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COMPUTATIONAL FLUCTUATING FLUID DYNAMICS
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Abstract. This paper describes the extension of a recently developed numerical solver for the Landau-
Lifshitz Navier-Stokes (LLNS) equations to binary mixtures in three dimensions. The LLNS equations
incorporate thermal fluctuations into macroscopic hydrodynamics by using white-noise fluxes. These
stochastic PDEs are more complicated in three dimensions due to the tensorial form of the correlations
for the stochastic fluxes and in mixtures due to couplings of energy and concentration fluxes (e.g.,
Soret effect). We present various numerical tests of systems in and out of equilibrium, including time-
dependent systems, and demonstrate good agreement with theoretical results and molecular simulation.
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1. Introduction

Scientists are accustomed to viewing the world as deterministic and this mechanical point of view has been
reinforced over and over by the technological successes of modern engineering. Yet this comfortable, predictable
model cannot be applied directly to the microscopic world of nano-scale devices. This world is fluid, both in
the hydrodynamic sense but also in the statistical sense. At the molecular scale, the state of a fluid is uncertain
and constantly changing. At hydrodynamics scales the probabilistic effects are not quantum mechanical but
entropic, that is, due to the spontaneous, random fluctuations.

Thermodynamic fluctuations are a textbook topic in equilibrium statistical mechanics [52] and have been
studied extensively in non-equilibrium statistical mechanics [15] yet they are rarely treated in computational
fluid dynamics. However, recently the fluid mechanics community has considered increasingly complex physical,
chemical, and biological phenomena at the microscopic scale including systems for which significant interactions
occur at scales ranging from molecular to macroscopic. Accurate modelling of such phenomena requires the cor-
rect representation of the spatial and temporal spectra of fluctuations, specifically when studying systems where
the microscopic stochastics drive a macroscopic phenomenon. Some examples in which spontaneous fluctuations
play an important role include the breakup of droplets in jets [17,33,47], Brownian molecular motors [2,45,51,60],
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Rayleigh-Bernard convection (both single species [63] and mixtures [53]), Kolmogorov flow [5,6,43], Rayleigh-
Taylor mixing [31,32], combustion and explosive detonation [40,50], and reaction fronts [46].

To incorporate thermal fluctuations into macroscopic hydrodynamics, Landau and Lifshitz introduced an
extended form of the Navier-Stokes equations by adding stochastic flux terms [37]. The LLNS equations have
been derived by a variety of approaches (see [8,10,19,35,37]) and have been extended to mixtures [12,39,48].
While they were originally developed for equilibrium fluctuations, specifically the Rayleigh and Brillouin spectral
lines in light scattering, the validity of the LLNS equations for non-equilibrium systems has been derived [18]
and verified in molecular simulations [23,41,44].

Several numerical approaches for the Landau-Lifshitz Navier-Stokes (LLNS) equations have been proposed.
The earliest work is by Garcia et al. [24] who developed a simple finite difference scheme for the linearized
LLNS equations. By including the stochastic stress tensor of the LLNS equations into the lubrication equations
Moseler and Landman [47] obtain good agreement with their molecular dynamics simulation in modelling the
breakup of nanojets; recent extensions of this work confirm the important role of fluctuations and the utility
of the stochastic hydrodynamic description [17,33]. Coveney, De Fabritiis, Delgado-Buscalioni and co-workers
have also used the LLNS equations in a hybrid scheme, coupling to a Molecular Dynamics calculation of a
liquid [13,14,16,26].

Recently, we introduced a centered scheme for the LLNS equations based on interpolation schemes designed to
preserve fluctuations combined with a third-order Runge-Kutta (RK3) temporal integrator [4]. Comparing with
theory, we showed that the RK3 scheme correctly captures the spatial and temporal spectrum of equilibrium
fluctuations. Further tests for non-equilibrium systems confirm that the RK3 scheme reproduces long-range
correlations of fluctuations and stochastic drift of shock waves, as verified by comparison with molecular sim-
ulations. It is worth emphasizing that the ability of continuum methods to accurately capture fluctuations is
fairly sensitive to the construction of the numerical scheme and our studies revealed that minor variations in the
numerics can lead to significant changes in stability, accuracy, and overall behavior. We have also demonstrated
that the RK3 scheme works well in a continuum-particle hybrid scheme in which the stochastic PDE solver is
coupled to a Direct Simulation Monte Carlo (DSMC) particle code [62].

The present paper extends our earlier work in several dimensions. First, we formulate the LLNS equations
for a binary gas in a form suitable for the RK3 scheme. Second, the three dimensional construction of the
scheme is explicitly outlined (earlier work was limited to one-dimensional systems). Finally, after we validate
these extensions of the RK3 scheme in a variety of equilibrium and non-equilibrium scenarios, including the
simulation of mixing in the Rayleigh-Taylor and Kelvin-Helmholtz instabilities.

2. Binary mixtures of ideal gases

This section summarizes the thermodynamic and hydrodynamic properties of binary mixtures of ideal gases,
including the formulation of the stochastic Landau-Lifshitz Navier-Stokes (LLNS) equations for such mixtures.
Though we focus on hard sphere ideal gases, primarily to allow direct comparison with molecular simulations,
the methodology is easily extended to general fluids, as outlined at the end of this section.

2.1. Thermodynamic properties

Consider a gas composed of two molecular species, each being hard spheres but with differing molecular
masses and diameters, specifically, with m0 and d0 for species zero and m1 and d1 for species one. For a
volume V containing N0 and N1 particles of each species the mass density is ρ = ρ0 +ρ1 with ρi = miNi/V . We
define the mass concentration, c, as ρ0 = (1−c)ρ and ρ1 = cρ (i.e., c = 1 is all species one). It will also be useful
to work with the number concentration, c′, which is the mole fraction of red particles so c′ = N1/(N0 + N1).
To convert between the two expressions for concentration we use

c =
c′

c′ + mR(1 − c′)
=

1
(1 − mR) + mR/c′

(2.1)
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and
c′ =

mRc

1 − (1 − mR)c
=

mR

1/c − (1 − mR)
(2.2)

where mR = m0/m1 is the mass ratio.
The pressure is given by the law of partial pressures, P = P0 + P1, where Pi = NikBT/V so

P =
(N0 + N1)kBT

V
=
(

ρ0

m0
+

ρ1

m1

)
kBT

= (ρ0R0 + ρ1R1)T = ρ((1 − c)R0 + cR1)T (2.3)

where T is the temperature, Ri = kB/mi, and kB is Boltzmann’s constant. Since each species is a monatomic
gas the heat capacity per particle is 3

2kB for constant volume and 5
2kB for constant pressure. The internal

energy density is e = e0 + e1 or,

e =
3
2 (N0 + N1)kBT

V
=

3
2
(ρ0R0 + ρ1R1)T =

P0 + P1

γ − 1
=

P

γ − 1
= (Cv,0ρ0 + Cv,1ρ1)T = ρ(Cv,0(1 − c) + Cv,1c)T (2.4)

where Cv,i = Ri/(γ − 1) is the heat capacity per unit mass and γ = 5/3 is the ratio of the heat capacities. The
total energy density is

E = e + 1
2

|J|2
ρ

=
P

γ − 1
+ 1

2ρ|v|2 (2.5)

where J is the momentum density and the fluid velocity is v = J/ρ. Finally, the sound speed is cs =
√

γP/ρ.
One defines μ as the difference in the chemical potential per unit mass for the two components (see [37],

Sect. 58),

μ =
μ1

m1
− μ0

m0
· (2.6)

For a binary dilute gas the chemical potential may be written as [38]

μi = kBT ln
ni

n0 + n1
+ kBT ln P + χi(T ). (2.7)

For particles with no internal degrees of freedom

χi(T ) = − 5
2kBT ln T −AT ln mi (2.8)

where A is a complicated function of physical constants. Note that
(

∂μ

∂c

)
P,T

=
kBT

c(1 − c) (m1(1 − c) + m0c)
(2.9)

for an ideal gas.

2.2. Hydrodynamic equations

To incorporate thermal fluctuations into macroscopic hydrodynamics Landau and Lifshitz introduced an
extended form of the Navier-Stokes equations by adding stochastic flux terms [37]. The Landau-Lifshitz Navier-
Stokes (LLNS) equations for a binary mixture may be written as [12,39,48]

∂U/∂t + ∇ · F = ∇ · D + ∇ · S (2.10)
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where

U =

⎛
⎜⎜⎝

ρ
ρ1

J
E

⎞
⎟⎟⎠ (2.11)

is the vector of conserved quantities (density of total mass, species 1 mass, momentum and energy).
The hyperbolic and dissipative fluxes are given by

F =

⎛
⎜⎜⎝

ρv
ρ1v

ρvv + P I
(E + P )v

⎞
⎟⎟⎠ and D =

⎛
⎜⎜⎝

0
j
τ

Q + v · τ + Gj

⎞
⎟⎟⎠. (2.12)

The mass diffusion flux for species one is

j = ρD

(
∇c +

kT

T
∇T +

kp

P
∇P

)
(2.13)

where D, kT and kp are the mass diffusion, thermal diffusion, and baro-diffusion coefficients (see Appendix A).
The stress tensor is τ = η(∇v +∇vT − 2

3I∇ · v) where η is the shear viscosity (the bulk viscosity is zero for an
ideal gas); in component form we may write this as

ταβ = η

(
∂vβ

∂xα
+

∂vα

∂xβ
− 2

3δαβ

x,y,z∑
γ

∂vγ

∂xγ

)
(2.14)

where v = vxx̂+vyŷ+vzẑ. Note that, except for the dependence of the viscosity coefficient on c, the momentum
flux is unaffected by concentration. On the other hand, the energy flux is comprised of three contributions: the
Fourier heat flux, Q = κ∇T , where κ is the thermal conductivity; the viscous heat dissipation, v · τ , and a
contribution that depends on the mass diffusion flux (see [37], Sects. 58 and 59),

Gj =

[
kT

(
∂μ

∂c

)
P,T

− T

(
∂μ

∂T

)
c,P

+ μ

]
j. (2.15)

For an binary ideal gas mixture,

− T

(
∂μ

∂T

)
c,P

+ μ = 5
2kBT

(
1

m1
− 1

m0

)
= γ(Cv,1 − Cv,0)T = (Cp,1 − Cp,0)T (2.16)

so

G = kT

{
kBT

c(1 − c) (m1(1 − c) + m0c)

}
+ (Cp,1 − Cp,0)T (2.17)

using equation (2.9).
To account for spontaneous fluctuations, the LLNS equations include a stochastic flux

S =

⎛
⎜⎜⎝

0
C
S

Q + v · S + GC

⎞
⎟⎟⎠ , (2.18)



COMPUTATIONAL FLUCTUATING FLUID DYNAMICS 1089

where the stochastic concentration flux, C, stress tensor S and heat flux Q have zero mean and covariances
given by [12,39]

〈Ci(r, t)Cj(r′, t′)〉 =
2DkBρT(

∂μ
∂c

)
P,T

δK
ij δ(r − r′)δ(t − t′) (2.19)

= 2Dρ [c(1 − c)(m1(1 − c) + m0c)] δK
ij δ(r − r′)δ(t − t′),

〈Sij(r, t)Sk�(r′, t′)〉 = 2kBηT
(
δK
ikδK

j� + δK
i� δK

jk − 2
3δK

ij δK
k�

)
δ(r − r′)δ(t − t′), (2.20)

〈Qi(r, t)Qj(r′, t′)〉 = 2kBκT 2δK
ij δ(r − r′)δ(t − t′), (2.21)

and

〈Ck(r, t)Sij(r′, t′)〉 = 〈Ci(r, t)Qj(r′, t′)〉 = 〈Sij(r, t)Qk(r′, t′)〉 = 0. (2.22)

Note that the covariance of the stress tensor is non-zero only when a pair of indices are equal and the other
pair are equal as well. For example,

〈SxxSxx〉 =
8
3
kBηT δ(r − r′)δ(t − t′), (2.23)

〈SxySxy〉 = 2kBηT δ(r − r′)δ(t − t′), (2.24)
〈SxySyx〉 = 〈SxySxy〉, (2.25)

〈SxxSyy〉 = −4
3
kBηT δ(r− r′)δ(t − t′), (2.26)

and 〈SxxSxy〉 = 〈SxxSyz〉 = 〈SxySxz〉 = 0.

2.3. Extension to general fluids

The formulation above for dilute gases may easily be extended to the more general case by the following
substitutions: First, the equation of state for the fluid replaces the ideal gas law in (2.3). Next, the energy density
(2.4) is modified by according to the fluid’s heat capacity (which may be a function of density and temperature).
The chemical potential (2.7) and its derivatives are needed. Finally, the transport coefficients (see Appendix A)
are required. Though the functional forms of these thermodynamic and hydrodynamic quantities will likely be
more complicated, the LLNS equations (and the corresponding numerical scheme to solve them) are structurally
unchanged.

3. Numerical scheme

The third-order Runge-Kutta (RK3) scheme for the LLNS equations is presented in [4,62] for single-species
fluids in one-dimensional systems. This section presents the more general case of a binary mixture in three
dimensions. The formulation in this more general case is complicated by the tensorial nature of the stress
tensor as well as having an additional equation for concentration (and a contribution from concentration in the
energy equation). This scheme can be written in the following three-stage form:

Un+1/3
i,j,k = Un

i,j,k − Δt

Δx

(
Fn

i+ 1
2 ,j,k −Fn

i− 1
2 ,j,k

)
−Δt

Δy

(
Gn

i,j+ 1
2 ,k − Gn

i,j− 1
2 ,k

)
− Δt

Δz

(
Hn

i,j,k+ 1
2
−Hn

i,j,k− 1
2

)
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Un+2/3
i,j,k =

3
4
Un

i,j,k +
1
4
Un+1/3

j − 1
4

(
Δt

Δx

)(
Fn+1/3

i+ 1
2 ,j,k

−Fn+1/3

i− 1
2 ,j,k

)

−1
4

(
Δt

Δy

)(
Gn+1/3

i,j+ 1
2 ,k

− Gn+1/3

i,j− 1
2 ,k

)
− 1

4

(
Δt

Δz

)(
Hn+1/3

i,j,k+ 1
2
−Hn+1/3

i,j,k− 1
2

)

Un+1
i,j,k =

1
3
Un

i,j,k +
2
3
Un+2/3

j − 2
3

(
Δt

Δx

)(
Fn+2/3

i+ 1
2 ,j,k

−Fn+2/3

i− 1
2 ,j,k

)

−2
3

(
Δt

Δy

)(
Gn+2/3

i,j+ 1
2 ,k

− Gn+2/3

i,j− 1
2 ,k

)
− 2

3

(
Δt

Δz

)(
Hn+2/3

i,j,k+ 1
2
−Hn+2/3

i,j,k− 1
2

)
,

where

Fm = (F(Um) − D(Um) − S̃(Um)) · x̂
Gm = (F(Um) − D(Um) − S̃(Um)) · ŷ
Hm = (F(Um) − D(Um) − S̃(Um)) · ẑ.

The discretization requires the interpolation of face-centered values from cell-centered values. In calculating
the hyperbolic flux F, in order to compensate for the variance-reducing effect of the multi-stage Runge-Kutta
algorithm, this interpolation is done as discussed in [4,62],

Ui+1/2,j,k = α1(Ui,j,k + Ui+1,j,k) − α2(Ui−1,j,k + Ui+2,j,k), (3.1)

where

α1 = (
√

7 + 1)/4 and α2 = (
√

7 − 1)/4.

Hydrodynamic variables are always computed from conserved variables (e.g., v = J/ρ) for both cell and face-
centered values.

In calculating the diffusive and stochastic fluxes D and S, the face-centered values are linearly interpolated
from cell-centered values. For example,

ηi+ 1
2 ,j,k =

η(ci+1,j,k, Ti+1,j,k) + η(ci,j,k, Ti,j,k)
2

and

(τxx)i+ 1
2 ,j,k =

2
3
ηi+ 1

2 ,j,k

(
2

(vx)i+1,j,k − (vx)i,j,k

Δx

− (vx)i+1,j+1,k + (vx)i,j+1,k − (vx)i+1,j−1,k − (vx)i,j−1,k

4Δy

− (vx)i+1,j,k+1 + (vx)i,j,k+1 − (vx)i+1,j,k−1 − (vx)i,j,k−1

4Δz

)
·
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Table 1. System parameters (in cgs units) for simulations of a dilute mixture gas at equilib-
rium in a periodic domain.

Molecular diameter (species 0 and 1) 3.66 × 10−8

Reference mass density 1.78 × 10−3

Reference temperature 273
Cell length (Δx = Δy = Δz) 2.7 × 10−6

Time step (Δt) 1.0 × 10−12

As described in [4,62], we take S̃ =
√

2S to obtain the correct variance of the stochastic flux over the three
stage averaging performed during a single time step in RK3; for example,

(S̃ · x̂)i+ 1
2 ,j,k =

√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

0
(Cx)i+ 1

2 ,j,k

(Sxx)i+ 1
2 ,j,k + (Syx)i+ 1

2 ,j,k + (Szx)i+ 1
2 ,j,k{

(Qx)i+ 1
2 ,j,k + (vxSxx)i+ 1

2 ,j,k + (vySyx)i+ 1
2 ,j,k

+ (vzSzx)i+ 1
2 ,j,k + (GCx)i+ 1

2 ,j,k

}

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The stochastic flux terms are generated as

(Cx)i+ 1
2 ,j,k =

√
1

ΔtVc

√
(DρA)i+1,j,k + (DρA)i,j,k �i+ 1

2 ,j,k

(Sαx)i+ 1
2 ,j,k =

√
kB

ΔtVc

(
1 + 1

3δK
αx

)√
(ηT )i+1,j,k + (ηT )i,j,k (�′

α)i+ 1
2 ,j,k

(Qx)i+ 1
2 ,j,k =

√
kB

ΔtVc

√
(κT 2)i+1,j,k + (κT 2)i,j,k �′′

i+ 1
2 ,j,k

where A = c(1−c)(m1(1−c)+m0c), Vc = ΔxΔyΔz and the �’s are independent, Gaussian distributed random
values with zero mean and unit variance. Note that S̃ is evaluated using the instantaneous values of the state
variables, i.e., the noise here is multiplicative. As discussed in [4] the effect of this multiplicity was found to be
negligible.

4. Numerical results

This section presents a series of computational examples, of progressively increasing sophistication, that
demonstrate the accuracy and effectiveness of the stochastic RK3 algorithm. First we examine an equilibrium
system, then several non-equilibrium examples, concluding with a demonstration of the effect of fluctuations on
mixing in the Rayleigh-Taylor and Kelvin-Helmholtz instabilities.

4.1. Equilibrium system

First, we consider a uniform system at the reference density and temperature in a periodic domain; parameters
for this equilibrium system are shown in Table 1. Four cases are investigated: two with a single species and two
with a binary mixture (c = 1/2, mR = 3, c′ = 3/4). For each of these cases the system is initialized with either
zero net flow or an initial fluid velocity equal to the sound speed (i.e., Mach 1 flow). The molecular diameters
and the molecular mass for species 1 in the binary mixture (m1 = 6.63× 10−23) are chosen as to mimic Argon;
the simulation parameters for the binary mixture are similar to those used in [4,62] when c = 1 and, in that
case, yield STP conditions. In the single species case the molecular mass is m∗ = 3

2m1 so the average density
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and number of particles is the same in all four cases. The average number of particles per computational cell is
〈N〉 = 351 so the standard deviation of the fluctuations is about 5% of the mean value.

At thermodynamic equilibrium the variances and covariances of the mechanical variables are given by sta-
tistical mechanics [38] (see Appendix B for details),

〈δρ2〉 = ζ
〈ρ〉2
〈N〉 ; 〈δρ2

1〉 =
〈c〉2
〈c′〉

〈ρ〉2
〈N〉 (4.1)

〈δJ2〉 = ζ
〈ρ〉2
〈N〉 〈u〉

2 +
〈ρ〉kB〈T 〉

V
(4.2)

〈δE2〉 =
γ

(γ − 1)2
〈P 〉2
〈N〉 +

γ

γ − 1
〈ρ〉kB〈T 〉

V
〈u〉2 +

ζ

4
〈ρ〉2〈u〉4
〈N〉 (4.3)

〈δρδJ〉 = ζ
〈ρ〉2
〈N〉 〈u〉 (4.4)

〈δρδE〉 =
1

γ − 1
〈ρ〉kB〈T 〉

V
+

ζ

2
〈ρ〉2
〈N〉 〈u〉

2 (4.5)

〈δJδE〉 =
γ

γ − 1
〈ρ〉kB〈T 〉

V
〈u〉 +

ζ

2
〈ρ〉2
〈N〉 〈u〉

3 (4.6)

where

ζ = 1 +
(mR − 1)2

mR
〈c〉(1 − 〈c〉). (4.7)

Note that the variance of mass density in the binary mixture is greater by a factor of ζ compared to a single
species gas of particles with mass m∗ = 〈ρ〉V/〈N〉; other variances and covariances are similarly enhanced. For
the parameters we consider (c = 1/2, mR = 3) the value is ζ = 4/3.

Tables 2 and 3 compare the results from one-dimensional and three-dimensional RK3 calculations, of 8000 cells
and 20 × 20 × 20 cells respectively, with theoretical variances and covariances at equilibrium. These results,
compiled from simulations running O(106) time steps, show that the RK3 scheme yields accurate results in
all cases, with errors not exceeding four percent for the one-dimensional calculation. The errors in the binary
mixture cases are comparable to those in for a single species with the largest discrepancies appearing in the
energy variance in the 3D cases.

4.2. Non-equilibrium system: temperature gradient

A fluid under a non-equilibrium constraint, such as a velocity or temperature gradient, exhibits long-range
correlations of fluctuations [15,55]. In the case of a temperature gradient, the asymmetry of sound waves mov-
ing along versus against the gradient creates correlations among quantities, such as density and momentum
fluctuations, that are independent at equilibrium. Molecular simulations also confirm the predicted correlations
of non-equilibrium fluctuations for a fluid subjected to a temperature gradient [20,41] and also to a velocity
gradient [25]. Theoretical predictions of these correlations have also been confirmed by light scattering experi-
ments yet the effects are subtle and difficult to measure accurately in the laboratory. It is precisely because the
long-range correlation of non-equilibrium fluctuations is a subtle effect that we consider it a good test of the
RK3 algorithm.

Non-equilibrium correlations have been analyzed for binary mixtures using the LLNS equations and ap-
proximations thereof (e.g., [15,56]). However, to independently validate the RK3 algorithm we compare it with
molecular simulations of a dilute gas. Specifically, we use the direct simulation Monte Carlo (DSMC) algorithm,
a well-known method for computing gas dynamics at the molecular scale [1,7,21]. As in molecular dynamics, the
state of the system in DSMC is given by the positions and velocities of particles. In each time step, the particles
are first moved as if they did not interact with each other. After moving the particles and imposing any bound-
ary conditions, collisions are evaluated by a stochastic process, conserving momentum and energy and selecting
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Table 2. Variances and covariances at equilibrium as measured in the one-dimensional
RK3 simulations and compared with equations (4.1)–(4.6). (*) Percent error estimated as
〈δρδJ〉/(〈δρ2〉〈δJ2〉)1/2. (†) Percent error estimated as 〈δJδE〉/(〈δJ2〉〈δE2〉)1/2.

Binary mixture (no flow) RK3 Theory Percent error
〈δρ2〉 1.1861e−8 1.20343e−8 −1.44%
〈δJ2〉 3.53767 3.4205 3.43%
〈δE2〉 5.04799e+9 4.86102e+9 3.85%
〈δρ2

1〉 3.09915e−9 3.00858e−9 3.01%
〈δρδJ〉 1.15848e−7 0 0.06% (*)
〈δρδE〉 5.06506 5.13074 −1.28%
〈δJδE〉 101.695 0 0.08% (†)
Single species (no flow) RK3 Theory Percent error
〈δρ2〉 8.92136e−9 9.02573e−9 −1.16%
〈δJ2〉 3.53984 3.4205 3.49%
〈δE2〉 4.96694e+9 4.86102e+9 2.18%
〈δρ2

1〉 8.92136e−9 9.02573e−9 −1.16%
〈δρδJ〉 4.14024e−8 0 0.02% (*)
〈δρδE〉 5.07371 5.13074 −1.11%
〈δJδE〉 15.443 0 0.01% (†)
Binary mixture (Mach 1 flow) RK3 Theory Percent error
〈δρ2〉 1.19657e−8 1.20343e−8 −0.57%
〈δJ2〉 11.0943 11.032 0.56%
〈δE2〉 1.17017e+10 1.14736e+10 1.99%
〈δρ2

1〉 3.10713e−9 3.00858e−9 3.28%
〈δρδJ〉 0.000300865 0.000302663 −0.59%
〈δρδE〉 8.87415 8.93673 −0.70%
〈δJδE〉 311 931 310 784 0.37%
Single species (Mach 1 flow) RK3 Theory Percent error
〈δρ2〉 8.97937e−9 9.02573e−9 −0.51%
〈δJ2〉 9.20775 9.12904 0.86%
〈δE2〉 1.13227e+10 1.11726e+10 1.34%
〈δρ2

1〉 8.97937e−9 9.02573e−9 −0.51%
〈δρδJ〉 0.000225801 0.000226997 −0.53%
〈δρδE〉 7.93204 7.98523 −0.67%
〈δJδE〉 288 230 286 854 0.48%

the post-collision angles from their kinetic theory distributions. For both equilibrium and non-equilibrium prob-
lems DSMC yields the physical spectra of spontaneous thermal fluctuations, as confirmed by excellent agreement
with fluctuating hydrodynamic theory [23,24,41] and molecular dynamics simulations [42,44].

The scenario we consider is a system with thermal walls at x = 0, L and periodic boundary conditions in the
y and z directions. In the RK3 algorithm the boundary conditions for a rigid, impenetrable wall at constant
temperature are implemented as follows: The wall is located at a cell edge, for example the wall at x = 0
is at (i = 1

2 , j, k). The grid is extended by two cells into the wall and the values at those cells are set at the
beginning of each iteration. Specifically, the momentum is an odd function about the interface (because the wall
in impenetrable) and the pressure is an even function (because it is rigid). The temperature of the boundary
points is fixed by linear interpolation, for example, T0,j,k = 2T1/2,j,k − T1,j,k. Because the concentration flux, j,
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Table 3. Variances and covariances at equilibrium as measured in the three-dimensional
RK3 simulations and compared with equations (4.1)–(4.6). (*) Percent error estimated as
〈δρδJ〉/(〈δρ2〉〈δJ2〉)1/2. (†) Percent error estimated as 〈δJδE〉/(〈δJ2〉〈δE2〉)1/2.

Binary mixture (no flow) RK3 Theory Percent error
〈δρ2〉 1.15355e−8 1.20343e−8 −4.14%
〈δJ2〉 3.66285 3.42049 7.09%
〈δE2〉 5.2962e+9 4.861 e+9 8.95%
〈δρ2

1〉 3.23672e−9 3.00857e−9 7.58%
〈δρδJ〉 1.48917e−8 0 0.01% (*)
〈δρδE〉 4.91364 5.13073 −4.23%
〈δJδE〉 2.35081 0 0.00% (†)
Single species (no flow) RK3 Theory Percent error
〈δρ2〉 8.65308e−9 9.0257 e−9 −4.13%
〈δJ2〉 3.61695 3.42049 5.74%
〈δE2〉 5.00158e+9 4.861 e+9 2.89%
〈δρ2

1〉 8.65308e−9 9.0257 e−9 −4.13%
〈δρδJ〉 1.2951e−8 0 0.01% (*)
〈δρδE〉 4.91199 5.13073 −4.26%
〈δJδE〉 4.31381 0 0.00% (†)
Binary mixture (Mach 1 flow) RK3 Theory Percent error
〈δρ2〉 1.15684e−8 1.20343e−8 −3.87%
〈δJ2〉 10.9696 11.032 −0.57%
〈δE2〉 1.18817e+10 1.14735e+10 3.56%
〈δρ2

1〉 3.23875e−9 3.00857e−9 7.65%
〈δρδJ〉 0.000290739 0.000302662 −3.94%
〈δρδE〉 8.5808 8.9367 −3.98%
〈δJδE〉 307 710 310 783 −0.99%
Single species (Mach 1 flow) RK3 Theory Percent error
〈δρ2〉 8.67279e−9 9.0257 e−9 −3.91%
〈δJ2〉 9.09505 9.12902 −0.37%
〈δE2〉 1.12668e+10 1.11726e+10 0.84%
〈δρ2

1〉 8.67279e−9 9.0257 e−9 −3.91%
〈δρδJ〉 0.000217972 0.000226996 −3.98%
〈δρδE〉 7.66199 7.98521 −4.05%
〈δJδE〉 283 466 286 853 −1.18%

must be zero at the wall, given that the pressure is even, we have the condition

∇c = −kT

T
∇T (4.8)

which is implemented by linear interpolation, for example,

c0,j,k = c1,j,k +
kT

T1/2,j,k
(T1,j,k − T0,j,k). (4.9)
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Figure 1. Mean temperature (left) and concentration (right) profiles from RK3 (lines) and
DSMC (symbols) of a system with thermal walls. The three cases are: equilibrium (+ signs
and dotted line), 2:1 temperature ratio (x-marks and dashed line), and 3:1 temperature ratio
(*-marks and solid line).

Note that if we neglect the Soret effect (i.e., kT = 0) then the concentration is an even function at the interface.
From c, P , and T at the boundary condition cells, the mass and energy density are given by

ρ =
P

((1 − c)R0 + cR1)T
, E =

P

γ − 1
+

1
2
|J|2
ρ

(4.10)

where the fluid velocity is v = J/ρ. Note that if we neglect the Soret effect then ρT is an even function.
Figure 1 shows that the mean temperature and concentration profiles obtained by RK3 are in good agreement

with DSMC molecular simulations. There are significant Knudsen effects since the distance between the thermal
walls is only about an order of magnitude larger than the equilibrium mean free path. As such, to obtain
accurate results the wall temperatures in RK3 have to be adjusted to account for temperature jump [58]. As
seen in Figure 1, due to the Soret effect there is a significant concentration gradient induced by the temperature
gradient.

The profiles of the variances of mass and energy density fluctuations, 〈δρ2
i 〉 and 〈δE2

i 〉, are shown in Fig-
ure 2. The RK3 and DSMC data are in good agreement except near the walls where the variances in RK3
drop significantly. Finally, Figure 3 shows the correlation of density-momentum correlations, 〈δρiδJj∗〉 and
momentum-energy correlations, 〈δJiδEj∗〉, where j∗ is the center grid-point. Given that these long-range corre-
lations are a subtle effect the data are in reasonable agreement. The major discrepancy is the under-prediction
of the negative peak correlation near j∗.

4.3. Non-equilibrium system: mixing instabilities

Finally, we consider two classical instabilities that lead to mixing in a binary system. Specifically, we consider
the Rayleigh-Taylor instability, which occurs when a heavy fluid rests upon a light fluid [57], and the Kelvin-
Helmholtz instability that arises from the instability of a shear layer. The importance of fluctuations has recently
been highlighted in the study of such instabilities by molecular simulations [31,32].

Our simulations of the Rayleigh-Taylor instability are, as Lord Rayleigh described it in 1883 [54], for mixing
in the presence of a constant gravitational field (Taylor later showed that the instability can also occur in
accelerated fluids [59]). As in the earlier cases, the mass ratio is three with the heavier particles on top.
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Figure 2. Variances of mass density fluctuations (left) and energy fluctuations (right) for a
system subjected to a temperature gradient.
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Figure 3. Spatial correlation of density- momentum fluctuations (left) and momentum-energy
fluctuations (right) for a system subjected to a temperature gradient.

The density and temperature are both increased to be approximately 10 times reference values and the pressure
is initialized at hydrostatic equilibrium. We simulate a cubical domain 12 μm on a side discretized with a
200×200×200 grid. Gravitational acceleration is set to 1012 cm·s−2 to enhance the formation of the instability
at this microscopic scale. The boundary conditions on the top and bottom are planes of symmetry with periodic
boundary conditions on the other four sides. The system is initialized with perfect symmetry and a flat interface,
consequently, in the absence of the stochastic terms the Rayleigh-Taylor instability does not occur. Figure 4



COMPUTATIONAL FLUCTUATING FLUID DYNAMICS 1097

Figure 4. Mass density (top panels) and fluid velocity (lower panels) at 8000 steps for the
Rayleigh Taylor instability induced by fluctuations from an initially flat surface. The left (right)
panels are slices perpendicular (parallel) to the gravitational acceleration; the former is near
the initial interface layer.

shows the density and velocity fields after 8000 time steps, at which point some initial structure is first visible.
Soon afterwards the structures become pronounced, as seen in Figure 5.

As a second example, we consider the Kelvin-Helmholtz instability. The initial conditions are similar to
those in the Rayleigh-Taylor case except that there is no gravitational acceleration and the particles of the two
species have the same mass. The velocity is initialized to 0.25cs in the bottom half of the domain and to −0.25cs

in the bottom half of the domain. The domain is 31.25 μm × 15.625 μm × 31.25 μm and is discretized on a
200 × 100 × 200 grid. As in the Rayleigh-Taylor example, here, if there are no fluctuations, the instability will
not form.

The development of the Kelvin-Helmholtz instability is shown in Figure 6. Initially, the viscous stress between
the two streams slows the flow, inducing heating in the mixing region. As seen from the density and vertical
velocity, this early mixing also generates sound waves that propagate normal to the interface. At this point
only small perturbations are evident in velocity or concentration and there is little multidimensional structure.
As the flow develops we begin to see the shear layer becoming unstable with evidence of vortical structures in
all three fields. At the final time, a fully developed mixing layer is seen in all three fields as the shear layer
continues to roll up.

5. Future work

In this paper we have extended our basic LLNS method by including concentration as a hydrodynamic variable
in order to model binary gas mixtures. A number of complicated terms must be introduced to accurately model
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Figure 5. Mass density in the Rayleigh-Taylor instability at 10 000, 14 000, and 18 000 steps
(left to right). The top (bottom) panels are slices perpendicular (parallel) to the gravitational
acceleration; the former is near the initial interface layer.

unequal mass interactions, such as the Soret effect and baro-diffusion. The extension of the stochastic RK3
method to three-dimensions is also described. Finally, these extensions are validated in a variety of test cases
and illustrated in two mixing instabilities triggered by fluctuations.

One avenue for future work is the incorporation of additional species and the introduction of chemical
reactions. In a standard treatment of reactions at a continuum level, one assumes large populations of reacting
species and a high-frequency of reaction. In this case, reactions can be modeled by continuum rate equations.
For chemical systems these rates are typically of Arrenhius form with rates depending on temperature and
activation energies. At the mesoscopic scale some of these approximations break down due to the influence of
spontaneous fluctuations. It should not be surprising that in reacting flows fluctuations have a more significant
effect than in non-reacting systems due to the strong nonlinearities associated with the reaction pathways. This
intuition is confirmed in a number of studies of these complex fluids [3,34,46,49,50].

Another avenue for exploration is the formulation of the Cahn-Hilliard system as an extension of the Landau-
Lifshitz Navier-Stokes equations, taking the chemical potential as a sum of a thermodynamic term (the derivative
of the Gibbs free energy), and a gradient energy term (attributed also to Van der Waals, and to Landau
and Ginzburg). The Cahn-Hilliard equation describes the process of phase separation, such as when the two
components of a binary fluid spontaneously separate. A number of studies have been published that solve
the stochastic Cahn-Hilliard composition equations, decoupled from the continuity, momentum and energy
equations (e.g., [9,11,28–30,36,61]). In these studies, the stochastic forcing is obtained from the fluctuation-
dissipation theorem, however, it has not been determined that the resulting concentration fluctuations are
consistent with statistical mechanics expectations (aside from structure factors and pair correlation functions –
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Figure 6. Slices normal to the transverse flow direction for the Kelvin-Helmholtz instability
at 1000, 3000 and 8000 steps. The left panel is density, the center panel is vertical velocity and
the right panel is concentration.

a subset of consistency requirements). The difficulty of achieving this correspondence for the simpler Landau-
Lifshitz Navier-Stokes system strongly suggests that this correspondence is unlikely to be achieved in the Cahn-
Hilliard system without special attention to the algorithmic construction. We are currently investigating such
a construction with Prof. Miller of UC Davis.

Finally, the stability properties of the stochastic RK3 algorithm are not well understood, and the whole notion
of stability is different than it is for deterministic schemes. For example, even at equilibrium, a rare fluctuation
can cause a thermodynamic instability (e.g., a negative temperature which implies a complex sound speed),
a mechanical instability (e.g., a negative mass density), or a purely numerical instability (e.g., division by zero).
Capping the noises in the stochastic flux terms will not necessarily solve the problem because the hydrodynamic
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variables are time-correlated so the numerical instability may not appear on a single step but rather as an
accumulated effect. In addition, the efficiency of the method would be greatly improved if the scheme was
able to use larger time steps. One particular type of approach we are pursuing is the development of implicit-
explicit type discretizations that treat hyperbolic terms explicitly while treating diffusive terms implicitly. The
key question for this type of discretization is how to treat stochastic terms in this framework to preserve the
correct statistical properties of the solution. Addressing these issue will require the development of a better
mathematical understanding of accuracy and stability properties for these type of systems.

A. Appendix: Transport coefficients for a binary gas mixture

The general expressions for the transport properties of a binary mixture of hard sphere gases are given in
Hirshfelder et al. [27]; for completeness and the convenience of the reader they are reproduced in this appendix.

The viscosity is

η = Cη
1 + Zη

Xη + Yη
(A.1)

where

Xη =
(1 − c′)2

η0
+

2c′(1 − c′)
ηx

+
c′2

η1
(A.2)

Yη =
3
5

{
(1 − c′)2

η0

m0

m1
+

2c′(1 − c′)ηx

η0η1

(m0 + m1)2

4m0m1
+

c′2

η1

m1

m0

}
(A.3)

Zη =
3
5

{
(1 − c′)2

m0

m1
+ 2c′(1 − c′)

[
(m0 + m1)2

4m0m1

(
ηx

η0
+

ηx

η1

)
− 1
]

+ c′2
m1

m0

}
(A.4)

and with separate viscosity contributions of

ηi =
5

16d2
i

√
mikBT

π
i = 0, 1, x (A.5)

with the “cross” term values of mx = 2m0m1/(m0+m1) and dx = (d0+d1)/2. The Sonine polynomial correction
factor is Cη = 1.016 (see Tab. 8.3–2 in [27]).

The thermal conductivity is4

κ = Cκ
1 + Zκ

Xκ + Yκ
(A.6)

where Cκ = 1.025 and

Xκ =
(1 − c′)2

κ0
+

2c′(1 − c′)
κx

+
c′2

κ1
(A.7)

Yκ =
(1 − c′)2U0

κ0
+

2c′(1 − c′)UY

κx
+

c′2U1

κ1
(A.8)

Zκ = (1 − c′)2U0 + 2c′(1 − c′)UZ + c′2U1 (A.9)

4Note that λ is used instead of κ in [27].
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and

U0 =
4
15

− 17
60

m0

m1
+

(m0 − m1)2

2m0m1
; U1 =

4
15

− 17
60

m1

m0
+

(m0 − m1)2

2m0m1
; (A.10)

UY =
4
15

(m0 + m1)2

4m0m1

κ2
x

κ0κ1
− 17

60
+

13
32

(m0 − m1)2

m0m1
; (A.11)

UZ =
4
15

[
(m0 + m1)2

4m0m1

(
κx

κ0
+

κx

κ1

)
− 1
]
− 17

60
(A.12)

where
κi =

15kB

4mi
ηi i = 0, 1, x. (A.13)

The coefficient of mass diffusion is

D = CD
3

8nd2
x

√
kBT

πmx
(A.14)

where CD = 1.019. For m0 = m1 this simplifies to D = 6CDηx/5ρ. The thermal diffusion coefficient, kT ,
appears due to the Soret effect; it has the form,

kT = CS
c′(1 − c′)

6κx

S(1)c′ − S(0)(1 − c′)
Xκ + Yκ

(A.15)

where CS = 1.299 and

S(i) =
m0 + m1

2m1−i

κx

κi
− 15

8
(−1)i(m1 − m0)

mi
− 1. (A.16)

Note that for particles of equal mass and diameter (i.e., when the particles are dynamically identical) then
kT = 0. This is evident from the argument that a temperature gradient will not separate distinguishable but
physically identical particles (e.g., “red” and “blue” tagged particles); it’s also obtained from the equations
above because S(0) = S(1) = 0 in this case. Furthermore, if kT > 0 then species 1 moves towards the cold
regions, which should occur when m1 > m0.

The baro-diffusion coefficient is given by

kp = P
(∂μ/∂P )T,c

(∂μ/∂c)P,T
· (A.17)

For a binary dilute gas, we have

kp = (m0 − m1)c(1 − c)
(

1 − c

m0
+

c

m1

)
· (A.18)

Note that kp is zero when m0 = m1.

B. Appendix: Variances in a binary gas mixture

This appendix summarizes the variances and co-variances of the conserved variables, ρ, ρc, J, and E, at
thermodynamic equilibrium. For hydrodynamic variables, such as v, T , P , and c, the variances and covariances
are obtained from these conserved (mechanical) variables, as described in [22].

The variance of the density of each species is the same as for a single, independent species, that is,
〈δρ2

i 〉 = ρ2
i /Ni. The variance for the total density is thus

〈δρ2〉 = 〈(δρ0 + δρ1)2〉 = 〈δρ2
0〉 + 〈δρ2

1〉 =
〈ρ0〉2
〈N0〉 +

〈ρ1〉2
〈N1〉 = ζ

〈ρ〉2
〈N〉 (B.1)
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where

ζ =
(1 − 〈c〉)2
1 − 〈c′〉 +

〈c〉2
〈c′〉 = 1 +

(mR − 1)2

mR
〈c〉(1 − 〈c〉) (B.2)

gives the magnification of the density fluctuations due to the binary mixture. That is, the variance of mass
density is greater by a factor of ζ compared to a single species gas of particles with mass m = 〈ρ〉V/〈N〉.

Since ρ1 is the same as ρc,

〈δ(ρc)2〉 = 〈δρ2
1〉 =

〈ρ1〉2
〈N1〉 =

〈c〉2
〈c′〉

〈ρ〉2
〈N〉 =

(
〈c〉 +

1 − 〈c〉
mR

)
〈c〉 〈ρ〉

2

〈N〉 · (B.3)

We have a similar result for x-momentum density since 〈δJ2
i 〉 = 〈Ji〉2/〈Ni〉+ 〈ρi〉2C2

i /〈Ni〉 where the thermal
speed is Ci =

√
kB〈T 〉/mi. Thus,

〈δJ2〉 = 〈(δJ0 + δJ1)2〉 = 〈δJ2
0 〉 + 〈δJ2

1 〉
= ζ

〈J〉2
〈N〉 +

〈ρ〉kB〈T 〉
V

= ζ
〈ρ〉2
〈N〉 〈u〉

2 +
〈ρ〉kB〈T 〉

V
· (B.4)

Note that the cross-terms are similar; for example 〈δρδJ〉 = 〈δρ0δJ0〉 + 〈δρ1δJ1〉. Since 〈δρiδJi〉 = 〈ρi〉〈Ji〉/Ni

then

〈δρδJ〉 = ζ
〈ρ〉〈J〉
〈N〉 = ζ

〈ρ〉2
〈N〉 〈u〉· (B.5)

When the mean fluid velocity is zero then the energy fluctuation is simply

δE = δe0 + δe1 =
δP0 + δP1

γ − 1
(B.6)

so

〈δE2〉 =
γ

(γ − 1)2

( 〈P0〉2
〈N0〉 +

〈P1〉2
〈N1〉

)
=

γ

(γ − 1)2
〈P 〉2
〈N〉 (B.7)

since (see [38], Sect. 14)

〈δP 2
i 〉 = −kBT

(
∂P

∂V

)
S

=
kBTγPi

V
=

γP 2
i

Ni
(B.8)

and PV γ = const. for an adiabatic process. The energy fluctuation expressions get somewhat messy if |〈u〉| �= 0
so we’ll limit our attention to having the x-component, 〈J〉, be non-zero. We may now write δE = δE0 + δE1

where

δEi =
δPi

γ − 1
+

〈Ji〉 · δJi

〈ρi〉 − δρi〈Ji〉2
2〈ρi〉2 · (B.9)

The variance is 〈δE2〉 = 〈δE2
0 〉 + 〈δE2

1 〉 where

〈δE2
i 〉 =

〈δP 2
i 〉

(γ − 1)2
+

〈Ji〉2〈δJ2
i 〉

〈ρi〉2 +
〈δρ2

i 〉〈Ji〉4
4〈ρi〉4 (B.10)

+
2〈δJiδPi〉〈Ji〉
(γ − 1)〈ρi〉 − 〈δρiδPi〉〈Ji〉2

(γ − 1)〈ρi〉2 − 〈δρiδJi〉〈Ji〉3
〈ρi〉3

=
1

(γ − 1)2
〈δP 2

i 〉 + 〈u〉2〈δJ2
i 〉 +

1
4
〈u〉4〈δρ2

i 〉 (B.11)

+
2Ri〈T 〉〈u〉2

(γ − 1)
〈δρ2

i 〉 −
Ri〈T 〉〈u〉2
(γ − 1)

〈δρ2
i 〉 − 〈u〉3〈δρiδJi〉 (B.12)
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so

〈δE2〉 =
γ

(γ − 1)2
〈P 〉2
〈N〉 + 〈u〉2

[
ζ
〈J〉2
〈N〉 +

〈ρ〉kB〈T 〉
V

]
+

1
4
〈u〉4

[
ζ
〈ρ〉2
〈N〉

]

+ 〈u〉2 〈ρ〉kB〈T 〉
(γ − 1)V

− 〈u〉3
[
ζ
〈ρ〉〈J〉
〈N〉

]
(B.13)

=
γ

(γ − 1)2
〈P 〉2
〈N〉 +

γ

γ − 1
〈ρ〉kB〈T 〉

V
〈u〉2 +

ζ

4
〈ρ〉2〈u〉4
〈N〉 · (B.14)

Finally, the covariances of the remaining variables are

〈δρδE〉 =
1

γ − 1
〈ρ〉kB〈T 〉

V
+

ζ

2
〈ρ〉2
〈N〉 〈u〉

2 (B.15)

and

〈δJδE〉 =
γ

γ − 1
〈ρ〉kB〈T 〉

V
〈u〉 +

ζ

2
〈ρ〉2
〈N〉 〈u〉

3· (B.16)

It is easy to verify that if m0 = m1 then all the expressions above are the same as for a single species since in
that case c = c′ and ζ(c, mR) = 1.

Acknowledgements. The authors wish to thank B. Alder, M. Browne, A. Donev, A. de la Fuente, and P. Relich for
helpful discussions. The work of J. Bell and A. Garcia was supported by the Applied Mathematics Program of the DOE
Office of Mathematics, Information, and Computational Sciences under the U.S. Department of Energy under contract
No. DE-AC02-05CH11231.

References

[1] F.J. Alexander and A.L. Garcia, The direct simulation Monte Carlo method. Comp. Phys. 11 (1997) 588–593.
[2] R.D. Astumian and P. Hanggi, Brownian motors. Phys. Today 55 (2002) 33–39.
[3] F. Baras, G. Nicolis, M.M. Mansour and J.W. Turner, Stochastic theory of adiabatic explosion. J. Statis. Phys. 32 (1983)

1–23.
[4] J.B. Bell, A.L. Garcia and S.A. Williams, Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations. Phys.

Rev. E 76 (2007) 016708.
[5] I. Bena, M.M. Mansour and F. Baras, Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime. Phys. Rev. E 59

(1999) 5503–5510.
[6] I. Bena, F. Baras and M.M. Mansour, Hydrodynamic fluctuations in the Kolmogorov flow: Nonlinear regime. Phys. Rev. E

62 (2000) 6560–6570.
[7] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994).
[8] M. Bixon and R. Zwanzig, Boltzmann-Langevin equation and hydrodynamic fluctuations. Phys. Rev. 187 (1969) 267–272.
[9] D. Blömker, S. Maier-Paape and T. Wanner, Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation.

Trans. Amer. Math. Soc. 360 (2008) 449–489.
[10] E. Calzetta, Relativistic fluctuating hydrodynamics. Class. Quantum Grav. 15 (1998) 653–667.
[11] H.D. Ceniceros and G.O. Mohler, A practical splitting method for stiff SDEs with application to problems with small noise.

Multiscale Model. Simul. 6 (2007) 212–227.
[12] C. Cohen, J.W.H. Sutherland and J.M. Deutch, Hydrodynamic correlation functions for binary mixtures. Phys. Chem. Liquids

2 (1971) 213–235.
[13] G. De Fabritiis, R. Delgado-Buscalioni and P.V. Coveney, Multiscale modeling of liquids with molecular specificity. Phys. Rev.

Lett. 97 (2006) 134501.
[14] G. De Fabritiis, M. Serrano, R. Delgado-Buscalioni and P.V. Coveney, Fluctuating hydrodynamic modeling of fluids at the

nanoscale. Phys. Rev. E 75 (2007) 026307.
[15] J.M.O. de Zarate and J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures. Elsevier Science (2007).
[16] R. Delgado-Buscalioni and G. De Fabritiis, Embedding molecular dynamics within fluctuating hydrodynamics in multiscale

simulations of liquids. Phys. Rev. E 76 (2007) 036709.
[17] J. Eggers, Dynamics of liquid nanojets. Phys. Rev. Lett. 89 (2002) 084502.



1104 J.B. BELL ET AL.
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