate

microscopic properties. The simulation results are therefore inherently statistical and statistical errors due

to finite sampling need to be fully quantified.
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Though confidence intervals may be estimated by measuring the variance of these sampled quantities,

this additional computation can be burdensome and thus is often omitted. Furthermore, it would be useful

to estimate confidence intervals a priori so that one could predict the computational effort required to

achieve a desired level of accuracy. For example, it is well known that obtaining accurate hydrodynamic

fields (e.g., velocity profiles) is computationally expensive in low Mach number flows so it is useful to have

an estimate of the computational effort required to reach the desired level of accuracy.

In this paper, we present expressions for the magnitude of statistical errors due to thermal fluctuations in

molecular simulations for the typical observables of interest, such as velocity, density, temperature, and
pressure. We also derive expressions for the shear stress and heat flux in the dilute gas limit. Both volume

averaging and flux averaging is considered. Although we make use of expressions from equilibrium sta-

tistical mechanics, the non-equilibrium modifications to these results are very small, even under extreme

conditions [5]. This is verified by the good agreement between our theoretical expressions and the corre-

sponding measurements in our simulations.

In addition to direct measurements of hydrodynamic fields, this analysis will benefit algorithmic ap-

plications by providing a framework were statistical fluctuations can be correctly accounted for. One ex-

ample of such application is the measurement of temperature for temperature-dependent collision rates
[15]; another example is the measurement of velocity and temperature for the purpose of imposing

boundary conditions [18]. Additional examples include hybrid methods [11,14] where the coupling between

continuum and molecular fields requires both averaging of finite numbers of particles in a sequence of

molecular realizations as well as the generation of molecular realizations, based on continuum fields, with

relatively small numbers of particles (e.g., buffer cells).

In Section 2 the theoretical expressions for the statistical error due to thermodynamic fluctuations are

derived. These expressions are verified by molecular simulations, as described in Section 3. The effect of

correlations between samples in dilute gases is briefly discussed in Section 4 and concluding remarks appear
in Section 5.

2. Statistical error due to thermal fluctuations

2.1. Volume-averaged quantities

We first consider the fluid velocity. In a particle simulation, the flow field is obtained by measuring the

instantaneous center of mass velocity, u, for particles in a statistical cell volume. The statistical mean value
of the local fluid velocity, huis, is estimated over M independent samples. For steady flows, these may be

sequential samples taken in time; for transient flows these may be samples from an ensemble of realizations.

The average fluid velocity, hui, is defined such that huis ! hui as M ! 1; for notational convenience we

also write hui ¼ u0. Define dux � ux � ux0 to be the instantaneous fluctuation in the x-component of the fluid
velocity; note that all three components are equivalent. From equilibrium statistical mechanics [6],

hðduxÞ2i ¼
kT0
mN0

¼ a2

cAc2N0
; ð1Þ

where N0 is the average number of particles in the statistical cell, T0 is the average temperature, m is the

particle mass, k is Boltzmann�s constant, a is the sound speed, and c ¼ cP=cV is the ratio of the specific
heats. The acoustic number Ac ¼ a=ai is the ratio of the fluid�s sound speed to the sound speed of a

‘‘reference’’ ideal gas at the same temperature

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ckT0=m

p
: ð2Þ
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Note that this reference ideal gas has a ratio of specific heats (ci) equal to the original fluid specific heat
ratio, that is ci ¼ c as shown in Eq. (2).
We may define a ‘‘signal-to-noise’’ ratio as the average fluid velocity over its standard deviation; from

the above

jux0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðduxÞ2i

q ¼ AcMa
ffiffiffiffiffiffiffiffi
cN0

p
; ð3Þ

whereMa ¼ jux0j=a is the local Mach number based on the velocity component of interest. This result shows
that for fixed Mach number, in a dilute gas simulation (Ac ¼ 1), the statistical error due to thermal fluc-

tuations cannot be ameliorated by reducing the temperature. However, when the Mach number is small

enough for compressibility effects to be negligible, favorable relative statistical errors may be obtained by

performing simulations at an increased Mach number (to a level where compressibility effects are still
negligible).

The one-standard-deviation error bar for the sample estimate huxis is ru ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðduxÞ2i

q
=
ffiffiffiffiffi
M

p
and the

fractional error in the estimate of the fluid velocity is

Eu ¼
ru
jux0j

¼ 1ffiffiffiffiffiffiffiffiffi
MN0

p 1

AcMa
ffiffiffi
c

p ; ð4Þ

yielding

M ¼ 1

cAc2N0Ma2E2u
: ð5Þ

For example, with N0 ¼ 100 particles in a statistical cell, if a one percent fractional error is desired in a
Ma ¼ 1 flow, about M ¼ 100 independent statistical samples are required (assuming Ac � 1). However, for

a Ma ¼ 10�2 flow, about 106 independent samples are needed, which quantifies the empirical observation

that the resolution of the flow velocity is computationally expensive for low Mach number flows.

Next we turn our attention to the density. From equilibrium statistical mechanics, the fluctuation in the

number of particles in a cell is

hðdNÞ2i ¼ �N 2 kT0
V 2

oV
oP

� �
T

¼ jTN 2
0

kT0
V

; ð6Þ

where V is the volume of the statistics cell and jT � �V �1ðoV =oP ÞT is the isothermal compressibility. Note
that for a dilute gas jT ¼ 1=P so hðdNÞ2i ¼ N and, in fact, N is Poisson random variable. The fractional

error in the estimate of the density is

Eq ¼ rq

q0
¼ rN
N0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdNÞ2i

q
N0

ffiffiffiffiffi
M

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jTkT0

p ffiffiffiffiffiffiffiffi
MV

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jT=jiT

p
ffiffiffiffiffiffiffiffiffi
MN0

p ; ð7Þ

where jiT ¼ V =N0kT0 is the isothermal compressibility of the reference dilute gas (ci ¼ c) at the same density
and temperature. Since a / 1=

ffiffiffiffiffi
jT

p
,

Eq ¼ 1ffiffiffiffiffiffiffiffiffi
MN0

p 1

Ac
: ð8Þ

Note that for fixedM and N0, the error decreases as the compressibility decreases (i.e., as the sound speed
increases) since the density fluctuations are smaller.
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Let us now consider the measurement of temperature. First, we should remark that the measurement of

instantaneous temperature is subtle, even in a dilute gas. But given that temperature is measured correctly,

equilibrium statistical mechanics gives the variance in the temperature fluctuations to be

hðdT Þ2i ¼ kT 20
cVN0

ð9Þ

where cV is the heat capacity per particle at constant volume. The fractional error in the estimate of the
temperature is

ET ¼ rT
T0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdT Þ2i

q
T0

ffiffiffiffiffi
M

p ¼ 1ffiffiffiffiffiffiffiffiffi
MN0

p
ffiffiffiffiffi
k
cV

s
: ð10Þ

Because the fluctuations are smaller, the error in the temperature is smaller when the heat capacity is
large. Note that the temperature associated with various degrees of freedom (translational, vibrational,

rotational) may be separately defined and measured. For example, if we consider only the measurement of

the translational temperature, then the appropriate heat capacity is that of an ideal gas with three degrees of

freedom, i.e., cV ¼ ð3=2Þk, corresponding to the three translational components.
Finally, the variance in the pressure fluctuations is

hðdPÞ2i ¼ �kT0
oP
oV

� �
S

¼ ckT0
V jT

ð11Þ

so the fractional error in the estimate of the pressure is

EP ¼
rP
P0

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdPÞ2i

q
P0

ffiffiffiffiffi
M

p ¼ P i0
P0

Ac
ffiffiffi
c

pffiffiffiffiffiffiffiffiffi
MN0

p ; ð12Þ

where P i0 ¼ N0kT0=V is the pressure of an ideal gas under the same conditions. Note that the error in the

pressure is proportional to the acoustic number while the error in the density, Eq. (8), goes as Ac�1.

2.2. Shear stress and heat flux for dilute gases

The thermodynamic results in the previous section are general; in this section we consider transport
quantities and restrict our analysis to dilute gases. In a dilute gas, the shear stress and heat flux are defined as

sxy0 ¼ hsxyi ¼ hqcxcyi ð13Þ

and

qx0 ¼ hqxi ¼
1

2
qcxc2

� �
; ð14Þ

respectively, where c
’
is the molecular velocity. Under the assumption of a dilute gas, the fluctuation in the

(equilibrium) shear stress and heat flux in a volume V containing N0 particles can be calculated using
the Maxwell–Boltzmann distribution. Note that in equilibrium the expected values of the shear stress and

the heat flux are zero.

Using the definitions of shear stress and heat flux in terms of moments of the velocity distribution, direct

calculation of the variance of the x–y component of the stress tensor based on a single-particle distribution
function gives
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hs2xyi ¼ hðqcxcyÞ2i; ð15Þ

¼ q20hðcxcyÞ
2i; ð16Þ

¼ 1

4
q20

2kT0
m

� �2
¼ P 20 : ð17Þ

In obtaining the second equation we used the fact that hcxi ¼ hcyi ¼ hðq � q0Þcxcyi ¼ 0. For the x
component of the heat flux vector, we find

hq2xi ¼
1

2
qcxc2

� �2* +
; ð18Þ

¼ q20
1

2
cxc2

� �2* +
; ð19Þ

¼ 35

32
q20

2kT0
m

� �3
¼ 35

8
c2mP

2
0 ; ð20Þ

where cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT0=m

p
is the most probable particle speed and we have used the fact that

hcxi ¼ hcyi ¼ hðq � q0Þc2i ¼ 0. Note that in equilibrium for a cell containing N0 particles, the variance of
the mean is given by hðdsxyÞ2i ¼ hs2xyi=N0 and hðdqxÞ2i ¼ hq2xi=N0 for the shear stress and heat flux, re-

spectively.

In order to derive expressions for the relative fluctuations we need expressions for the magnitude of
the fluxes. We are only able to provide closed form expressions for the latter in the continuum regime

where

sxy ¼ l
oux
oy

�
þ ouy

ox

�
ð21Þ

and

qx ¼ �j
oT
ox

; ð22Þ

where l is the coefficient of viscosity and j is the thermal conductivity. Above Knudsen numbers of

Kn � 0:1, it is known that these continuum expressions fail and more accurate results can be obtained using

more elaborate formulations from kinetic theory. Here, the Knudsen number is defined as Kn ¼ k=‘, where
k is a viscosity-based mean free path

k ¼ 8

5
ffiffiffi
p

p cml
P0

ð23Þ

and ‘ is a characteristic length scale. Note that this expression for the mean free path simplifies to the hard
sphere result when the viscosity is taken to be that of hard spheres.

Using (21) and (22) we find that in continuum flows, the relative fluctuations in the shear stress and heat

flux are given by

Es ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdsxyÞ2i

q
jsxy0j

ffiffiffiffiffi
M

p ¼ 16

5
ffiffiffiffiffiffiffiffi
2pc

p 1

KnMa�

1ffiffiffiffiffiffiffiffiffiffi
N0M

p ou�x
oy�

���� þ
ou�y
ox�

����
�1

ð24Þ
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and

Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdqxÞ2i

q
jqx0j

ffiffiffiffiffi
M

p ¼ 8
ffiffiffiffiffi
35

p

5
ffiffiffiffiffiffi
2p

p Pr ðc � 1Þ
c

T
DT

1

Kn
1ffiffiffiffiffiffiffiffiffiffi
N0M

p oT �

ox�

����
����
�1

; ð25Þ

respectively. Here, stars denote non-dimensional quantities: u� ¼ u0=~uu, T � ¼ T=DT , and x� ¼ x=‘, where ~uu
and DT are a characteristic velocity and temperature variation, while Pr is the Prandtl number. The Mach
number Ma� is defined with respect to the characteristic velocity ~uu rather than the local velocity used to
define Ma.
If viscous heat generation is responsible for the temperature differences characterized by DT , then it is

possible to express Eq. (25) in the following form:

Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdqxÞ2i

q
jqx0j

ffiffiffiffiffi
M

p ¼ 8
ffiffiffiffiffi
35

p

5c
ffiffiffiffiffiffi
2p

p Br
KnMa2�

1ffiffiffiffiffiffiffiffiffiffi
N0M

p oT �

ox�

����
����
�1

: ð26Þ

The Brinkman number,

Br ¼ l~uu2

jDT
; ð27Þ

is the relevant non-dimensional group that compares temperature differences due to viscous heat generation

to the characteristic temperature differences in the flow. (It follows that if viscous heat generation is re-

sponsible for the temperature changes, Br � 1.)

It is very instructive to extend the above analysis to Eq. (10). If we define the relative error in tem-

perature with respect to the temperature changes rather than the absolute temperature, we obtain

EDT ¼ rT
DT

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdT Þ2i

q
DT

ffiffiffiffiffi
M

p ¼ T0
DT

ffiffiffiffiffiffiffiffiffi
MN0

p
ffiffiffiffiffi
k
cV

s
; ð28Þ

¼ 1

Prðc � 1Þ
Br
Ma2�

1ffiffiffiffiffiffiffiffiffi
MN0

p
ffiffiffiffiffiffiffi
k
cV

;

s
ð29Þ

where again, if viscous heat generation is the only source of heat, Br � 1. The above development shows

that resolving the temperature differences or heat flux due to viscous heat generation in the continuum

regime is very computationally inefficient for low speed flow since for a given expected error EDT we find
that the number of samples scales as M / Ma�4� .
Comparison of Eqs. (4) and (24) and Eqs. (26) and (29) reveals that, in the continuum regime,

Es �
Eu
Kn

ð30Þ

and

Eq �
EDT

Kn
ð31Þ

since the non-dimensional gradients will be of order one. As the above equations were derived for the

continuum regime (Kn < 0:1), it follows that the relative error in these moments is significantly higher.
This will also be shown to be the case in the next section when the shear stress and heat flux are

evaluated as fluxal (surface) quantities. This has important consequences in hybrid methods [11,14], as

coupling in terms of state (Dirichlet) conditions is subject to less variation than coupling in terms of flux

conditions.
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2.3. Fluxal quantities

In this section, we predict the relative errors in the fluxes of mass and heat as well as the components of

the stress tensor, when calculated as fluxes across a reference surface. Our analysis is based on the as-

sumption of an infinite, ideal gas in equilibrium. In this case, it is well known that the number of particles,

Ni, in any infinitesimal cell i with dimensions Dxi;Dyi;Dzi is an independent Poisson random variable with

mean and variance

hNii ¼ hðdNiÞ2i ¼ nDxiDyiDzi; ð32Þ

where n ¼ q=m is the particle number density.

In Appendix A, it is shown that, more generally, all number fluctuations are independent and Poisson

distributed. In particular, the number of particles, Nþ
ij , leaving a cell i at position ðxi; yi; ziÞ, crossing a

surface, and arriving in another cell j at position ðxj; yj; zjÞ after a time Dt is also an independent Poisson
random variable. Its mean and variance are given by

hNþ
ij i ¼ hðdNþ

ij Þ
2i ¼ PijhNii; ð33Þ

where

Pij ¼ P ðxij; yij; zijÞDxjDyjDzj ð34Þ

is the probability that a particle makes the transition, which depends only upon the relative displacements,

xij ¼ xj � xi, yij ¼ yj � yi, and zij ¼ zj � zi. These properties hold exactly for an infinite ideal gas in equi-
librium (see Fig. 1), but they are also excellent approximations for most finite, dilute gases, even far from
equilibrium, e.g., as shown by the DSMC result in Fig. 2.

Fig. 1. Probability distribution of number of particles per unit area crossing a surface in the gas in one direction in time Dt! 0. The

circles denote equilibrium DSMC results and the solid line shows a Poisson distribution with mean based on the equilibrium result

hNþ=Ai ¼ ncm=ð2
ffiffiffi
p

p
ÞDt.
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Without loss of generality we place a large planar surface of area A at x ¼ 0 (see Fig. 3). The flux in the

positive direction, Jþh , of any velocity-dependent quantity, hðcx; cy ; czÞ, can be expressed as a sum of in-

dependent, random contributions from different cells i and j on opposite sides of the surface

Jþh ¼ 1

ADt

X
xi<0

X
xj>0

X
yi

X
yj

X
zi

X
zj

�hhðxij; yij; zijÞNþ
ij ; ð35Þ

where �hhðxij; yij; zijÞ ¼ hðcx; cy ; czÞ is the same quantity expressed in terms of relative displacements during the
time interval, Dt. We begin by calculating the mean flux. Taking expectations in Eq. (35), we obtain

Fig. 3. Schematic particle motion crossing surface A.

Fig. 2. Probability distribution of number of particles crossing a surface in the gas in one direction in time Dt ! 0, in the presence of

mean flow normal to the surface of interest. The circles denote DSMC results for shear flow and the solid line shows a Poisson

distribution with mean based on the particle flux as calculated by Eq. (40) by taking account of the local mean velocity due to the shear

flow and an equilibrium velocity distribution.
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hJþh i ¼
1

ADt

X
xi<0

X
xj>0

X
yi

X
yj

X
zi

X
zj

�hhðxij; yij; zijÞhNiiPij; ð36Þ

� 1

Dt

X
xi<0

X
xj>0

X
yj

X
zj

�hhðxij; yj; zjÞnDxiPðxij; yj; zjÞDxjDyjDzj; ð37Þ

where without loss of generality we have taken yi ¼ zi ¼ 0 and also separately performed the sums parallel

to the surface,X
yi

X
zi

DyiDzi ¼ A;

by invoking translational invariance and neglecting any edge effects, since hcyiDt; hcziDt ¼ Oð
ffiffiffi
A

p
Þ in the

limit Dt! 0 (taken below).

Passing to the continuum limit in Eq. (37) and letting A! 1, we arrive at an integral expression for the
mean flux through an infinite flat surface

hJþh i ¼
n
Dt

Z 0

�1
dx0
Z 1

0

dx
Z 1

�1
dy
Z 1

�1
dz�hhðx� x0; y; zÞP ðx� x0; y; zÞ

¼ n
Dt

Z 1

0

dx
Z 1

x
ds
Z 1

�1
dy
Z 1

�1
dz�hhðs; y; zÞP ðs; y; zÞ: ð38Þ

Since the integrand does not depend on x, switching the order of integration

hJþh i ¼
n
Dt

Z 1

0

ds
Z 1

�1
dy
Z 1

�1
dz�hhðs; y; zÞP ðs; y; zÞ

Z s

0

dx

¼ n
Z 1

0

ds
Z 1

�1
dy
Z 1

�1
dz�hhðs; y; zÞPðs; y; zÞ s

Dt
ð39Þ

produces a simple formula for the mean flux as a conditional average over the velocity distribution (with

cx > 0),

hJþh i ¼ nhcxhðcx; cy ; czÞiþ ð40Þ

in the limit Dt! 0. For hðcx; cy ; czÞ ¼ m;mcx;mcy ;mcz; ð1=2Þmc2 in the absence of a mean flow, we
obtain:

hJþm i ¼ nhcxmiþ ¼ qcm
2
ffiffiffi
p

p ; ð41Þ

hJþxxi ¼ nhcxmcxiþ ¼ qkT0
2m

¼ P0
2
; ð42Þ

hJþxyi ¼ nhcxmcyiþ ¼ 0; hJþxzi ¼ nhcxmcziþ ¼ 0; ð43Þ

hJþe i ¼ n cx
1

2
mc2

� �þ

¼ qc3m
2
ffiffiffi
p

p ; ð44Þ

which are the well-known results for the expected one-sided fluxes of mass, momentum, and energy,

respectively.
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Using the same formalism as above, we now derive a general formula for the variance of the flux,

hðdJþh Þ
2i. For simplicity, we assume that the mean flow is zero normal to the reference surface, but our

results below are easily extended to the case of a non-zero mean flow through the surface since, as shown in

Fig. 2, Eq. (33) still holds in that case. Taking the variance of Eq. (35) and using the independence of fNþ
ij g,

we obtain

hðdJþh Þ
2i ¼ 1

A2Dt2
X
xi<0

X
xj>0

X
yi

X
yj

X
zi

X
zj

�hhðxij; yij; zijÞ2hðdNþ
ij Þ

2i

¼ 1

A2Dt2
X
xi<0

X
xj>0

X
yi

X
yj

X
zi

X
zj

�hhðxij; yij; zijÞ2hNiiPij: ð45Þ

Following the same steps above leading from Eq. (36) to Eq. (40) we arrive at the simple formula

hðdJþh Þ
2i ¼ n

ADt
hcxhðcx; cy ; czÞ2iþ ð46Þ

in the continuum limit as Dt! 0. The variance of the total flux is

hðdJhÞ2i ¼ hðdJþh þ dJ�h Þ
2i ¼ hðdJþh Þ

2i þ hðdJ�h Þ
2i ¼ 2hðdJþh Þ

2i ð47Þ

since the one-sided fluxes through the surface, Jþh and J
�
h , are independent and identically distributed (with

opposite sign).
Using this general result, we can evaluate the standard deviations of the fluxes above:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdJmÞ2i

q
¼

ffiffiffiffiffiffiffiffi
qcmffiffiffi

p
p

r ffiffiffiffiffiffiffiffi
m
ADt

r
; ð48Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdJxyÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffi
qc3m
2
ffiffiffi
p

p
s ffiffiffiffiffiffiffiffi

m
ADt

r
; ð49Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdJeÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffi
3qc5m
2
ffiffiffi
p

p
s ffiffiffiffiffiffiffiffi

m
ADt

r
: ð50Þ

These formulae may be simplified by noting that

hJþm i ¼
mNþ

ADt
¼ qcm
2
ffiffiffi
p

p ; ð51Þ

where Nþ is the mean total number of particles crossing the reference surface in one direction in time Dt,
which yields:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðdJmÞ2i
q

¼ qcmffiffiffiffiffiffi
2p

p 1ffiffiffiffiffiffiffi
Nþ

p ; ð52Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdJxyÞ2i

q
¼ qc2m
2
ffiffiffi
p

p 1ffiffiffiffiffiffiffi
Nþ

p ; ð53Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdJeÞ2i

q
¼

ffiffiffi
3

p

r
qc3m
2

1ffiffiffiffiffiffiffi
Nþ

p : ð54Þ

We may relate these to the results from the previous section by identifying hðdsfxyÞ
2i ¼ hðdJxyÞ2i and

hðdqfxÞ
2i ¼ hðdJeÞ2i, and additionally include the effect ofM (independent) samples in time. The superscript f
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denotes fluxal measurement. By noting that transport fluxes are defined with respect to the rest frame of the

fluid, it can be easily verified that the above relations hold in the case where a mean flow in directions

parallel to the measuring surface exists, under the assumption of a local equilibrium distribution.

We can derive expressions for the relative expected error in the continuum regime in which models exist

for the shear stress and heat flux. In this regime we find

Efs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdsfxyÞ

2i
q
jsfxy0j

ffiffiffiffiffi
M

p ¼ 16

5p
ffiffiffiffiffi
2c

p 1

KnMa�

1ffiffiffiffiffiffiffiffiffiffiffi
MNþ

p ou�

oy�

���� þ ov�

ox�

����
�1

ð55Þ

and

Efq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdqfxÞ

2i
q
jqfx0j

ffiffiffiffiffi
M

p ¼ 16
ffiffiffi
3

p

5p
Prðc � 1Þ

c
T
DT

1

Kn
1ffiffiffiffiffiffiffiffiffiffiffi
MNþ

p oT
ox�

����
����
�1

; ð56Þ

¼ 16
ffiffiffi
3

p

5cp
Br

KnMa2�

1ffiffiffiffiffiffiffiffiffiffiffi
MNþ

p oT
ox�

����
����
�1

: ð57Þ

Comparing (55) with the corresponding expressions for volume-averaged stress tensor, (24), one finds

that, aside from the numerical coefficients, the expressions differ only in the number of particles used, either

Nþ or N0; one finds a similar result for the heat flux.

2.4. Connection to fluctuating hydrodynamics

Fluctuating hydrodynamics as developed by Landau approximates the stress tensor and heat flux as

white noises, with variances fixed by the equilibrium fluctuations. In this section, we identify the connection

between Landau�s theory and the variances of fluxes obtained in Section 2.2.
Landau introduced fluctuations into the hydrodynamic equations by adding white noise terms to the

stress tensor and heat flux [16] (in the spirit of Langevin�s theory of Brownian motion). The amplitudes of
these noises are fixed by evaluating the resulting variances of velocity and temperature and matching those

with the results from equilibrium statistical mechanics [17]. For example, in Landau�s formulation the total
heat flux in the x-direction is qLx ¼ �joT =oxþ gx where the first term on the r.h.s. is the deterministic part of

the flux and the second is the white noise term. The latter has mean zero and time correlation given by the

following expression:

hgxðtÞgxðt0Þi ¼
2kjT 2

V
dðt � t0Þ: ð58Þ

Note that at a steady state the deterministic part is constant so hdqLx ðtÞdqLx ðt0Þi ¼ hgxðtÞgxðt0Þi.
On the other hand, recall from Eq. (20),

hðdqxÞ2i ¼
35

32

q2c6m
N0

: ð59Þ

The question naturally arises: how does one reconcile (58) and (59)? Note that the fluctuating hydro-

dynamics expression contains the thermal conductivity, which depends on the particle interaction (e.g., for

hard-spheres j depends on the particle diameter) while the kinetic theory expression is independent of this
interaction.

The key lies in identifying the d-function with a decay time, td, that is vanishingly small at hydrodynamic
scales. Specifically, we may write
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dðt � t0Þ ! t�1d ; jt � t0j < td;
0 otherwise

�
ð60Þ

so

hðgxðtÞÞ2i ¼
2kjT 2

tdV
¼ jV
2kN0c2mtd

q2c6m
N0

: ð61Þ

Comparing with the above gives

td ¼
16

35

jV
kN0c2m

: ð62Þ

For a hard sphere gas, j ¼ ð5=2ÞcVl so using (23) we may write this as

td ¼
15

ffiffiffi
p

p

28

k
cm

: ð63Þ

For other particle interactions the coefficients will be slightly different but in general td � k=cm, thus it is
approximately equal to the molecular collision time. In conclusion, the two formulations are compatible

once the white noise approximation in fluctuating hydrodynamics is justified by the fact that the hydro-

dynamic time scale is much longer than the kinetic (i.e., collisional) time scale. Landau�s construction
provides a useful hydrodynamic approximation for gx but (59) is the actual variance of the heat flux.

3. Simulations

3.1. Dilute gases

We performed DSMC simulations to verify the validity of the expressions derived above. Standard

DSMC techniques [3,4] were used to simulate flow of gaseous argon (molecular mass m ¼ 6:63� 10�26 kg,

hard sphere diameter r ¼ 3:66� 10�10 m) in a two-dimensional channel (length L and height H ). The
simulation was periodic in the x-direction (along the channel axis). The two walls at y ¼ �H=2 and y ¼ H=2
were fully accommodating and flat. The simulation was also periodic in the third (homogeneous) direction.

The average gas density was q0 ¼ 1:78 kg=m
3
and in all calculations over 40 particles per cell were used.

The cell size was Dx ¼ k0=3 where k0 is the reference mean free path. The time step was Dt ¼ k0=ð7:5cmÞ. For
a discussion of the errors resulting from finite cell sizes and time steps, see [8–10]. The fractional error in the

simulations is obtained from the standard deviation of cell values in the x- and z-directions. To ensure that
the samples were independent, samples were taken only once every 250 time steps. To ensure that the

system was in its steady state the simulation was run for 106 time steps before sampling was started.

A constant acceleration was applied to the particles to produce Poiseuille flow in the x-direction with
maximum velocity at the centerline umax0 � 2 m/s. Figs. 4–6 show good agreement between the theoretical

expressions from Section 2 and simulation measurements for the fractional error in velocity, density, and

temperature, respectively. The fractional error in the velocity measurement is minimum at the centerline
since the Poiseuille velocity profile is parabolic and maximum at the centerline (see Fig. 4). The density and

temperature were nearly constant across the system so the fractional errors in these quantities are also

nearly constant.

The expressions for shear stress and heat flux were verified using Couette (walls at equal temperature

with different velocities) and ‘‘Temperature Couette’’ (walls at zero velocity with different temperatures)

calculations, respectively. In these calculations, very small cell sizes (Dx ¼ k=6) and time steps
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ðDt ¼ k=ð30cmÞÞ were used. The system was equilibrated for 106 time steps and samples were taken every 50

time steps. The momentum and energy fluxes de-correlate faster than the conserved hydrodynamic vari-

ables, such as density, so independent samples are obtained after fewer time steps (see Section 4). Good

Fig. 5. Fractional error in density for Poiseuille flow in a channel as a function of the transverse channel coordinate, y (measured in
meters). The dashed line denotes Eq. (8) and the solid line indicates DSMC simulation results.

Fig. 4. Fractional error in velocity for Poiseuille flow in a channel as a function of the transverse channel coordinate, y (measured in
meters). The dashed line denotes Eq. (4) and the solid line denotes DSMC simulation results.
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agreement is found between the theoretical results and simulation measurements for volume-averaged and

fluxal quantities, as shown in Figs. 7–10.

A final note: In DSMC simulations one considers each particle as ‘‘representing’’ a number of molecules,

N, in the physical system. TypicallyN � 1 although this value is only restricted by the available computer
resources (given sufficient memory,N can even be less than one). Despite its stochastic nature, DSMC has

been shown [5] to reproduce the correct hydrodynamic fluctuations, both under equilibrium and non-

equilibrium conditions, that is, the Monte Carlo element of the algorithm does not introduce any additional

fluctuations. However, the molecule-to-particle rescaling does affect the magnitude of the fluctuations with

the variance increased by a factor of N relative to that in the physical system. In all the expressions given

above for estimating statistical errors, N0 and Nþ are the number of particles used by the simulation.

Therefore, the relative error can be reduced by using larger numbers of particles in a simulation (i.e.,

lowering the molecule-to-particle ratio, N).

3.2. Dense fluids

We performed molecular dynamics simulations to test the validity of Eqs. (4), (8) and (10) for dense
fluids. A similar geometry to the dilute gas simulations described above was used but at a significantly

higher density. In particular, we simulated liquid argon (rLJ ¼ 3:4� 10�10 m, eLJ ¼ 119:8kb) at T ¼ 240 K

and q ¼ 860 kg=m
3
in a two-dimensional channel with the x- and z-directions periodic. The channel height

was H ¼ 69:7rLJ. The wall molecules were connected to fcc lattice sites through springs and interacted with
the fluid through a Lennard–Jones potential with the same parameters. The spring constant ks ¼ 460er�2

was chosen in such a way that the root mean square displacement of wall atoms around their equilibrium

position at the simulated temperature was well below the Lindemann criterion for the melting point of a

solid. The length and depth of the system was 28rLJ and 29:1rLJ in the x- and z-directions, respectively.

Fig. 6. Fractional error in temperature for Poiseuille flow in a channel as a function of the transverse channel coordinate, y (measured
in meters). The dashed line denotes Eq. (10) and the solid line indicates DSMC simulation results.
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Fig. 7. Fractional error in the shear stress sxy for Couette flow in a channel as a function of the transverse channel coordinate, y
(measured in meters). The dashed line denotes Eq. (24) and the solid line indicates DSMC simulation results.

Fig. 8. Fractional error in the shear stress for Couette flow in a channel as a function of the transverse channel coordinate, y (measured
in meters). The dashed line denotes Eq. (55) and the solid line indicates DSMC simulation results.
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Fig. 9. Fractional error in the heat flux for ‘‘Temperature Couette’’ in a channel as a function of the transverse channel coordinate, y
(measured in meters). The dashed line denotes Eq. (25) and the solid line indicates DSMC simulation results.

Fig. 10. Fractional error in the heat flux for ‘‘Temperature Couette’’ in a channel as a function of the transverse channel coordinate, y
(measured in meters). The dashed line denotes Eq. (57) and the solid line indicates DSMC simulation results.
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Fig. 11. Fractional error in velocity for dense-fluid Poiseuille flow in a channel as a function of the transverse channel coordinate, y.
The dashed line denotes Eq. (4) and the solid line denotes MD simulation results.

Fig. 12. Fractional error in temperature for dense-fluid Poiseuille flow in a channel as a function of the transverse channel coordinate,

y. The dashed line denotes Eq. (10) and the solid line indicates MD simulation results.
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A constant force f ¼ 8� 10�5e=rLJ per particle was used to generate a velocity field with a maximum
velocity of approximately 13 m/s.

In order to calculate the fluctuation of density, temperature, and velocity, we divided the simulation cell

into 13 layers in the y-direction with a height Dy ¼ 4:6396r. We further divided each layer into 49 cells, 7 in
each of the x- and z-directions. The density, temperature, and velocity in each cell were calculated every
2000 timesteps ð0:005tLJÞ, where tLJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mLJr2LJ=eLJ

p
. We have checked that this time interval is longer than

the system�s correlation time such that samples taken between such intervals are independent. For each cell,
200 samples are used to calculate the average density, temperature, and velocity. The fluctuation was

calculated for each layer using the 49 equivalent cells in the x–z plane.

Due to the sensitivity of the compressibility jT on the interaction cutoff rc, a rather conservative value of
rc ¼ 4:0rLJ was used. We also introduced a correction for the still-finite cutoff which used the compress-
ibility predictions of the Modified Benedict–Webb–Rubin equation of state [13]. The agreement between

the theoretical predictions and the simulations is good (see Figs. 11–13).

4. Independent samples and correlations

The results in Figs. 7–10 suggest that volume-averaged measurements provide a superior performance

due to a smaller relative error. This conclusion, however, is not necessarily correct because our results are

based on arbitrary choices of ‘‘measurement spacing’’, in the sense that the only consideration was to

eliminate correlations in the data since the theoretical formulation in Section 2 is based on the assumption

of uncorrelated samples. The two methods of sampling are in fact linked by a very interesting interplay
between the roles of time and space: fluxal sampling is a measurement at a fixed position in space for a

period of time, whereas volume sampling is performed over some region of space at a fixed time. The

theoretical performance of each method can be increased by extending the respective window of obser-

vation. However, by increasing the time of observation, a fluxal measurement becomes correlated with

Fig. 13. Fractional error in density for dense-fluid Poiseuille flow in a channel as a function of the transverse channel coordinate, y.
The dashed line denotes Eq. (8) and the solid line indicates MD simulation results.
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neighboring measurements if the same particle crosses more than one measuring station within the period

of observation. Similarly, by increasing the region of measurement, subsequent volume measurements will

suffer from time correlations if previously interrogated particles do not have sufficient time to leave the

measurement volume. This relation between spatial and temporal samplings and the role of the particle

characteristic velocity is also manifested in the theoretical predictions. Enforcing equality of the variances

of the respective volume and fluxal measurements (Eqs. (24) and (55), and Eqs. (25) and (57)) yields

Dx ¼ bcmDt, where b � 1. The generalization of this work to include time and spatial correlations is the

subject of future work.
The effect of time correlation in volume measurements can be approximated using the theory of the

‘‘persistent random walk’’ [19], first introduced by F€uurth [20] and Taylor [7]. A persistent random walk is

one in which each step displacement, uðtgÞ ¼ uðgDtÞ, is identically distributed and has a positive correlation
coefficient with the previous step

a ¼ hduðtgÞduðtg�1Þi
hðduÞ2i

ð64Þ

(0 < a < 1). Models such as these have been proposed to model diffusion in a turbulent fluid [7,21]. This

assumption implies that step correlations decay exponentially in time

hduðtgÞduð0Þi
hðduÞ2i

¼ ag ¼ e�tg=tc ; ð65Þ

where tc ¼ �Dt= log a is the correlation time beyond which the steps are essentially independent. The po-
sition, UðtgÞ, of the random walker after g steps is the sum of these correlated random displacements,

UðtgÞ ¼
Pg

j¼1 uðtjÞ. Following Taylor, it is straightforward to show that for times long compared to the

correlation time (tg � tc), the usual diffusive scaling holds

hðdUðtgÞÞ2i � hðduÞ2ig 1þ a
1� a

� �
; ð66Þ

where the bare diffusion coefficient is modified by the term in parentheses due to correlations.

There is a natural connection with the measurement of statistical averages. If we view each step in the

persistent random walk as a correlated sample of some quantity in the gas, then the position of the walker

(divided by the number of samples) corresponds to the sample average. Thus the variance of a set of se-

quentially correlated random variables fuðtgÞg, VarcðuÞ, may be written as

VarcðuÞ ¼ VarðuÞ 1þ a
1� a

; ð67Þ

where VarðuÞ is the variance of the uncorrelated samples (a ¼ 0). The theory above implies that the sample

variance is amplified by the presence of correlations, because effectively fewer independent samples have

been taken compared to the uncorrelated case, a ¼ 0.

Note that a sequence of correlated random variables, fuðtgÞg, satisfying Eqs. (64) and (65) can be ex-
plicitly constructed from a sequence of independent, identically distributed variables, f~uuðtgÞg, by letting
uðtgÞ equal the previous value uðtg�1Þ with probability a or a new value ~uuðtgÞ with probability 1� a. This
allows us to interpret a as the probability that a sample is the same as the previous one, which is precisely
the source of correlations when volume-sampling dilute gases.
There are two distinct ways that a new sample of a dilute gas can actually provide new information: (i)

either some new particles have entered the sampling cell, or (ii) some particles previously inside the cell have

changed their properties due to collisions. Regarding (i), the probability that a particle will remain in a cell

of size Dx after time step Dt is given by
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al ¼
1

Dx

Z Dx=2

�Dx=2

Z Dx=2

�Dx=2
f

x� ~xx
Dt

 !
dx d~xx

 !d

; ð68Þ

where d is the dimensionality of the cell and f ðciÞ is the probability distribution function for the velocity of
particle i, and thus f ððx� ~xxÞ=DtÞ represents the probability that a particle originating from location ~xx is

Fig. 14. Fractional error in velocity for Poiseuille flow in a channel as a function of the transverse channel coordinate, y (measured in
meters). The dashed line denotes the theoretical prediction including correlations and the solid line denotes DSMC simulation results.

Fig. 15. Fractional error in density for Poiseuille flow in a channel as a function of the transverse channel coordinate, y (measured in
meters). The dashed line denotes the theoretical prediction including correlations and the solid line indicates DSMC simulation results.
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found at x after a time interval Dt. Note that the above expression holds when the components of the
particle velocity in different directions are uncorrelated and that the particle spatial distribution inside the

cell is initially uniform. Regarding (ii), if the single-particle auto-correlation function decays exponentially,

the ‘‘renewal’’ probability 1� ac for collisional de-correlation can, at least in principle, be inferred from
simulations using Eq. (65). The net correlation coefficient, giving the probability of an ‘‘identical’’ sample, is

a ¼ acal.
DSMC simulations show that the single-particle velocity correlation coefficient is ac � 0:94 for

Dt ¼ k=ð15cmÞ by fitting Eq. (65) to data; the same value for ac was found in both equilibrium and non-

equilibrium simulations. In the comparison of Figs. 14–16, however, we use ac ¼ 1 since mass, momentum,

and energy are conserved in a cell during collisions. We find that this analysis produces very good results in

the case of density and temperature (see Figs. 15 and 16) and acceptable results for the case of mean velocity

(see Fig. 14). Use of ac ¼ 0:94 would tend to make the agreement better but no theoretical justification
exists for it within our simple framework. In our comparison, the value of al was directly calculated by
assuming an equilibrium distribution in Eq. (68). For our two-dimensional calculations with
Dx=ðcmDtÞ ¼ 2:5, we find al � 0:6. The effect of a mean flow is very small if the Mach number is small. This
was verified through both direct evaluation of Eq. (68) using a local equilibrium distribution function and

DSMC simulations.

5. Conclusions

We have presented expressions for the statistical error in estimating the velocity, density, temperature,
and pressure in molecular simulations. These expressions were validated for flow of a dilute gas and dense

liquid in a two-dimensional channel using the direct simulation Monte Carlo and Molecular Dynamics,

respectively. Despite the non-equilibrium nature of the validation experiments, good agreement is found

Fig. 16. Fractional error in temperature for Poiseuille flow in a channel as a function of the transverse channel coordinate, y (measured
in meters). The dashed line denotes the theoretical prediction including correlations and the solid line indicates DSMC simulation

results.
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between theory and simulation, verifying that modifications to non-equilibrium results are very small. The

agreement with equilibrium theory is particularly remarkable in the dense fluid case where significant non-

equilibrium due to a shear of the order of 5:5� 108 s�1 exists. We thus expect our results to hold for general

non-equilibrium applications of interest.

Predictions were also presented for the statistical error in estimating the shear stress and heat flux in

dilute gases through cell averaging and surface averaging. Comparison with direct Monte Carlo simulations

shows that the equilibrium assumption is justified. Within the same sets of assumptions, we were able to

show that the distribution of particles leaving a cell is Poisson-distributed.
It was found that the fluctuation in state variables is significantly smaller compared to flux variables in

the continuum regime Kn! 0. This is important for the development of hybrid methods. Although a direct

comparison was only presented between volume-averaged quantities, we find that the fluxal measurements

for the shear stress and heat flux perform similarly to the volume-averaged counterparts (regarding scaling

with the Knudsen number).
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Appendix A. Number fluctuations in dilute gases

Consider an infinite ideal gas in equilibrium with mean number density, n. By definition, each infini-
tesimal volume element, dV , contains a particle with probability n dV and each such event is independent

(i.e., particles are distributed according to a spatial Poisson process). From these assumptions, it is

straightforward to show that the number of particles N in an arbitrary volume V is a Poisson random

variable [12]

ProbðN ¼ mÞ ¼ e�hNihNim

m!

with mean and variance given by

hNi ¼ hðdNÞ2i ¼ nV :

Note that this result does not strictly apply to a finite ideal gas because the probabilities of finding

particles in different infinitesimal volumes are no longer independent, due to the global constraint of a fixed
total number of particles. Nevertheless, it is an excellent approximation for most dilute gases, even finite

non-ideal gases far from equilibrium (e.g., as demonstrated by simulations in the main text).

Now consider a property A which each particle in a volume V may possess independently with proba-

bility, PA. In this section, we show that the distribution of the number of such particles, NA, is also a Poisson
random variable with mean and variance given by

hNAi ¼ hðdNAÞ2i ¼ PAhNi ¼ PAnV :

For example, in the main text we require the number of particles, Nij, which travel from one region, i, to
another region, j, in a time interval, Dt. The proof given here, however, is much more general and applies to
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arbitrary number fluctuations of an infinite ideal gas in equilibrium, such as the number of particles in a

certain region, moving in a certain direction, of a certain ‘‘color’’, with speeds above a certain threshold,

etc.

We begin by expressing NA as a random sum of random variables

NA ¼
XN
i¼1

vi; ðA:1Þ

where

vi ¼
1 if A occurs;
0 otherwise

�

is an indicator function for particle i to possess property A, which is a Bernoulli random variable with

mean, PA. It is convenient to introduce probability generating functions

fvðzÞ ¼
X1
m¼0

Probðv ¼ mÞzm ¼ ð1� PAÞ þ PAz

and

fN ðzÞ ¼
X1
m¼0

ProbðN ¼ mÞzm ¼
X1
m¼0

e�hNihNimzm
m!

¼ ehNiðz�1Þ; ðA:2Þ

because the generating function for a random sum of random variables, as in Eq. (A.1), is simply given by a

composition of the generating functions for the summand and the number of terms [12]

fNAðzÞ ¼
X1
m¼0

ProbðNA ¼ mÞzm ¼ fN ðfvðzÞÞ:

Combining these expressions we have

fNAðzÞ ¼ ehNið1�PAþPAz�1Þ ¼ ePAhNiðz�1Þ:

Comparing with Eq. (A.2) completes the proof that NA is a Poisson random variable with mean, PAhNi.
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