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A pair of simple, efficient, and robust algorithms for generating random velocities
sampled from the Chapman—Enskog distribution is presentgeogs Academic Press

Particle simulations of a gas require initializing the velocities of molecules. At th
modynamic equilibrium, the velocity distribution for a dilute gas at temperakuiethe
Maxwell-Boltzmann distribution,

f ! 2

o(C) = 232 exp(—C?), 1)
whereC = C/(2kT/m)¥/? is the normalized thermal velocity andlis the particles’ mass.
Away from equilibrium the Chapman—Enskog perturbation expansion of the Boltzm:
equation gives, to first order in Sonine polynomial expansion, the distribution [1]

f(C) = f(OT(0), 2
where
I'(C) = 1+ (Cx + yCy + 0.C2) (2C* — 1)
— 2(tx.yCxCy + % 2CxCz + Ty 2CyCy)
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are the dimensionless heat flux and stress tensor. The viscosity and thermal conduc
are u and«, respectively;P is the pressure ang is the fluid velocity. The mean and
second moment of the Chapman—Enskog distributiorCare 0 andC? = % The kinetic
theory expressions for the stress tensor and the heat flux pte %@6” — 2CiCj and
g = 2C;C2. The Maxwell-Boltzmann distribution suffices in equilibrium situations, but fc
nonequilibrium flows, for example, when the particle simulation is coupled to a Navi
Stokes finite difference solver, the Chapman—Enskog distribution must be used [2, 3].
The first method for sampling fronfi(C) uses the acceptance—rejection technique [4
This requires defining an envelope functigtC) such thatg(C) > f (C) for all C. The
efficiency of acceptance—rejection (ratio of acceptances to total triegpisndhere

A= /g(C) dc. (6)

The first step is to select a random point from the region beng@h (i.e., the region
whose area is given by (6)). All points in this region must be equally likely to be choser
simple way to select this pointis to ug&C) = Afy(C), wherefy is the Maxwell-Boltzmann
distribution (1). A velocityCyy is drawn from fo(C) and the point inside the envelope is
taken agCyy, RY(Ciy)), wheredt is a uniform deviate in [0, 1). The value 6fy is accepted

if this point lies beneatti (C); this acceptance criterion may be writtenA&s < I' (Cyy). If
this condition is not met, a new point is drawn and the procedure is repeated. The gene
is outlined in Table 1.

To guarantee that the envelope function is everywhere greater than the Chapman—E
distribution requires that the constalbe selected such that> I'(C). In principle, this is
impossible becaus€ (C)| — oo asC — oo. In practice, given andg, one can select aA
such that the envelope contains almost all of the Chapman—Enskog distribution bene:
For this purpose, a “breakdown” parametr= max(| j|, |q;|), is defined [5]. When this
parameter exceeds 0.1, the validity of the Chapman—Enskog distribution is suspect an:
since the perturbation from equilibrium is no longer small. For example, wher0.1,
the temperature gradient is such tiawvaries by about 25% over a distance of only 1(
mean-free paths.

An analysis of the functio”, which contains terms of the ford) (&%C2 -1, 2Gi ¢,
andC? — Cjz, shows that for about one in &@raws ofCyy the magnitude of the first term

TABLE 1
Outline of the Acceptance—Rejection Random Velocity Generator
for the Chapman-Enskog Distribution

. Givenr; ; andg;, find B = max(|<i ;|, |G ).
. Set amplitude parametér= 1 + 30B.
. DrawCy, from Maxwell-Boltzmann distributiorfo(C).

. AcceptCyy if Al < I'(Cyy) Wheret is a uniform deviate in [0, 1); else go to step 3.

a A W N B

. Generated particle velocity és= (2kT/m)"/? Cyy + V.
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will exceed 15; similarly for one in 0draws one of the latter two terms will exceed 12
However, the values of the separate terms are correlated thus, if one term is large, the
terms, even taking into account the different signs, are more likely to contribute significa
in makingT large. For typical applications, settidg= 1 + 30B will resultin " > A for
roughly one in 16draws ofCyy. The efficiency of the routine£{1/ A) is 25% wherB = 0.1
and the efficiency approaches 100% near equilibrium. In the rare caselw@gp > A,
the value oCyy is simply accepted, causing a negligible error in the generated distributi

The second method of generating velocities from the Chapman—Enskog distributic
developed from the Metropolis Monte Carlo scheme of equilibrium statistical mechar
[6]. The idea is to design a Markov chain with a transition probability between stat
P(Coig — Chnew), Such that

f(Cold) P(Cold = Crew) = T (Cnew) P(Cnew — Cola)- (7)
A simple way to satisfy this condition is to take

1 if F(cnew) = 1_‘(Cold),

PColg = Cnew = fo(Cnew { [(Coew)/T(Coig) 1 T'(Crew) < T'Cora).

(8)

with the probability that the system remainsCaty fixed by the normalization oP. The
procedure for generating the set of values can be understood as a sequence of Monte
“moves.” Given an initialqq, a new velocityCney is drawn from the Maxwell-Boltzmann
distribution. The “move” to this new velocity is automatically accepted if the new value
I" is greater than the old value; this is considered a “downhill movéX{@ew) < I'(Coig)
then the “uphill move” is accepted with probabiliB(Cnew)/ I'(Coig); Otherwise the move
is rejected and the value 6f,q4 is unchanged. The two conditions for accepting a move m:
be combined by accepting a move'ifCen) > NI (Coiq). The algorithm for this generator
is outlined in Table 2.

As the number of attempted movés, becomes large, the distribution@fjy approaches
f(C). In practice, only a small number of attempted moves is required to obtain
Chapman—Enskog distribution to high accuracy whéN), the probability that theNth
attempted move is accepted, is close to one. Indeed, this probability is typically gre
than Q9 whenB < 0.1. The error in the generated distribution may be estimated frc

TABLE 2
Outline of the Random Velocity Generator for the Chapman—Enskog
Distribution Based on the Metropolis Monte Carlo Method

1. DrawC.q4 from Maxwell-Boltzmann distributiorfy(C); select a new value if' (Cyq) < O.
2. Draw a new velocitf e, from Maxwell-Boltzmann distribution.

3. If T'(Cpew) = R (Coiy) then accept the “move” and S€fq = Crew;
otherwise keep the current value@fy (% is a uniform deviate in [0,1)).

4. Repeat steps 2 and 3 uritil= 1 + 30B attempted moves have been made
(counting both accepted and unaccepted mo@sy; max(| |, Iq |).

5. Generated particle velocity és= (2kT/m)Y2 Cyq + V.
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A =|1—a(N)/a(oc0)|. Due to the Markov properties of the algorithm this difference goe
ase N so it decreases rapidly witd. However, the rate of convergeneg depends on the
difference betweeri and fy, that is, on the breakdown parameBerTaking the number of
attempted moves a¥ = 1 + 30B results in a fractional difference & < 10~*. The com-
putation time for this generator is comparable to that of the acceptance—rejection me
for the above error criterion.

Because the Chapman—Enskog distribution comes from a perturbation expansior
probability distribution can become negative. For example, whien0.1, f (Cyy) is neg-
ative about 0.05% of the time and this fraction rises to an alarming 49Bfe10.4. In
the acceptance—rejection generator the valuégfis always rejected where the distri-
bution is negative. Similarly, according to the rules of the Metropolis generator, a m
is automatically rejected if'(Cnew) < 0. The moments of the generated distribution ar
slightly different from those off (C) when the gradients are large but again the use of tl
Chapman—Enskog distribution is questionable anyway under these circumstances.

The cumulative distribution functions fdnC) could, in fact, also be obtained analytically
in terms of error functions [3]. A random velocity generator may be constructed using
inversion method [4]; however, the roots of three complicated functions must be fo
numerically. The computation time is independent of the breakdown parameter, bu
B = 0.1 the inversion method is about nine times slower than the two generators prese
here. Another disadvantage of inversion is that it has difficulties where the distributio
negative. In such cases, since the cumulative distribution is no longer monotonic, the
finding scheme may encounter difficulties; e.g., Newton’s method can diverge. On the ¢
hand, using the inversion method can be advantageous if all but the high speed tail
distribution will be discarded (e.g., high Mach number downwind boundary), since e
component o€ is generated separately.

Finally, in some applications only particles moving in one direction need to be genera
For example, particles created in a reservoir cell to the left of a boundary plane tare
discarded if theilx-component of velocity is negative. Taking the absolute value okthe
component of velocity aftaf has been generated is incorrect since the Chapman—Ens
distribution is not symmetric. Instead, to correctly generate only those particles with a t
mal velocity in the+x direction, after drawin@yy in step 3 of the acceptance—rejectior
method, take the absolute value obitsomponent of velocity. Similarly, in the Metropolis
generator, after drawinGqq in step 1 oiCpey in step 2, take the absolute value ofitsom-
ponent of velocity. The fraction of particles moving in th& direction is§ = % —Qx/107 /2
so, if the reservoir cell would normally contalth particles, only§N need to be generated.
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