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Abstract 

Microscopic simulations of plane Poiseuille flow for a dilute gas are presented. Although the 
flow is laminar (Reynolds number ~10) and sub-sonic, the temperature and pressure profiles 
measured in the simulations differ qualitatively from the hydrodynamic predictions. The results 
are in agreement with a recent theoretical analysis based on the asymptotic solution of the BGK 
model of the Boltzmann equation. 
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1. Introduction 

One of the fundamental issues explored by molecular simulations, to which Bill 
Hoover has so greatly contributed, pertains to the limit of validity of phenomenologi- 
cal equations, such as the Navier-Stokes equations of hydrodynamics. For example, the 
presumption that collective fluid motion could occur only at macroscopic scales was 
overturned by the pioneering molecular dynamics experiments of Alder and Wainwright 
[1]. Extensions of this work demonstrated that an appropriate generalization of hydro- 
dynamics describes fluid properties in the bulk correctly, even at molecular scales [2]. 

With the growing power of computers, a rich spectrum of nonequilibrium phenomena 
was found in particle simulations [3-5]. Hydrodynamic instabilities, such as vortex 
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shedding behind an obstacle [6] and Rayleigh-B6nard convection rolls [7,8], have been 
observed in systems containing only a few thousand atoms. The appearance of these 
hydrodynamic-like behavior naturally raises the question as to how accurately they 
are described by standard fluid dynamics. Up to now, studies have indicated that, 
except for certain extreme conditions (e.g., high Mach number shock waves [9]), the 
hydrodynamic equations remain surprisingly robust [10,11]. At microscopic scales, the 
most noticeable deviation from conventional fluid mechanics was found to be in the 
treatment of the boundaries. The standard macroscopic boundary conditions cannot 
be applied since the distribution of molecules approaching and leaving a surface do 
not combine to form a correct local equilibrium distribution. This effect was known 
to Maxwell [12] and his insightful predictions of velocity slip and temperature jump 
remain applicable today in a variety of situations. For example, in shear or Poiseuille 
flows, the velocity field predicted from the slip-corrected Navier-Stokes equations is in 
quantitative agreement with particle simulations [13]. The same conclusion holds for 
the temperature jump in a gas, subject to a constant temperature gradient [14] and in 
exothermic reactive fluids in contact with thermal reservoirs [15]. 

In view of these impressive results, one is led to inquire whether there exist simple 
flows for which the hydrodynamic equations give the wrong qualitative result, even 
when the microscopic boundary corrections are included. As we will show in this 
paper, the answer is in the affirmative. 

The microscopic simulation of plane Poiseuille flow and the corresponding hydro- 
dynamic predictions are presented in Section 2. The BGK model of the Boltzmann 
equation and its perturbation expansion for this system are discussed in Section 3. It is 
shown that this expansion leads to predictions that are in qualitative agreement with the 
simulation results and that quantitative agreement is obtained by adjusting the transport 
properties to match the hard sphere values. Concluding remarks and perspectives are 
presented in Section 4. 

2. Microscopic simulation of Poiseuille flow 

Consider an assembly of N particles confined between two rigid parallel plates lo- 
cated at Y- -+L/2 .  The plates are stationary and act as thermal reservoirs, that is, 
each time a particle strikes a plate it is re-injected into the system with its veloc- 
ity randomly assigned from a half-Maxwellian distribution at the reservoir tempera- 
ture TR. Periodic boundary conditions are assumed in the other two directions and a 
constant acceleration field, a, oriented along the X-axis is applied to the system. Assu- 
ming the flow is laminar, the hydrodynamic equations lead to the stationary velocity 
profile [16], 

u(Y) = ~ [(L/2) 2 - YZ]lx + Usliplx , ( 1 ) 
zn  q 

where lx is the unit vector in the X-direction, p and q are the mass density and 
shear viscosity, respectively, and uslip is the velocity slip at the walls. For a dilute gas, 
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elementary kinetic theory gives [ 17,18] 

57~/1' (~-~ wall Uslip = 16 ' (2) 

where 2 is the mean free path in the gas. 
Because of energy dissipation from viscous heating, the system also develops a 

temperature profile. Elementary hydrodynamic calculation leads to 

a 2 _2 
T(Y)  ~- TR + ,Y~-[(L/2)  4 - y41 __ Tjump, (3) 

lZqK 

where t¢ is the thermal conductivity and Tjump ~ T(Y = 4 - L / 2 ) -  TR is the temperature 
jump at the boundaries. For dilute gases, one has [18,19] 

m~: ~ C3~y 
Tjump- 2"-~-B V ~ wall ' (4) 

where m and kB are the particle mass and Boltzmann's constant, respectively. Since the 
fluid velocity normal to the plates is strictly zero the pressure in the gas is constant. 

For the microscopic simulations, we consider a fluid consisting of N hard spheres 
with diameter d at a number density of n = 1.21 x 10 -3 particles per d 3, leading to 

a mean free path 2 =  186d. This corresponds to a dilute gas, well within the valid- 
ity of the Boltzmann equation and so we use Bird's direct simulation Monte Carlo 
(DSMC) algorithm [20] which is particularly well adapted for the simulation of Boltz- 
mann gases. As a numerical method DSMC is several orders of magnitude faster than a 
corresponding molecular dynamics simulation of the exact hard-sphere dynamics. Each 
run evaluates about 106 collisions per particle; the statistical errors, estimated by di- 
viding a run into 10 samples, is about 0.4% for the velocity and temperature profiles 
and less than 0.1% for the hydrostatic pressure profile. 

The following convention will be used throughout the article: lengths and masses are 
scaled by the particle diameter d and mass m, respectively. The temperature is scaled 
by the reservoir temperature TR and the velocities by the most probable thermal speed, 
~ m .  With these conventions, Boltzmann's constant k8--0.5 and the sound speed 
is about 0.913, in simulation units. 

We first consider a system made up of N = 1000 hard spheres that is 10 mean free 
paths wide (L = 1860d) and choose an acceleration field a = 1.6 x 10 -4. The maximum 
fluid velocity is then Umax~0.61 and the Reynolds number is R e ~  10 so the flow is 
sub-sonic and laminar. Fig. 1 represents the measured velocity profile together with 
its corresponding hydrodynamic expression (1), with the boundary slip (2) included. 
As the figure shows, the agreement is mainly qualitative, the relative deviation being 
around 10%. On the other hand, Fig. 2 shows that the measured temperature profile 
qualitatively contradicts the hydrodynamic result, as given by (3), since the profile 
is bimodal with a "dimple" in the center. Furthermore, the temperature jump at the 
boundaries is more than twice the value predicted by (4). Note that in Fig. 2 the 
temperature profile given by (3) has been shifted upward so as to match the measured 
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Fig. 1. Stationary velocity profile for a system that is 10 mean free paths wide; number density 
n = 1.21 × 10 -3 and acceleration a = 1.6 × lO -4. The circles are simulation data and the solid line is from 
Eq. (1). 
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Fig. 2. Stationary temperature profile for a 10 mean free paths wide system; number density n = 1.21 × 10 - 3  

and acceleration a = 1.6 × 10 -4. The circles are simulation data and the solid line is from Eq. (3). 

values at the middle o f  the system Y = 0; with this displacement the relative deviations 

are about 1%. 

Although the relative temperature variations throughout the system remain small 

(less than 10%), a possible source o f  the observed discrepancy in the profiles is the 

state-dependence o f  the transport coefficients. In writing (1)  and (3), we have assumed 

that both the mass density and transport coefficients are constant. For  a hard-sphere 

Boltzmann gas, however, the mass density varies as the inverse o f  the temperature 

(at fixed pressure) and the transport coefficients are given by the Chapman-Enskog 

expressions, 

5 m/- sT 15k  ( 5 )  
' n 

Taking the above relations into account complicates the structure o f  the hydrodynamic 

equations but they can easily be solved numerically. The results remain quite close to 
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Fig. 3. Stationary pressure profile for a 10 mean free paths wide system; number density n= 1.21 x 10 - 3  

and acceleration a =  1.6 x 10 -4. The circles are simulation data and the solid line is the BGK first-order 
correction (see Eq. (18)). Both results are normalized by their corresponding values at the center of the 
system, y -- 0. 
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Fig. 4. Stationary velocity profile for a system that is 20 mean free paths wide; number density 
n= 1.21 × 1 0  - 3  and acceleration a = 4  ×10 5. The circles are simulation data and the solid line is from 
Eq. (1). 

those given by  the simple formulae (1)  and (3), except for the temperature jump (4) 

which shows a better agreement with the simulation result. 

The profiles observed in the simulation, especially the temperature profile (Fig. 2), 

are quite surprising. Though the system is small (L = 102), the average velocity and 

temperature variations, over a mean free path, do not exceed 1.5%, so one would 

legit imately expect the hydrodynamic description to remain valid. Yet the observed 

bimodal  temperature profile is structurally different from the hydrodynamic prediction. 

This discrepancy is further illustrated by  the hydrostatic pressure profile shown in 

Fig. 3. According to hydrodynamics the pressure should be constant across the channel, 

even i f  the temperature-dependence of  the mass density and transport coefficients is 

taken into account. Fig. 3 clearly indicates that it is not the case. 
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Fig. 5. Stationary pressure profile for a 100 mean free paths wide system; number density n = 1.21 x 10 -3 
and acceleration a = 1.6 x 10 -6. The circles are simulation data and the solid line is the BGK first-order 
correction (see Eq. (18)). Both results are normalized by their corresponding values at the center of the 
system, y = 0. 

To identify the origin of these discrepancies, we have considered several different 
simulations, including a dense Lennard-Jones fluid [21]. The key parameter turns out to 
be the Knudsen number, K n  - 2/L.  When the Knudsen number is lowered, either by in- 
creasing the number density or the system width, the discrepancy gradually disappears. 
For instance, a quantitative agreement for the velocity profile is observed already when 
the distance between the plates is increased to twenty mean free paths (see Fig. 4). 
On the other hand, the qualitative discrepancy with the pressure profile persists even 
for systems as wide as L = 1002 (see Fig. 5). 

3. Beyond hydrodynamics 

The validity of the hydrodynamic description of a fluid rests on two fundamental 
hypotheses. First, the local equilibrium assumption which stipulates that within each 
fluid volume element the equilibrium equation of state remains valid, even though the 
system is globally out of equilibrium. Second, the linear response assumption which 
requires that fluxes obey transport laws that are linear in the gradients of velocity 
and temperature (i.e., the Newton and Fourier laws). Both assumptions are expected 
to break down when gradients are very large, as for example in a high Mach number 
shock wave [9,20]. In any case, the Knudsen number must remain small since otherwise 
there may not be enough collisions to restore the local Maxwellian distribution, thus 
compromising the local equilibrium assumption. For example, within a mean flee path 
of a boundary the distribution of particles approaching and leaving that boundary do 
not combine to form the correct local equilibrium distribution. 

The results of our simulations clearly indicate the failure of hydrodynamics in 
describing correctly the Poiseuille flow for dilute gases when the Knudsen number 



M. Malek Mansour et al./Physica A 240 (1997) 255~67 261 

exceeds 0.01, even when the gradients are relatively small. Deviations from hydro- 
dynamics have been predicted since the development of kinetic theory [22] and per- 
turbation techniques have been developed that allow the evaluation of corrections to 
phenomenological laws of transport phenomena. When these corrections are inserted 
into the general conservation equations, one obtains a set of partial differential equa- 
tions for the hydrodynamic variables, commonly known as the Burnett equations [23]. 
The Burnett equations contain fourth- (or higher-) order spatial derivatives of hydro- 
dynamic variables, thus requiring the specification of more boundary conditions than 
those needed by the conventional fluid dynamic equations. So far, however, it is not 
at all clear what form these additional boundary conditions must have. For this reason, 
the Burnett equations have only been applied in specific situations where no bound- 
ary conditions are required, as for example in problems dealing with strong shock 
waves [24]. 

One alternative to the Burnett equations was recently proposed by Tij and 
Santos [25]. They consider the Bhatnagar-Gross-Krook (BGK) approximation of the 
Boltzmann equation [17,26] for the plane Poiseuille problem described in the previous 
section. Using the symmetry properties of the flow, the BGK equation at the 
stationary state takes the form, 

( a O S_- 
v"ch-Y + ev, J - v ( f  - JLE), (6) 

where f is the particle velocity distribution function, .fLE is the local equilibrium 
distribution function, 

fLE = n(Y) k Z ~ k ~ ( y ) ]  2k=T(y)(v - 

and v is the collision frequency, 

v = 4nd 2 ~ . (8) 

The boundary condition for (6) is f ( g = + L / 2 ) = f R  where fR is the equilibrium 
Maxwellian distribution at the reservoir temperature. 

Despite its apparent simplicity, the BGK equation is extremely difficult to solve 
explicitly, mainly because fLE is a nonlinear functional of f through the hydrodynamic 
variables n(Y), u(Y) and T(Y), 2 

nu = v f (v )  dr .  (9) 

3nksT m(v - u) 2 

2 Note that (9) defines the hydrodynamic variables as they are measured in the DSMC simulation. The integral 
over f is approximated by the temporal and spatial average over particles located within a simulation volume 
element (i.e., ~tatistie'al samples are measured in a cell). 
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Suppose for a moment that the explicit form of these hydrodynamic variables was 
given. Eq. (6) could then be viewed as a non-homogeneous linear equation for f 
whose solution could be written as 

f = ( 1  + ~ ) f L E ,  (10) 

where &a is a linear operator that incorporates the boundary conditions. In general, the 
explicit form of the hydrodynamic variables is not known a priori. Nevertheless, the 
solution (10) is still valid but it then represents only the formal  solution of the BGK 
equation since fLE remains a functional of f .  The insertion of (10) into (9) leads 
to a closed set of five coupled nonlinear equations for the unknown functions n(Y) ,  

u(Y) and T(Y) .  Except for some very simple scenarios, these equations prove to be 
extremely difficult to solve [26]. Instead, Tij and Santos proposed to develop the formal 
solution (10) in powers of the external acceleration field a, looking for a "normal" 
solution of the BGK equation, where the spatial dependence of f is assumed to arise 
only through the hydrodynamic variables n(Y) ,  u(Y) and T(Y) .  The calculations are 
tedious and lengthy, especially when the state dependence of the collision frequency v, 
Eq. (8), is taken into account. For this reason, we shall neglect the state dependence 
of v and simply discuss the final results (see [25] for details). 

Define the scaled acceleration field as 

a m L  
e ~  - -  (11) 

2kB TR 

The velocity profile reads 

Ux(y) = ~ L 2 [ ( 1 / 2 )  2 - y2][1 + O(g:)], (12) 

where we have set y - Y/L. Noticing that the transport coefficients for the BGK model 
are 

pkBT 5ke 
qBch" = - -  ; tCscx = ~Bc~ (13) 

vm 2m 

then, to dominant order in e, the relation (12) reduces to the hydrodynamic expression 
(1). However, a quantitative agreement with the simulations is obtained only if we use 
the correct Chapman-Enskog expression for the viscosity coefficient, Eq. (5), instead 
of the BGK result, Eq. (13) (see Fig. 4). 

For the temperature profile, one finds 

T ( y )  { O_~TR__L2[(1/2)4 y4] 25-- - " 19 2 )y2] 1 + 4e 2 - - 77_[(1/2) - + O(e 4) (14) 
TR 3 

which is qualitatively different from the hydrodynamic profile (3), mainly because of 
the presence of an extra quadratic term (second term in the brace). Because of this 
term, the profile (14) exhibits a minimum at the center of the system, y = 0, and two 
maxima at 

1 /57ksTR (15) 
Y ± = ± ~ V  ~ " 
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Note that the separation of these maxima is proportional to the Knudsen number Kn, so 
they gradually merge at y = 0 as Kn is decreased. This is in qualitative agreement with 

the results of our simulations. The agreement, however, remains only qualitative and 
major quantitative discrepancies with the measured temperature profile are observed, 
even for a 40 mean free paths wide system. 

One reason for this lack of quantitative agreement is that the transport coefficients 
obtained from the BGK model do not match those of hard spheres (cf. (5) and (13)). 
To account for this effect, we first observe that using the explicit form of transport 
coefficients for the BGK model, Eq. (13), the result (14), to dominant order in ~:, can 

be written as 

a2p2L 4 19 a2m2L 2 
T(y)  - TR-- [(1/2)4 _ y4] _ _  [(1/2)2 _ y2]. (16) 

12r/B(~ ~c8c~ 25 k2BTR 

The first term on the r.h.s, of (16) corresponds to the hydrodynamic profile (3). We 
can therefore replace r/B(~ and xB~ in (16) by their correct hard sphere expressions, 
Eq. (5). Furthermore, in evaluating (16) we have neglected the temperature-dependence 
of the collision frequency, Eq. (8), which is evaluated at the reservoir temperature TR. 
A better approximation is obtained by evaluating the r.h.s, of (16) at the average 
temperature in the system, Tav. These considerations lead to the following adjusted 
temperature profile, 

a2p2L 4 19 a2mZL 2 
T ( y ) -  TR= 12tl(Tav)K(Tav)[(l/2)4- y4 ] 25 kZTa,m [(1/2)2 __y2]. (17) 

Fig. 6 shows this adjusted profile together with the simulation results for a 10 mean 
free paths wide system. Again the temperature jump is chosen so as to match the 
measured profile in the middle of the system. Given the relatively large value of the 
expansion parameter, ~ = 0.3, the agreement is fair, all the more so since the next order 
corrections to T(y)  turns out to be of the same order than the dominant term, Eq. (17). 
This, in turn, suggests that the expansion proposed by Tij and Santos is most probably 
asymptotic. 

To obtain a more satisfactory agreement, we consider simulations with smaller values 
of r. There exist several ways of lowering this parameter. One limitation is the desire 
to keep the flow sub-sonic since, otherwise, the shock waves generated in the system 
would make the theoretical interpretation of the results extremely difficult. On the other 
hand, the heat produced by the flow varies as the square of the velocity gradient so 
to have a nonequilibrium temperature profile that is measureable above the thermal 
noise of fluctuations, one needs to maintain the flow velocity as high as possible. 
From Eq. (1), the maximum value of the flow velocity is proportional to aL 2, so, to 
lower the value of e, we have to increase the system size, while keeping the product 
aL 2 constant. Accordingly, we have considered a 20 mean free paths wide system 
containing 2000 particles, with a = 4 × 10 -5. The results are depicted in Fig. 7, where 
excellent agreement with the theoretical predictions, Eq. (17), is now observed (see 
also Fig. 4). 
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Fig. 6. Stationary temperature profile for a 10 mean free paths wide system; number density n = 1.21 × 10 - 3  

and acceleration a = 1.6 × 10 -4. The circles are simulation data and the solid line is from Eq. (17). 
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Fig. 7. Stationary temperature profile for a 20 mean free paths wide system; number density n = 1.21 × 10 -3 
and acceleration a=4.0 xl0 -5. The circles are simulation data and the solid line is from Eq. (17). 

This result is rather surprising since the corresponding value of  e is only two times 

smaller than in the previous case, shown in Fig. 6. To check that this observed quan- 
titative agreement is not due to a coincidence, we have also considered a 40 mean 

free paths wide system containing 4000 particles and setting the acceleration field to 
a-- -10 -5. The results are depicted in Fig. 8, where the same excellent agreement is 
observed. These observations confirm further the asymptotic nature of  the expansion 
o f  Tij and Santos. Note that in this last figure the kinetic theory prediction of  the 
temperature jump, Eq. (4), was used with no additive adjustment of  the profile so the 

agreement is completely quantitative. 
We finally consider the pressure profile that, for the model used in this section, takes 

the following form: 

P ( Y )  1 - 6 ( a m L  ~2 
/DR -- 5 \ k - ~ v  / (1 - (y /L)  2) + O ( e 4 ) ,  (18) 
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Fig. 8. Stationary temperature profile for a 40 mean free paths wide system; number density n = 1.21 x 10 - 3  

and acceleration a = 1.0 x 10 -5. The circles are simulation data and the solid line is from Eq. (17). 
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Fig. 9. Stationary pressure profile for a 40 mean free paths wide system; number density n = 1.21 × 10 3 
and acceleration a = 1.0 × 10 -5. The circles are simulation data and the solid line is the BGK first-order 
correction (see Eq. (18)). Both results are normalized by their corresponding values at the center of the 
system, y = 0. 

where PR is the pressure at the boundaries .  A compar ison of  this result with the s imu- 

lat ion data for a 10 m e a n  free paths wide system was already presented in Fig. 3 where 

quanti tat ive agreement  is observed only  near  the origin, i.e., away from the boundaries.  

As we increase the system size, the agreement  gradual ly  improves,  but  the discrepancy 

remains  observable near  the boundar ies  even for a 40 mean  free paths wide system 

(see Fig. 9). Full  quanti tat ive agreement  is nevertheless observed for a 100 mean  free 

paths wide system conta in ing  10000 particles, with a = 1.6 x 10 -6  (see Fig. 5). 

4. Concluding remarks 

In this paper  we have presented a detailed analysis  o f  plane Poiseuil le flow from three 

complementa ry  points o f  view: microscopic simulations,  macroscopic hydrodynamics  
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and kinetic theory. Discrepancies with the macroscopic hydrodynamic predictions were 
observed for Knudsen number as small as 0.01. Previous studies probably failed to 
notice these deviations since in many cases the relative differences are small. Thanks 
to DSMC's computational efficiency, we could measure the temperature and pressure 
profiles to high accuracy and establish that they differ structurally from hydrodynamic 
predictions. Regardless of how the equation of state, transport coefficients or bound- 
ary conditions are adjusted, the Navier-Stokes equations will never yield a bimodal 
temperature profile or a non-constant pressure profile. 

The discovery of non-hydrodynamic behavior in a simple flow offers a good oppor- 
tunity to test kinetic theory predictions. The profiles from the perturbative expansion 
of the BGK equation are shown to be in qualitative agreement with the simulation 
data. When the expansion parameter is small, quantitative agreement is obtained if the 
transport properties are suitably adjusted. Unfortunately, due to the complexity of the 
analysis, it is difficult to establish the specific reason why the hydrodynamic equations 
fail or if there exists an alternative macroscopic formulation that would give the cor- 
rect profiles. Given the simplicity and symmetry of Poiseuille flow, an analysis using 
the Burnett equations appears promising. Work exploring this and other theoretical 
approaches is in progress. 
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