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he primary concern of computational fluid dynamics is

the development and application of numerical methods
to solve the partial differential equations of hydro-
dynamics." These equations, most notably the Navier-
Stokes and Euler equations, describe Newtonian fluids, that
is, gases and simple liquids, over a wide range of condi-
tions. Although very useful, the continuum description of a
fluid has its limits. For example, the flow of a dilute gas
requires a kinetic-theory description.” As a result, various
specialized methods for simulating such flows have been
developed. This column presents one such method, direct
* simulation Monte Carlo (DSMC), developed by Bird in the
1960s.”

Flows are characterized by a variety of dimensionless
quantities. The most useful one for our purposes is the
Knudsen number Kn. This dimensionless quantity is de-
fined as Kn=\/L, where L is the characteristic length scale
of the physical system, and X is the molecular mean free
path. In general, a continuum description is not accurate
when Kn>1/10.

The mean free path A of a molecule in a dilute gas is
given by
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where n is the number density and o is the effective diam-
eter of the molecule. For example, in air at atmospheric
pressure, A=50 nm (about the wavelength of visible light),
whereas in the rarefied upper atmosphere at an altitude of
120 km, the mean free path is several meters. The Knudsen
number for air flow through the 50-nm-wide gap between
the head and platter in a disk drive is Kn=1, and Kn of the
bow shock off the nose of the space shuttle is also of order
unity, because the characteristic size of the nose is meters.

A more general criterion that indicates the breakdown
of the continuum description is the appearance of aniso-
tropic pressure effects. To quantify this criterion, we define
a local Knudsen number as Kn,=\|Vn|/n. Extensive stud-
ies done by Boyd, Chen, and Candler* indicate that the
appropriate criterion for the failure of the continuum de-
scription is Kn,>0.05.

For cases such as those discussed above, the continuum
description based on partial differential equations is inad-
equate, and a particle-based approach is needed. For physi-
cists, the best known particle-based algorithm is molecular
dynamics.” In molecular dynamics, the trajectory of every
particle in the fluid is computed from Newton’s equations,
given an empirically determined interparticle potential. Al-
though molecular dynamics is a useful technique in statis-
tical mechanics, its application is limited to simple hydro-
dynamic flows due to its enormous computational
overhead.® Molecular-dynamics simulations of a dilute gas
are extremely time-consuming even when run on the most
powerful computers. To simulate one cubic millimeter of
air at STP would require 10'® molecules and on the order of
103 floating-point operations to evolve the system for a
mean free time of 107! s. This calculation would take
about 10? years, even on a teraflops machine.

Fortunately, the DSMC method is an efficient alterna-
tive for simulating a dilute gas. The method can be viewed
as cither a simplified molecular-dynamics (DSMC is sev-
eral orders of magnitude faster) or a Monte Carlo method
for solving the time-dependent nonlinear Boltzmann equa-
tion (which describes the evolution of a dilute gas at the
level of the single-particle distribution function). Rather
than exactly calculating collisions as in molecular dynam-
ics, the DSMC method generates collisions stochastically
with scattering rates and postcollision velocity distributions
determined from the kinetic theory of a dilute gas. Although
DSMC simulations are not correct at a length scale as short
as that of an atomic diameter, they are accurate at scales
smaller than that of a mean free path.

The method has been thoroughly tested in high-
Knudsen-number flows over the past 25 years and found to
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be in excellent agreement with both experimental data’ and
molecular-dynamics computations.*® The DSMC method
also has been used successfully for several decades in the
study of rarefied gas flows, and has recently found new and
exciting applications in chemistry and physics.” Despite
this history, the method is still not widely known (compared
with, say, molecular dynamics) even among computational
physicists.

DSMC simulations employ
yarious types of boundaries
(for example, specular
surfaces, periodic boundaries,
and thermal walls) .

In this column, we present a brief description of
DSMC. Detailed expositions can be found in Ref. 3 or Ref.
10. As a concrete example, we describe how to simulate the
Rayleigh problem, that is, flow in a semi-infinite gas acted
on by an impulsively started, flat plate.

In the Rayleigh problem the system consists of a spatial
domain bounded in the vertical direction by a flat thermal
wall on the bottom, its temperature fixed at T,,, and a flat,
specularly reflecting plate on the top. The gas between the
plates is initially at rest in thermodynamic equilibrium with
a temperature Ty=T,,. At time =0, the lower plate’s tan-
gential velocity is impulsively set to u,,. The top plate is
stationary. In the horizontal direction there are periodic
boundary conditions, so that a particle that moves off the
right reappears at the left. The system is partitioned into a
regular array of cells (see Fig. 1), each of which is less than
a mean free path across (Az<TA).

Initially the N particles are randomly distributed with
uniform density throughout the system, such that there are
at least 50 particles in each cell. Each particle in the simu-
lation represents N, effective molecules in the physical sys-
tem. In this sense, the DSMC method solves the Boltzmann
equation using a representative random sample drawn from
the actual velocity distribution. This representation allows
us to model many systems of interest using only 10*-10°
particles (although simulations using over 10® particles are
not uncommon). If the number of particles used in the simu-
lation is too small, fewer than about 20 particles per cubic
mean free path, the DSMC method is not accurate.!!

In addition to its location r;, each particle is initialized
with a velocity v;, typically chosen from a Maxwellian
distribution. Therefore, the DSMC algorithm is like mo-
lecular dynamics in that the state of the system is given by
the positions and velocities of the particles {r;,v;} for
i=1,...,N.

The particle evolution is integrated in time steps of
duration At and consists of two distinct phases: advection
and collision. This splitting of the evolution between
streaming and collisions is accurate only when At is a frac-
tion of the mean free time.

In the advection phase, the particles are moved as if
they did not interact, that is, their positions are updated to
r;+v;At. Particles that reach a boundary are processed ac-
cording to the appropriate boundary condition, as described
below. If a particle strikes a wall, the time of the collision is
determined by tracing the straight-line trajectory from the
initial location r; to the point of impact, r,,. The time of
flight from the particle’s initial position to the point of im-
pact is At,=(r,—r;)" n/(v;- ﬁ), where n is the unit normal
to the surface. After striking the surface, the particle moves
off with a new velocity as dictated by the boundary condi-
tions and with the remaining time A¢— At .

What can happen to the particle when it reaches an
interface? DSMC simulations employ various types of
boundaries (for example, specular surfaces, periodic bound-
aries, and thermal walls). When a particle strikes a specular
surface, its component of velocity normal to the surface is
reversed. This condition is the one satisfied by a particle
that reflects off the top wall. When a particle strikes a per-
fect thermal wall at temperature T, all three components
of the velocity are reset according to a biased Maxwellian
distribution. The component normal to the wall is distrib-
uted as
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Figure 1. Schematic of the Rayleigh problem. The system consists of a fluid
bounded in the z direction by a flat thermal wall on the bottom with its
temperature fixed at T, , and a flat, specularly reflecting plate on the top.
At time t=0), the bottom velocity of the wall is set equal to u,, in the y
direction.
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and each parallel component is distributed as

m r e
Py(vy)= \'JZTrkT e Moy /Ty (3)

where m is the particle’s mass and & is Boltzmann’s con-
stant. We shall treat particles striking the bottom wall in this
way

Note that the distributions (2) and (3) are biased be-
cause the faster particles strike the wall more frequently.
The distribution for particles leaving the thermal wall must
reflect this bias. In addition to the tangential component
generated thermally by the wall, we need to add an addi-
tional velocity to account for the uniform translational mo-
tion of the wall in the Rayleigh problem. In other words, (3)
is the distribution in the rest frame of the thermal wall.
Because the wall is moving in the lab frame, we need to
add u,, to the y component of velocity for particles scatter-
ing off the wall. Using (2) and (3), the components of the
velocity of a particle leaving the lower thermal wall become

kT, y
U= m r(j 3 [ J
kT,
v, =\ —rstu,, (5)
) m

24T,
e =

- m

In r, (6)

where r is a uniformly distributed random number in (0,1)
and rg,r¢ are Gaussian-distributed random numbers with
zero mean and unit variance. In reality, gas-surface scatter-
ing is more complex, and these additional complexities can
be included within the gas-surface scattering routine (see
Ref. 17).

In each cell, a set of representative
collisions is processed at each time step.

After all the particles have been moved, a given num-
ber are randomly selected for collisions. The rules for this
random selection process are obtained from kinetic theory.
Our intuition tells us to select only those particles that are
near each other as collision partners. In other words, par-
ticles far from each other should not be allowed to interact.
To implement this condition, we sort the particles into spa-
tial cells and allow only particles in the same cell to collide.
We could invent more complicated methods, but this one
works well as long as Az, the linear dimension of a cell, is
no larger than a mean free path.

The concept of a collision implies that the interaction
potential between particles is short-ranged. For simplicity,
the DSMC algorithm is formulated for a dilute gas of hard-
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sphere particles with diameter o. For engineering applica-
tions, more realistic representations of the molecular inter-
action may be used to give accurate transport properties’
and equations of state for air and other gases.'?

In each cell, a set of representative collisions is pro-
cessed at each time step. All pairs of particles in a cell are
considered to be candidate collision partners, regardless of
their positions within the cell. Because only the magnitude
of the relative velocity between particles is used in deter-
mining their collision probability, even particles that are
moving away from each other may collide. This condition
allows two particles to collide by simply being located
within the same cell; no other positional information is used
in the evaluation of collisions. Remember that collisions in
the DSMC algorithm are only statistically correct because
the particles” Newtonian trajectories are not calculated. (If
they were, we would be doing molecular dynamics.)

The collision probability for a pair of hard spheres, i
and j, is proportional to their relative speed,

|":'_"j|
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where N, is the number of particles in the cell. Note that the
denominator normalizes this discrete probability distribu-
tion. The sums in (7) are over all the particles in a given
cell.

It would be computationally expensive to use (7) di-
rectly, because of the double sum in the denominator. In-
stead, the following acceptance-rejection scheme is used to
select collision pairs in each cell.

(1) A pair of potential collision partners, i and j, is chosen
at random from the particles within the cell.
(2) The pair is accepted as collision partners if
—|v, v’r|>r. (8)
Ur‘mux
where v ., is the maximum relative speed in the cell
and r is a uniform deviate in (0, 1).
(3) If the pair is accepted, the collision is processed and the
velocities of the particles are reset as discussed below.
(4) After the collision is processed or if the pair is rejected,
the routine moves again to step (1) until the required
number of candidate pairs My, in the cell has been
processed. The value of M, is discussed in the fol-
lowing.
This acceptance-rejection procedure exactly selects colli-
sion pairs according to (7). The method is also exact if we
overestimate the value of v, ... although it is less efficient
in the sense that more candidates are rejected. It is compu-
tationally cheaper to make an intelligent guess that overes-
timates v, ., rather than recompute it at each time step,
because the explicit calculation of v, . is as costly as the
calculation of the denominator in (7).

After the collision pair is chosen, their postcollision
velocities, v; and v! , need to be evaluated. Conservation of
linear momentum tells us that the center-of-mass (cm) ve-
locity remains unchanged by the collision,



"’cmz%{vr""'vj):l?[“';‘“\';):\’;m. (9)

From conservation of energy, the magnitude of the relative
velocity is also unchanged by the collision,

v,=|vi—vj|=|vi—vj[=v; . (10)
Equations (9) and (10) give us four constraints for the six
unknowns in v; and v; .
The two remaining unknowns are fixed by the angles, ¢
and ¢, for the relative velocity

v/ =v, [(sin @ cos ¢)x+ (sin @ sin ¢)y+ cos 0 z].
(11)
For the hard-sphere model, these angles are uniformly dis-
tributed over the unit sphere. The azimuthal angle ¢ is
uniformly distributed between 0 and 2, and so it is se-
lected as ¢=2mr. The 6 angle is distributed according to
the probability,

P(6#) do=1sin 0 d6. (12)
Using the change of variable g=cos #, we have
P(q)dg= 3dq, and so g is uniformly distributed in the

interval [ —1,1]. We do not really need to find #; instead we
compute

g=2r—1,
cos =g, (13)
sin #=\1-g".

The values of sin #and cos 6 generated in this way are used
in (11). The postcollision velocities are given by
Vi= Vot b, "

t 1t

v

v_; =Vem ™ 2V -
The total number of collisions that should take place in
a cell during a time step is given by

Nlma*(v, )N At

coll = V. “5)

where V., is the volume of the cell and (v,) is the average
relative velocity in the cell. However, we do not really want
to compute {v,), because that involves doing a sum over all
%Ni pairs of particles in the cell. Let us recall that collision
candidates go through an acceptance-rejection procedure.
The ratio of total accepted to total candidates is

MC(\ T,
= n_ oo (16)

cand Ut max

because the probability of accepting a pair is proportional to
their relative velocity. Using (15) and (16), we have

NS mo’y r.machA"

Mcand: V. ’ (17}

which is the number of candidate pairs we should select
over a time step At. Note that M, will equal on average
the acceptance probability (8) multiplied by (17) and is
independent of v, ... However, if we set v, ., too high,
we still process the same number of collisions on the aver-
age, but the program is inefficient, because the acceptance
probability is low and thus many candidates are rejected.

Because the DSMC method
is inherently stochastic, most
physical quantities of interest

are computed as averages.

Because the DSMC method is inherently stochastic,
most physical quantities of interest are computed as aver-
ages. The values of the mass density p(z,t), momentum
density p(z,t), and energy density e(z,t) are periodically
measured as

’0{2‘” 1 cell at z i
P(z0) [ =77 > mv; o (18)
e(z,1) sm|v;|?

where the sum is over particles in the statistics cell (of
volume V) located at position z. The tilde indicates that
these quantities are instantaneous, fluctuating values. For
convenience, we often use collision cells as statistics cells.

Unless the number of particles in a statistics cell is very
large, there will be significant fluctuations in the average
quantities. In steady flows, we can take statistics over a long
run after the system has reached its steady state. For time-
dependent problems, we can average over many realizations
of the same experiment (that is, average over many runs,
varying the random-number seed between runs). The fluid
velocity is computed as u(z,t)=p(z,1)/p(z,t), using the
averaged values of the mass and momentum density. The
temperature is computed from the equipartition theorem as

2mle(z,t) 1

T(Z’ﬂzﬁp(z,t}_:E'“(Z’r”- 3 (19)

The local pressure P(z,¢) may be evaluated from the ideal-
gas law or by explicitly evaluating the pressure tensor.” The
two results may not be equivalent because under some con-
ditions (for example, high Mach number) the pressure ten-
sor will not be isotropic. The normal and tangential forces
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on a wall (that is, pressure and drag) may be directly com-
puted from the time-averaged change in the momentum of
particles striking the wall; similarly the heat flux at a sur-
face may be obtained from the particles’ change in
energy.'’

Now that all the elements of the DSMC algorithm have
been presented, we use it to study the Rayleigh problem. In
particular, we consider the parallel component of fluid ve-
locity for the gas near the moving wall. Conventional hy-
drodynamics predicts that u,(z=0,f)=u, for no-slip
boundary conditions. In the collisionless limit,
uy(z=0,r)= Su,, because particles approaching the wall
have zero average y velocity. The Boltzmann equation, in
the BGK approximation, gives'

tir

uy(z=[},t)= ?(I%—J;} x—le_xf](x) dx), (20)

where 7=(v)/\ is the mean free time and (v) is the aver-
age particle speed. /,(x) is the modified Bessel function of
the first kind. Notice that (20) gives the collisionless result
for short times and the no-slip hydrodynamic result when
1>,

The DSMC simulation is formulated in dimensionless
units, taking m=o0=kTy=1. The initial density is
ne=10"7, and so in these units the mean free path is
A =225. The distance between the walls is L,=2250.8, and
the system is partitioned into 50 DSMC collision cells
(Az=0.2\), each initially containing 1000 particles, so that
there is one cell in the x-y direction for each bin of z. To

In the past decade the DSMC
method has been used in a variety of
physics and chemistry applications

that require a kinetic formulation.

obtain accurate statistics, 500 realizations were computed.
Each realization ran for 5 mean free times using 125 time
steps. The entire calculation was performed in several hours
on a personal computer.

The wall speed is u,,= 0.2, which is about one-sixth of
the speed of sound. The gas speed parallel to the wall is
obtained by extrapolating the measured velocity profile to
z=0. Figure 2 shows that the BGK prediction (20) is in
good agreement with the DSMC results.

DSMC was originally developed by aerospace engi-
neers for the simulation of rarefied gas flows. In the past
decade the method has been used in a variety of physics and
chemistry applications (for example, nonequilibrium fluc-
tuations, nanoscale flows, and chemical vapor deposition)
that require a kinetic formulation. Even the limitation to
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Figure 2. Fluid velocity of the gas near the wall as a function of time. The
solid line is the BGK prediction from Eq. (20); the data points are from the
DSMC simulation.

dilute systems has been lifted with the introduction of the
consistent Boltzmann algorithm'?> and Enskog simulation
Monte Carlo."

For reasons of computational expense, the continuum
methods of computational fluid dynamics will never en-
tirely be replaced by particle schemes. Sometimes, con-
tinuum methods are the only way to go.

Suggestions for further study

(1) Implement the DSMC method for the geometry shown
in Fig. 1. Fix the velocity of the lower wall at zero, that
is, consider the case in which the system is in thermo-
dynamic equilibrium. Record the velocity of each par-
ticle striking the specular upper surface. From the his-
togram of this data confirm Egs. (2) and (3). Measure
the average change in momentum for particles striking
the upper surface and use the impulse-momentum theo-
rem to find the pressure on the surface. Remember that
each particle represents N, molecules. Confirm that for
various initial densities and temperatures your measure-
ment of P agrees with the ideal-gas law. Repeat the
above for the lower, thermal wall.

(2) Write a DSMC program to simulate the Rayleigh prob-
lem described in the text. Confirm the result shown in
Fig. 2 for the fluid velocity extrapolated to the thermal
wall. Run your program for various values of L, the
separation between the walls, and examine its effect on
the results. From the average change in momentum for
particles striking the thermal wall, compute and plot the
pressure and drag force per unit area as a function of
time. Measure and plot the profiles of the density
p(z,t), the fluid velocity u(z,t), and the temperature
T(z,t) as functions of position and time. Is it accurate
to assume that p and T remain constant? What effect
does the system length L have on each of these pro-
files?

(3) Set up a DSMC program for the geometry shown in
Fig. 1, but instead of impulsively moving the lower



wall at r=0, change its temperature to T, #T,. Sepa-

_ rately consider the cases in which the wall temperature

(5)

(6)

is hotter than the gas and colder than the gas. Compute
and plot T(z=0,t), the gas temperature extrapolated to
the surface of the thermal wall. From the average
change in energy for particles striking the thermal wall,
compute and plot the heat flux as a function of time.
Measure and plot the profiles for the pressure P(z,t)
(as given by the ideal-gas law) and the fluid velocity
u(z,t). Does the temperature change cause the fluid to
move?

Set up a DSMC program for the geometry shown in
Fig. 1, but choose the upper surface to be a thermal wall
at fixed temperature T,= T, moving with a tangential
velocity opposite to that of the lower wall (that is, shear
flow). Run your program until the system reaches a
steady state with a linear velocity profile. Show that the
steady-state fluid velocity extrapolated to a wall does
not match the wall’s velocity. Find the distance inside
the wall at which the extrapolated fluid velocity would
equal the wall’s velocity; this distance is called the slip
length. Show that this slip length is approximately
equal to the mean free path A when L>\. How does
the slip length vary with L? Measure the steady-state
temperature profile and show that it is parabolic with a
maximum in the center of the system (due to viscous
heating). How does the maximum temperature vary
with the velocity gradient?

Set up a DSMC program for a two-dimensional rectan-
gular geometry with a thermal lower wall; the three
other surfaces are specular. Your program should use a
lattice of computational cells with cell dimensions
Ay,Az<\. Repeat the Rayleigh problem (impulsively
started lower wall) and examine the gas velocity at the
wall both at the center of the wall and near the corners.
Compute the total angular momentum in the gas and
plot it as a function of time. Does the angular momen-
tum reach a limiting value? Repeat this calculation with
the upper surface being a stationary thermal wall.

As in problem (5), set up a DSMC program for a two-
dimensional rectangular geometry. Make the top and
bottom surfaces specular and the other two surfaces
thermal walls at different temperatures. Run the pro-
gram until the system reaches its steady state and plot
the profiles of the temperature T(y,z) and the fluid
velocity u(y,z). There should be nothing interesting—
temperature varies linearly from one wall to the other
and the average velocity is zero. Next, modify the pro-
gram to include a constant force on the particles in the
downward direction (that is, gravity). Show that the
fluid forms a convection roll with the gas rising at the
hot wall and falling at the cold wall. In houses, this
convection can be a major source of heat loss, and
fiberglass insulation is used to reduce it.
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