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Abstract

We present predictions for the statistical error due to �nite sampling in

the presence of thermal uctuations in molecular simulation algorithms.

The expressions are derived using equilibrium statistical mechanics. The

results show that the number of samples needed to adequately resolve the

ow�eld scales as the inverse square of the Mach number. Agreement

of the theory with direct Monte Carlo simulations shows that the use of

equilibrium theory is justi�ed.

1 Introduction

Recently much attention has been focused on the simulation of hydrodynamic

problems at small scales using molecular simulation methods such as Molecu-

lar Dynamics (MD) [1] or the direct simulation Monte Carlo (DSMC) [2, 3].

Molecular Dynamics is generally used to simulate liquids while DSMC is a very

e�cient algorithm for simulating dilute gases. In molecular simulation methods

the connection to macroscopic observable �elds, such as velocity and temper-

ature, is achieved through averaging appropriate microscopic properties over

small regions of space. The simulation results are therefore inherently statisti-

cal and statistical errors due to �nite sampling need to be fully quanti�ed.
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Here we derive expressions for the magnitude of statistical errors due to

thermal uctuations in such simulations for the typical observables of inter-

est, namely velocity, density and temperature. Although we shall make use of

expressions from equilibrium statistical mechanics, the non-equilibrium modi�-

cations to these results are very small, even under extreme conditions [4].

2 Statistical error due to thermal uctuations

We �rst consider the uid velocity. In a particle simulation, the ow �eld is

obtained by measuring the instantaneous center of mass velocity, u, for particles

in a statistical cell volume. For steady ows, the statistical mean value of

the local uid velocity, hui, is estimated over M independent samples. The

average uid velocity, u0, is de�ned such that hui ! u0 as M ! 1. Let

N0 be the average number of particles in the statistical cell and �u � u � u0

the instantaneous uctuation of the uid velocity. From equilibrium statistical

mechanics [5],

h�u2i = kT0

mN0

=
c
2

Ac2N0

(1)

where T0 is the average temperature, m is the particle mass, k is Boltzmann's

constant, c is the sound speed,  = cP =cV is the ratio of the speci�c heats.

The acoustic number Ac = c=c
i is ratio of the uid's sound speed to the sound

speed of a \reference" ideal gas at the same temperature (ci =
p
kT=m). This

reference ideal gas has a ratio of speci�c heats (i) equal to the original uid

speci�c heat ratio, that is i = .

We may de�ne a \signal-to-noise" ratio as the average uid velocity over its

standard deviation; from the above,

u0ph�u2i = AcMa
p
N0 (2)

where Ma = u0=c is the local Mach number. This result shows that for �xed

Mach number, in a dilute gas simulation (Ac = 1) the statistical error due

to thermal uctuations cannot be ameliorated by reducing the temperature.

However, when the Mach number is small enough for compressibility e�ects to

be negligible, favorable relative statistical errors may be obtained by perform-

ing simulations at an increased Mach number (to a level where compressibility

e�ects are still negligible).

The one-standard-deviation error bar for the sample estimate hui is �u =ph�u2i=pM and the fractional error in the estimate of the uid velocity is

Eu =
�u

u0
=

1p
MN0

1

AcMa
p

; (3)

yielding

M =
1

Ac2N0Ma2E2
u

: (4)
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For example, with N0 = 100 particles in a statistical cell, if a one percent

fractional error is desired in a Ma = 1 ow, about M = 100 independent statis-

tical samples are required (assuming Ac � 1). However, for a Ma = 10�2 ow,

about 106 independent samples are needed. Since most particle methods require

10� 100 time steps between independent samples, this makes the resolution of

the ow velocity computationally expensive for low Mach number ows.

Next we turn our attention to the density. From equilibrium statistical

mechanics, the uctuation in the number of particles in a cell is

h�N2i = �N2
kT

V 2

�
@V

@P

�
T

= �TN
2

0

kT0

V
(5)

where �T � �V �1(@V=@P )T is the isothermal compressibility. Note that for a

dilute gas �T = 1=P so h�N2i = N and, in fact, the probability distribution of

N is Poissonian. The fractional error in the estimate of the density is

E� =
��

�0
=

�N

N0

=

ph�N2i
N0

p
M

=

p
�T kT0p
MV

(6)

where V is the volume of the cell. The above expression can also be written as

E� =
��

�0
=

p
�T =�

i
Tp

MN0

(7)

where �iT = V=N0kT0 is the isothermal compressibility of the reference dilute

gas (i = ) at the same density and temperature. Since c / 1=
p
�T ,

E� =
1p
MN0

1

Ac
(8)

Note that for �xed M and N0, the error decreases as the compressibility de-

creases (i.e., as the sound speed increases) since the density uctuations are

smaller.

Finally we consider the measurement of temperature. First we should remark

that the measurement of instantaneous temperature is subtle, even in a dilute

gas. But given that temperature is measured correctly, equilibrium statistical

mechanics gives the variance in the temperature uctuations to be

h�T 2i = kT
2

0

cVN0

(9)

where cV is the heat capacity per particle at constant volume. The fractional

error in the estimate of the temperature is

ET =
�T

T0
=

ph�T 2i
T0

p
M

=
1p
MN0

r
k

cV
(10)

Because the uctuations are smaller, the error in the temperature is smaller

when the heat capacity is large; note that for a monatomic dilute gas cV = 3

2
k.
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The fractional error in the density and temperature depend only on the

density and temperature of the uid and are independent of the ow speed.

Although typically undesirable in isothermal low speed ows, density and tem-

perature gradients develop due to compressibility and viscous heating e�ects.

The magnitude of these e�ects is proportional to the square of the Mach num-

ber, making them particularly challenging to resolve. Consider for example

the case of viscous heat dissipation: if we express the local temperature as

T0 = TG +�T , where TG is the global mean temperature, then the fractional

error in the temperature deviation can be approximated by

E�T =
�T

j�T j � ET

���� TG�T
���� / ET

Ma2
(11)

assuming j�T=TGj / (ru0)2 /Ma2. Although this expression is only approxi-

mate, it serves to highlight the typical scaling of signal-to-noise ratios found in

low speed ows.

A �nal note: In DSMC simulations one considers each particle as \represent-

ing" a large number of molecules in the physical system. In all the expressions

given here, N0 is the number of particles used by the simulation so the uctu-

ations can be reduced by using larger numbers of particles (i.e., using a lower

molecule-to-particle ratio).

3 Simulations

We performed DSMC simulations to verify the validity of the expressions derived

above. Standard DSMC techniques [2, 3] were used to simulate ow of gaseous

argon (molecular mass m = 6:63� 10�26 kg, hard sphere diameter � = 3:66�
10�10 m) in a two-dimensional channel (length L and heightH). The simulation

was periodic in the x direction (along the channel axis). The two walls at y = 0

and y = H were fully accommodating and smooth with �xed temperature T0 =

273 K. The simulation was also periodic in the third (homogeneous) direction.

A constant acceleration was applied to the particles to produce Poiseuille ow

in the x direction with maximum velocity at the centerline umax
0

� 2 m/s. The

equilibrium density was �0 = 1:78kg=m3 and approximately 40 particles per cell

were used. The cell size used was �x = �0=3 where �0 is the reference mean free

path. The timestep was �t = �0=(7:5v0) where v0 =
p
2kT0=m = 337 m/s is

the most probable speed. To ensure that the samples taken were independent,

one sample every 250 timesteps was taken starting after 1 million timesteps

ensuring that the system was in steady state.

Figures 1{3 show the measured fractional error, obtained from the standard

deviation of cell values in the x and z directions. The velocity pro�le in Poiseuille

ow is parabolic so the fractional error in the velocity measurement is minimum

at the centerline (see Fig. 1). The number of particles was nearly constant

everywhere in the system so the fractional errors in density and temperature

are nearly constant. In all cases, the simulation measurements are in good

agreement with the theoretical predictions.

4



4 Conclusions

We have presented expressions for the statistical error in estimating the veloc-

ity, density and temperature in molecular simulations. These expressions were

validated for ow of a dilute gas in a two-dimensional channel using the direct

simulation Monte Carlo technique. Despite the non-equilibrium nature of the

validation experiment, good agreement is found between theory and simulation,

verifying that modi�cations to non-equilibrium results are very small. We thus

expect these results to hold for general non-equilibrium applications of interest.

The validity of the above expressions for dense uid ows is currently under

investigation.

5 Acknowledgements

The authors wish to thank M. Malek-Mansour for helpful discussions. The

authors would also like to thank Xabier Garaizar for making this work possible

through the computer resources made available to the them, and Dr. Kyran

Mish, Director, Center for Computational Engineering, Lawrence Livermore

National Laboratory, for �nancial support (US Department of Energy, W-7405-

ENG-48). This work was also supported in part by a grant from the European

Commission DG12 (PSS*1045).

References

[1] Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford: Claren-

don Press, 1987.

[2] Bird GA., 1994. Molecular Gas Dynamics and the Direct Simulation of Gas

Flows. Oxford: Clarendon Press, 1994.

[3] Alexander FJ, Garcia AL. The Direct Simulation Monte Carlo Method.

Computers in Physics 1997; 11, 588-593.

[4] Malek-Mansour M, Garcia AL, Lie GC, Clementi E. Fluctuating Hydrody-

namics in a Dilute Gas. Physical Review Letters 1987;58 874{877; Garcia

AL, Malek-Mansour M, Lie G, Mareschal M, Clementi E, Hydrodynamic

uctuations in a dilute gas under shear. Physical Review A 1987;36, 4348{

4355.

[5] Landau LD, Lifshitz EM. Statistical Mechanics. Oxford: Pergamon Press,

1980.

5



0 5 10 15 20 25
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

y

Eu

Figure 1: Fractional error in velocity for Poiseuille ow in a channel as a function

of the transverse channel coordinate, y. The dashed line denotes equation (3)

and the solid line denotes DSMC simulation results.
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Figure 2: Fractional error in density for Poiseuille ow in a channel as a function

of the transverse channel coordinate, y. The dashed line denotes equation (8)

and the solid line indicates DSMC simulation results.
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Figure 3: Fractional error in temperature for Poiseuille ow in a channel as

a function of the transverse channel coordinate, y. The dashed line denotes

equation (10) and the solid line indicates DSMC simulation results.
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