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Abstract 

The direct-simulation Monte Carlo method is generalized by introducing an advection dis- 
placement that models a hard-core exclusion with a weak and constant interparticle attraction. 
Simulation results demonstrate that both the van der Waals equation of state and its Maxwell 
tie-line construction can be obtained. 

Direct-simulation Monte Carlo (DSMC) is a particle-based computational model for 
gas dynamics [1,2]. DSMC can be viewed as a simplified (and more efficient) form of 
molecular dynamics (MD) at low densities or as a stochastic method for solving the 
time-dependent nonlinear Boltzmann equation. In its original formulation, the method 
was restricted to dilute gases since it gives the equation of state (EOS) for a gas to 
lowest order in the density, that is, for point particles (perfect gas) and the transport 
properties correctly to first order in density. Note, however, that both DSMC and the 
Boltzmann equation are inconsistent since the collision rate and transport properties are 

functions of the panicles' cross-section while the EOS is not. 
Recently an extension of DSMC was introduced, called the Consistent Boltzmann 

Algorithm (CBA), for which the hard-sphere (HS) equation of state is also correctly 
obtained to first order in density [3,4]. Furthermore, replacing the low-density collision 
rate by the true HS collision rate, the method yields the correct HS equation of state 
at all densities. While transport properties are not exact (due to the molecular chaos 
approximation), they are in good agreement with HS MD data even at high density, 
comparable to the results given by the Enskog approximation [5,6]. 
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The present paper is concerned with a further extension to a more general potential 

with attractive forces so that one can, for example, model systems in the two-phase 
gas-liquid region. The simplest way to achieve this is to add a weak and constant 
potential to the hard core since this is known to lead to the van der Waals equation 

of state [7]. The manner in which the advection process in CBA is modified to give 
the van der Waals EOS is described below. 

The pressure in a fluid of van der Waals particles (hard-spheres with a weak, long- 

range attraction) of mass m at temperature T and density n is given by the virial 

theorem as 

P = n k T  + ½ mFO,  (1) 

where O ~ (Avij. rij) is the projection of the velocity change onto the line connecting 
centers of particles i and j averaged over collisions (indicated by the brackets) and F 

is the collision rate per unit time and volume. In DSMC the second term on the r.h.s. 

is zero because the positions of colliding particles are uncorrelated with the change in 
their velocities. 

For a gas of  hard-spheres with diameter ~, CBA introduces a correlation in O by 

displacing the particles in the advection step by dHs = ad ,  where the unit vector d is, 

( v [  - v ; )  - - v j . )  v / - 

d = l (v '  - v j )  - ( v ,  - v , ) [  - iv ,  -  r1' ( 2 )  

where vr is the relative velocity of the colliding particles, and prime and unprimed 
indicate post- and pre-collision values, respectively. After the collision, the particles 
are advected as 

ri(t + At) = ri(t) + v[(t)At + dHs, (3) 

rj(t + At) • rj(t) + v;(t)At - d n s .  (4) 

As an illustration, to make the above formula physically transparent, in a one-dimen- 

sional system, when two hard rods of length a collide, after the collision the distance 
between centers will be larger by 2a than the separation between similarly colliding 
point particles. Moving to contact each point particle travels an extra distance a/2 (as 

compared with hard rods). Moving apart after the collision, each point particle must 
again travel an additional distance 0/2. Note that d points in the direction of the apse- 
line (line passing through the centers of  molecules at the moment of closest approach 
in a collision). 

Eq. (2) leads to an average virial 6) = ~x/ / -~/m,  so that using the Boltzmann (dilute 
gas) collision rate, FB =2aZnZv/-~-~/m, the consistent pressure is now P = n k T ( 1  + 
b2n), where b2 ~ 2~a3 is the HS second virial coefficient. Introducing the Enskog 
Y-factor [5,9], which corrects the low-density collision rate to the correct hard-sphere 
collision rate at any density (Fns = Y(n)FB), into CBA gives the correct HS EOS at all 
densities and transport coefficients at high-densities corresponding to an uncorrelated 
collision (Markov) approximation [3,8]. 
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CBA is generalized to yield the van der Waals EOS by changing the advection 
displacement to account for the attractive force. The direction, d ,  cannot be modified 

without violating detailed balance, however, the magnitude, which is constant for HS, 

can be made a function o f  density and temperature. Specifically, one obtains the van 
der Waals EOS [5], 

Pvdw an 
n k T  - 1 + b2nY - k--T ' (5) 

when the magnitude of  the displacement is 

at)" 
dvow = a - dHs - d~. (6) 

b2 Yk T 

In the van der Waals model the collision probability, the collision rate and the transport 

properties should remain those of  hard-spheres. As the strength of  the attraction term 
vanishes (a ~ 0), the advection displacement due to the attractive force, do, vanishes 

and the HS CBA displacement is recovered. Fig. 1 illustrates how dvdw varies with 

density; all the numerical results presented in this paper take m = k = a = a = 1. 

To represent the liquid-gas coexistence region correctly, the van der Waals EOS 

needs to be modified using the Maxwell tie-line construction [10]. Below the critical 

temperature, T~, the Maxwell tie-line EOS is defined as 

( P v d w ( n ~ , T ) = P v d w ( n t ,  T )  if  n,q < n  < n t ,  
PM(n, T )  = 

PvdW ( n, T) otherwise,  (7) 

where n q and ne are the gas and liquid densities at the endpoints o f  the Maxwell coex- 
istence tie-line. The displacement for the Maxwell tie-line EOS can be obtained using 

a M = b - - ~  n - ~ -  1 . (8) 

Fig. 1 shows how dM will vary with density under these conditions. 
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Fig. 1. Net CBA displacement, dvdw and dM, as a function of number density for: van der Waals EOS, 
T=0.19 (dashed line) and T=0.16 (solid line); Maxwell tie-line EOS T=0.16 (dot-dashed line). The 
critical temperature is T,. ~0.18. 
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Fig. 2. Pressure as a function of density for: ideal gas law, T=0.19 (dotted line and circles); hard-sphere 
EOS, T=0.19 (short-dashed line and squares); van der Waals EOS, T=0.19 (dashed line and triangles); 
van der Waals EOS, T = 0.16 (solid line and filled diamonds); Maxwell tie-line EOS, T = 0.16 (dot-dashed 
line and open diamonds). Lines are given by theory and points are data from CBA simulations with error 
bars approximately the size of the symbols. The critical temperature is Tc ~0.18. 

The results from the CBA simulations for the pressure, as measured by normal mo- 
mentum transfer across a plane, are shown in Fig. 2. In these equilibrium simulations, 

the displacement is held fixed at its global average value and the collision rate in a 

cell is linearized about the global average density, ~. In other words, the mean-field 
expression for the collision rate, 

/'mf = 202nn17 ( 9 )  

is used, where I ? = Y0i). Working with local values for the relevant variables is a 
delicate issue since F and d are both nonlinear in n and coupled through the dynam- 

ics. Simulations using local, running averages give poor results for some densities and 
temperatures, specifically when dHs and da are approximately equal. In these cases 

where the net displacement is small, the probability distribution for the local value of 
n was found to deviate unphysically from Poissonian. Adding a small random displace- 

ment to the displacement d breaks up this unphysical coupling of the fluctuations and 

restores the Poissonian distribution and the correct pressure. Details regarding the use 

of this random displacement and its effect on the transport coefficients will be presented 
elsewhere [ 11 ]. 

As a demonstration problem involving an inhomogeneous system, a van der Waals 
gas in the two-phase region was considered. The system is closed, held at fixed tem- 
perature, and subjected to a constant external acceleration 9 (e.g., gravity). From an 
initially homogeneous density, the simulation evolves until the system reaches a steady- 
state with separate regions of  gas and liquid. This steady-state density profile may be 
obtained from the hydrostatic condition, ~ P  = ran9, with the constraint that the total 
number density is conserved. The results from a CBA simulation of this system, along 
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Fig. 3. Density as a function of height for a closed equilibrium system at T = 0 . 1 6  (T , .~0 .18)  with an 
acceleration of  g = 0.01 and a random displacement of  a/2. Points are from a CBA simulation using the 
Maxwell tie-line EOS; solid line is found by numerically solving the hydrostatic condition. Dotted line is 
the hydrostatic density profile for an ideal gas under the same conditions. 

with the hydrostatic solution, are shown in Fig. 3. Local running average values must 
be used to calculate d and F because the system is inhomogeneous, requiring a random 
displacement of a/2 to be employed. 

In conclusion, this paper presents a generalization of CBA that yields the van der 
Waals EOS and its Maxwell tie-line construction. One is tempted to use Eq. (8) to 
obtain an arbitrary EOS, however only the van der Waals EOS has the consistent 
collision probability, the collision rate, and the transport coefficients of HS [7]. For other 
equations of state the CBA advection displacement should scale with the corresponding 
density dependent kinetic properties of the microscopic potential used in the collision 
integral if the method is to retain its theoretical foundation. 
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