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A pair of simple, efficient, and robust algorithms for generating random velocities
sampled from the Chapman–Enskog distribution is presented.c© 1998 Academic Press

Particle simulations of a gas require initializing the velocities of molecules. At ther-
modynamic equilibrium, the velocity distribution for a dilute gas at temperatureT is the
Maxwell–Boltzmann distribution,

f0(C) = 1

π3/2
exp(−C2), (1)

whereC = C/(2kT/m)1/2 is the normalized thermal velocity andm is the particles’ mass.
Away from equilibrium the Chapman–Enskog perturbation expansion of the Boltzmann
equation gives, to first order in Sonine polynomial expansion, the distribution [1]

f (C) = f0(C)0(C), (2)

where

0(C) = 1 + (qxCx + qyCy + qzCz)
(

2
5C

2 − 1
)

− 2(τx,yCxCy + τx,zCxCz + τy,zCyCz)

− τx,x
(
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)− τy,y
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)
(3)

and

qi = − κ

P
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)1/2
∂T

∂xi
(4)
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τi, j = µ

P
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+ ∂v j

∂xi
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3

∂vk

∂xk
δi, j

)
(5)

are the dimensionless heat flux and stress tensor. The viscosity and thermal conductivity
areµ andκ, respectively;P is the pressure andvk is the fluid velocity. The mean and
second moment of the Chapman–Enskog distribution areC i = 0 andC2 = 3

2. The kinetic

theory expressions for the stress tensor and the heat flux areτi, j = 2
3C2δi, j − 2CiC j and

qi = 2CiC2. The Maxwell–Boltzmann distribution suffices in equilibrium situations, but for
nonequilibrium flows, for example, when the particle simulation is coupled to a Navier–
Stokes finite difference solver, the Chapman–Enskog distribution must be used [2, 3].

The first method for sampling fromf (C) uses the acceptance–rejection technique [4].
This requires defining an envelope functiong(C) such thatg(C) ≥ f (C) for all C. The
efficiency of acceptance–rejection (ratio of acceptances to total tries) is 1/A, where

A ≡
∫

g(C) dC. (6)

The first step is to select a random point from the region beneathg(C) (i.e., the region
whose area is given by (6)). All points in this region must be equally likely to be chosen. A
simple way to select this point is to useg(C) = A f0(C), wheref0 is the Maxwell–Boltzmann
distribution (1). A velocityCtry is drawn from f0(C) and the point inside the envelope is
taken as(Ctry, <g(Ctry)), where< is a uniform deviate in [0, 1). The value ofCtry is accepted
if this point lies beneathf (C); this acceptance criterion may be written asA< ≤ 0(Ctry). If
this condition is not met, a new point is drawn and the procedure is repeated. The generator
is outlined in Table 1.

To guarantee that the envelope function is everywhere greater than the Chapman–Enskog
distribution requires that the constantA be selected such thatA ≥ 0(C). In principle, this is
impossible because|0(C)| → ∞ asC → ∞. In practice, givenτ andq, one can select anA
such that the envelope contains almost all of the Chapman–Enskog distribution beneath it.
For this purpose, a “breakdown” parameter,B ≡ max(|τi, j |, |qi |), is defined [5]. When this
parameter exceeds 0.1, the validity of the Chapman–Enskog distribution is suspect anyway,
since the perturbation from equilibrium is no longer small. For example, whenqi = 0.1,
the temperature gradient is such thatT varies by about 25% over a distance of only 10
mean-free paths.

An analysis of the function0, which contains terms of the formCi (
2
5C

2 − 1), 2CiC j ,
andC2

i − C2
j , shows that for about one in 106 draws ofCtry the magnitude of the first term

TABLE 1

Outline of the Acceptance–Rejection Random Velocity Generator

for the Chapman–Enskog Distribution

1. Givenτi, j andqi , find B ≡ max(|τi, j |, |qi |).
2. Set amplitude parameterA = 1 + 30B.

3. DrawCtry from Maxwell–Boltzmann distributionf0(C).

4. AcceptCtry if A< ≤ 0(Ctry) where< is a uniform deviate in [0, 1); else go to step 3.

5. Generated particle velocity isc = (2kT/m)1/2 Ctry + v.
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will exceed 15; similarly for one in 106 draws one of the latter two terms will exceed 12.
However, the values of the separate terms are correlated thus, if one term is large, the other
terms, even taking into account the different signs, are more likely to contribute significantly
in making0 large. For typical applications, settingA = 1 + 30B will result in 0 > A for
roughly one in 106 draws ofCtry. The efficiency of the routine (=1/A) is 25% whenB = 0.1
and the efficiency approaches 100% near equilibrium. In the rare case when0(Ctry) > A,
the value ofCtry is simply accepted, causing a negligible error in the generated distribution.

The second method of generating velocities from the Chapman–Enskog distribution is
developed from the Metropolis Monte Carlo scheme of equilibrium statistical mechanics
[6]. The idea is to design a Markov chain with a transition probability between states,
P(Cold → Cnew), such that

f (Cold)P(Cold → Cnew) = f (Cnew)P(Cnew → Cold). (7)

A simple way to satisfy this condition is to take

P(Cold → Cnew) = f0(Cnew)

{
1 if 0(Cnew) ≥ 0(Cold),

0(Cnew)/0(Cold) if 0(Cnew) < 0(Cold).
(8)

with the probability that the system remains atCold fixed by the normalization ofP. The
procedure for generating the set of values can be understood as a sequence of Monte Carlo
“moves.” Given an initialCold, a new velocityCnew is drawn from the Maxwell–Boltzmann
distribution. The “move” to this new velocity is automatically accepted if the new value of
0 is greater than the old value; this is considered a “downhill move.” If0(Cnew) < 0(Cold)

then the “uphill move” is accepted with probability0(Cnew)/0(Cold); otherwise the move
is rejected and the value ofCold is unchanged. The two conditions for accepting a move may
be combined by accepting a move if0(Cnew) ≥ <0(Cold). The algorithm for this generator
is outlined in Table 2.

As the number of attempted moves,N, becomes large, the distribution ofCold approaches
f (C). In practice, only a small number of attempted moves is required to obtain the
Chapman–Enskog distribution to high accuracy whena(N), the probability that theNth
attempted move is accepted, is close to one. Indeed, this probability is typically greater
than 0.9 when B ≤ 0 .1. The error in the generated distribution may be estimated from

TABLE 2

Outline of the Random Velocity Generator for the Chapman–Enskog

Distribution Based on the Metropolis Monte Carlo Method

1. DrawCold from Maxwell–Boltzmann distributionf0(C); select a new value if0(Cold) < 0.

2. Draw a new velocityCnew from Maxwell–Boltzmann distribution.

3. If 0(Cnew) ≥ <0(Cold) then accept the “move” and setCold = Cnew;
otherwise keep the current value ofCold (< is a uniform deviate in [0,1)).

4. Repeat steps 2 and 3 untilN = 1 + 30B attempted moves have been made
(counting both accepted and unaccepted moves);B ≡ max(|τi, j |, |qi |).

5. Generated particle velocity isc = (2kT/m)1/2 Cold + v.



               

THE CHAPMAN–ENSKOG DISTRIBUTION 69

1 ≡ |1− a(N)/a(∞)|. Due to the Markov properties of the algorithm this difference goes
ase−αN so it decreases rapidly withN. However, the rate of convergence,α, depends on the
difference betweenf and f0, that is, on the breakdown parameterB. Taking the number of
attempted moves asN = 1 + 30B results in a fractional difference of1 < 10−4. The com-
putation time for this generator is comparable to that of the acceptance–rejection method
for the above error criterion.

Because the Chapman–Enskog distribution comes from a perturbation expansion, the
probability distribution can become negative. For example, whenB = 0.1, f (Ctry) is neg-
ative about 0.05% of the time and this fraction rises to an alarming 4% forB = 0.4. In
the acceptance–rejection generator the value ofCtry is always rejected where the distri-
bution is negative. Similarly, according to the rules of the Metropolis generator, a move
is automatically rejected if0(Cnew) < 0. The moments of the generated distribution are
slightly different from those off (C) when the gradients are large but again the use of the
Chapman–Enskog distribution is questionable anyway under these circumstances.

The cumulative distribution functions forf (C) could, in fact, also be obtained analytically
in terms of error functions [3]. A random velocity generator may be constructed using the
inversion method [4]; however, the roots of three complicated functions must be found
numerically. The computation time is independent of the breakdown parameter, but for
B = 0.1 the inversion method is about nine times slower than the two generators presented
here. Another disadvantage of inversion is that it has difficulties where the distribution is
negative. In such cases, since the cumulative distribution is no longer monotonic, the root-
finding scheme may encounter difficulties; e.g., Newton’s method can diverge. On the other
hand, using the inversion method can be advantageous if all but the high speed tail of the
distribution will be discarded (e.g., high Mach number downwind boundary), since each
component ofC is generated separately.

Finally, in some applications only particles moving in one direction need to be generated.
For example, particles created in a reservoir cell to the left of a boundary plane atx = 0 are
discarded if theirx-component of velocity is negative. Taking the absolute value of thex
component of velocity afterC has been generated is incorrect since the Chapman–Enskog
distribution is not symmetric. Instead, to correctly generate only those particles with a ther-
mal velocity in the+x direction, after drawingCtry in step 3 of the acceptance–rejection
method, take the absolute value of itsx component of velocity. Similarly, in the Metropolis
generator, after drawingCold in step 1 orCnew in step 2, take the absolute value of itsx com-
ponent of velocity. The fraction of particles moving in the+x direction isδ = 1

2−qx/10π1/2

so, if the reservoir cell would normally containN particles, onlyδN need to be generated.
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