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Abstract

In this paper, we develop an algorithm refinement (AR) scheme for an excluded random walk model whose mean field
behavior is given by the viscous Burgers’ equation. AR hybrids use the adaptive mesh refinement framework to model a
system using a molecular algorithm where desired while allowing a computationally faster continuum representation to be
used in the remainder of the domain. The focus in this paper is the role of fluctuations on the dynamics. In particular, we
demonstrate that it is necessary to include a stochastic forcing term in Burgers’ equation to accurately capture the correct
behavior of the system. The conclusion we draw from this study is that the fidelity of multiscale methods that couple dis-
parate algorithms depends on the consistent modeling of fluctuations in each algorithm and on a coupling, such as algo-
rithm refinement, that preserves this consistency.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Algorithm refinement (AR) is an emerging paradigm in the modeling and simulation of multiscale prob-
lems. Mathematical models use distinctly different representations for microscopic and macroscopic scales
with the corresponding algorithms echoing this disparity. Particle-based algorithms are a class of methods,
typically used to model the microscopic scale, that represent the physical system by discrete, interacting enti-
ties. These “particles’” represent anything from individual atoms to parcels of fluid to bacteria to automobiles.
Field-based algorithms, typically used to model the macroscopic scale, are derived from models based primar-
ily on partial differential equations with the physical system represented by continuum fields.

Algorithm refinement schemes (sometimes called ‘“multi-algorithm hybrids™) couple structurally different
computational schemes such as particle-based molecular simulations with continuum partial differential equa-
tion (PDE) solvers.! The general idea is to perform detailed calculations using an accurate but expensive
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algorithm in a small region (or for a short time), and couple this computation to a simpler, less expensive
method applied to the rest. The formulation of an AR scheme requires: projecting from the microscopic model
to macroscopic; refining from macroscopic to microscopic; and handshaking between the two representations
where they are coupled. A related issue is the establishment of “‘refinement criteria” that specify when a micro-
scopic representation is needed and when a macroscopic representation is sufficient. Examples of algorithm
refinement applied to fluid dynamics may be found in [15,17,29,34,35,38]; AR hybrids for interfacial propa-
gation are discussed in [27,28,30].

One aspect of multiscale modeling that has received insufficient attention is the presence of spontaneous
fluctuations at microscopic scales and their effect on the macroscopic scale. Accurate modeling of many
phenomena require the correct representation of the variances and correlations of fluctuations, specifically
when studying systems where the microscopic stochastics drive a macroscopic phenomenon. For physical
systems, the correct treatment of fluctuations is especially important for stochastic, nonlinear systems, such
as those undergoing phase transitions, nucleation, noise-driven instabilities and combustive ignition. In
these and related applications, the nonlinearities can exponentially amplify the influence of the
fluctuations.

Stochastic fluctuations in AR schemes have been investigated for two simple diffusive systems: linear
diffusion [3,37] and the quasi-linear train model [5]. For those parabolic problems, one finds that when
a particle algorithm is coupled to a deterministic continuum algorithm the variance of fluctuations is
reduced in the particle regime near the interface. The variance of fluctuations within the continuum regime
falls quickly away from the interface; however, variables, such as fluid velocity in the train model, that
have long-range correlations retain these correlations of fluctuations (though at reduced magnitude) within
the deterministic continuum region. Finally, stochastic continuum algorithms may be formulated such that
when coupled to particle schemes they correctly duplicate the physical fluctuations throughout the compu-
tational domain.

Our longer term goal is to extend the development of AR methods with fluctuations to an adaptive mesh
and algorithm method for the fluctuating compressible Navier—Stokes using a framework analogous to the
non-fluctuating CNS solver discussed in [17]. As a prelude to that extension, in the present work we develop
an AR method for Burgers’ equation that couples nonlinear hyperbolic waves and diffusion. For the particle
(microscopic) model we consider the asymmetric excluded random walk (AERW) [25,32]. The hydrodynamic
(macroscopic) model for the AERW model is the viscous Burgers’ equation with stochastic forcing [8,9,12,20].

In the following section, we describe in detail the AERW model. In the following section, we introduce the
form of Burgers’ equation that represents the hydrodynamic limit of the AERW model and describe a discret-
ization of that equation based on a second-order Godunov scheme. In Section 4, we discuss the construction
of the hybrid method that uses an overall adaptive mesh refinement framework to design the coupling between
microscopic and macroscopic models. Section 5 contains computational examples that illustrate and validate
the hybrid algorithm. As discussed in the concluding section, the numerical results demonstrate the impor-
tance and challenge of accurately modeling fluctuations to simulate and resolve both microscopic and macro-
scopic phenomena.

2. Asymmetric excluded random walk
2.1. Theory

The microscopic model for our system is an asymmetric excluded random walk. This model was selected
since it has been studied extensively by the statistical mechanics community [25,32], shown to be equivalent,
in the hydrodynamic limit, to the stochastic Burgers’ equation and found to exhibit a variety of interesting
phenomena (e.g., long-ranged correlations of non-equilibrium fluctuations). The AERW model is a system
of N random walker particles on a two-dimensional rectangular lattice of dimensions M, x M. Each site is
denoted by a coordinate pair (x;, y) where j=1,.., M, and k=1,..., M,.

Only one particle may occupy a site; the occupation number n(x, y) =1 (or =0) if a site is occupied (or
unoccupied). We choose the horizontal, or x-dimension of the lattice to correspond to the spatial domain
of the PDE and define the corresponding density,
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1 &
1p(x;) ~ M. Zn(x_hyk) (1)
7 k=1
so 0 < uy(x) < 1. At equilibrium u, is homogeneous and binomially distributed as the sum of M) Bernoulli
random variables, each with probability U= N/M M, of occupation. The mean and variance are

L U(1-U)

) = U, () = () — ()’ = =2 )

In the local equilibrium approximation the equal-time correlation of fluctuations is [32]

(B )3 (1)) = 7 () (1 — ()3 (3)
e
At a non-equilibrium steady state the variance is more complicated due to long-ranged correlations of fluctu-
ations [31].

Particles on the lattice move between adjacent sites according to the asymmetric exclusion process. Each
particle waits a random time between moves with a mean free time of 7. The next particle to move is drawn
at random by choosing a random site (x;, yx); if the site is occupied then its particle is selected otherwise
another random site is chosen.

The selected particle may move up, down, left or right to an adjacent site, according to the probabilities
assigned to the system. We take the particles to move horizontally or vertically with equal probability
(py =p- =1/2) and the probabilities of moving up or down conditioned on vertical movement as equal
(p1r = p1L = 1/2). Asymmetry is introducing by taking unequal conditional probabilities for attempting to move
left or right, that is, p._ # p_, with p_ 4+ p_, = 1. Once the particle and move direction are chosen, the particle
moves to the destination site, if unoccupied; if the destination site is occupied then the particle remains in
place. In either case the time is advanced and the entire process repeats.

2.2. Numerics

Given an initial density distribution u(x), the lattice is initialized by randomly filling sites. The dynamics is
advanced by randomly choosing particles and move directions, as described above. In particle simulations the
physical time may be advanced continuously (e.g., event-driven dynamics) or in time increments (e.g., molec-
ular dynamics) and either approach may be used for the AERW. For the former, the time between moves is
chosen as an exponential random variable with mean t/N, where N is the number of particles. For the latter,
the number of moves that occur during a time increment Az, is a Poisson distributed random value with mean
i = NAt,/7; if At, < 1/N then the probability of a move occurring during a particle time step Az, is u + o).

The lattice is periodic in y so that particles attempting to move up from row M, move to the bottom
(first) row, provided it is unoccupied, with a similar definition for particles at the bottom row attempting
to move downward. If the x-direction is also periodic, then its treatment is analogous to the treatment
of periodicity in y.

The other type of boundary condition we consider is the imposition of Dirichlet conditions in x; in partic-
ular, fixing particle densities, u; and ugr at the left and right boundaries, respectively. These boundary condi-
tions represent the occupation probabilities for each site on the boundary. We view the system as being
augmented with fictitious columns at j =0 and j = M, + 1 and with an effective total number of particles

N, =N+ u M, + ugM,. (4)

We then view the AERW as occurring on the enlarged lattice ((M, + 2) x M) with probabilistic “virtual” par-
ticles in the two boundary columns. We note that with Dirichlet boundary conditions, the number of particles
in the system, N varies in time. Operationally these virtual particles enter the algorithm in two ways. First,
suppose the selected particle location for the next move is in the left boundary column, say (xo, yx); with prob-
ability u; that site is considered occupied by a virtual particle. If the adjacent site, (x;, yx), is unoccupied then
with probability p..p_. a virtual particle moves to that destination, becoming a real particle. Similarly, if a
particle attempts to jump into the left boundary from an interior position, the destination is unoccupied with
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probability 1 — u; in which case the jump is accepted and the particle removed. Analogous rules apply to the
right boundary.

3. Burgers’ equation and continuum method
3.1. Theory

The AERW model of the previous section is defined entirely in terms of a discrete lattice. In order to define
a macroscopic model, we spatially embed the AERW model by assigning a spatial width Ax, to the lattice sites

in the x direction. With this definition the hydrodynamic limit of the asymmetric excluded random walk
described in the previous section is the stochastic Burgers’ equation [20]:

0 0
500 = =5 f () +d(u) +gx,0)}, ()
where g is a stochastic flux and
0
Sl = eu(l —u); d(u) = ez (6)

are the nonlinear advective flux (sound speed, ¢) and the diffusion flux (diffusion constant, €). With the change
of variable u’ = (1 — 2u)c this may be written in the more traditional form,

u, +u'u = eu +2cg, (7)

Note that variants of the stochastic Burgers’ equation, with different types of stochastic forcing, are com-
mon in the literature (e.g. [8]). Also note that there are other particle models, such as the Boghosian-Lev-
ermore cellular automaton, that also converge to a stochastic Burgers’ PDE in the hydrodynamic limit
[11,24].

The wave speed and diffusion constant are determined from the AERW parameters as

2p_Ax 1
=2 () 3} —ap. - 1) ®)
and
2pHAx§
ezfpap«—zzcomppﬂ(l_p—)’ (9)

where ¢y = p.Ax,/7 is the wave speed for the completely asymmetric walk (p_, = 0 or 1). Since the wave speed
f'(u) varies between +c¢ and —c on the range of u, we define a dimensionless cell Reynolds number as
_ |eAx, | _ lp_. _%

e p.(l-p)
that characterizes the relative importance of diffusion and advection for the dynamics at a given mesh spacing.
Note that for p_, = 1/2 the random walk is symmetric (pure diffusion) and Re. = 0; as p_, approaches 0 or 1

the random walk is unidirectional (pure advection) and Re. goes to infinity.
The stochastic flux is a Gaussian white noise with zero mean and correlation

(g(x, g (¥, 1)) = Alx, )d(x = x")3(1 — 1), (11)

where the brackets denote ensemble average. The noise amplitude, 4(x, ?), is related the correlation of density
fluctuations; in the local equilibrium approximation,

(Bu(x, )du(x', 1)) = it(x, ) (1 — a(x, 1))8(x — x'), (12)

Re, (10)

where # is the solution to the deterministic Burgers’ equation, that is,
i, = —f (1), + €ilyy. (13)
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From the above one finds,
A(x,t) =2eu(l —u). (14)

The noise amplitude may also be obtained from the continuum limit of the master equation for the AERW
[20].

3.2. Numerics

The stochastic Burgers’ equation may be simulated numerically by a variety of CFD algorithms, with the
choice guided by the application. For example, spectral methods have been developed for homogeneous, iso-
tropic turbulence (see [21,26] and references therein). For our AR hybrid we choose a cell-centered finite dif-
ference method, specifically a second-order Godunov scheme to calculate the hyperbolic flux and a simple
explicit predictor-corrector centered difference scheme to compute the diffusion term. See, for example, Colella
[14] for a detailed discussion of second-order Godunov methods. We denote the spatial and temporal grid sizes
as Ax and Az and denote by u] the average of u in cell-/ at time n. We note that for the construction of a hybrid
algorithm discussed later we will require that Ax be a multiple of Ax,,.

The second-order Godunov scheme constructs a linear profile within each cell with the slopes estimated by
a higher-order finite difference approximation

—u o, +8uf = 8uf +ul,
12Ax

For advection-dominated problems a limiter is typically applied to these slopes; however, in the present con-
text, we are resolving at the viscous length scale so no limiting is performed. These slopes are used to predict
values at cell interfaces at the half-time level 7"""/2. In particular, we define

(15)

Urj =

W), =] [Ax Atmax(f'(u?), 0)]us (16)
and

. 1

)11}z, = Wy = 5 [Ax - Armin(f' (), 0)lus,. (17)

where /' = df/du. We then define the hyperbolic flux /' = f(u"'!/ >) where u"T172 is the solution of the

J+1/2 +1/2 +1/2
Riemann problem for u, +f, =0 along the ray x/r=0 with left and right states ”L//zz , and ;’Ll //22r,

respectively.
The diffusion and stochastic flux terms are evaluated using a predictor-corrector scheme, treating the hyper-
bolic flux terms as source terms. In particular, we first compute predicted values

n At n+1/2 n+1/2 At n \/EAZ n n
= = gV )+ e =2 )+ =) )
We then compute corrected values
. w1 At i) nt1/2 At V2At
u_,'+1 EjJrE(”fE j++1//2 *fjj]//z)+(Ax)26(ui—l 72u§+u€+1)+w(gf+l/2igf—l/2) . (19)
This can be rewritten as
n+1 A n n
I/lj = u] Ax(F]+1/2 F/ 1/2) (20)
where
n n+1/2 1 uy'll_u’? upl_up 1 n
Fip :fjjl//Z 5 \€ j+Ax fte ﬁAx : 77§(gj+1/2 + 854102 (21)

is the total flux.
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The stochastic flux for the asymmetric excluded random walk on an M, x M, lattice is discretized as

" A7 + A3
gjfl/z = jZA[Mi R. (22)
where
AP =2ed;”(1 — "), u=min(max(u,0),1) (23)

and ‘R is a Gaussian (normal) distributed random variable with zero mean and unit variance. Note that the
instantaneous fluctuating values are used in place of the deterministic value (see Eq. (14)), which is accurate as
long as the fluctuations remain small [18].

The scheme outlined above is stable provided it satisfies time step limits for both the hyperbolic and diffu-
sive terms. In particular, we require

Atmax |f(u)| eAr 1
A <1 and Ax2<2' (24)
We also note that it is possible to use a simpler version of the scheme based on an explicit first-order treatment
of the diffusion term. For the most part, the simpler version provides reasonable predictions; however, at lar-
ger At the first-order scheme over-predicts the variation in the equilibrium solution by approximately 5%, sug-

gesting that the temporal truncation error terms suppress the smoothing effect of the diffusion.
4. Algorithm refinement hybrid

In this section, we develop a hybrid algorithm refinement method that couples the AERW model intro-
duced in Section 2 with the stochastic Burgers’ equation algorithm in Section 3.

4.1. Basic construction

Philosophically, the construction of the hybrid is based on the notion that the particle description provides
a more accurate representation of the solution than the stochastic PDE. Thus, the basic idea is to represent the
dynamics with the continuum model except in a localized region where higher-fidelity particle representation is
required.

Our perspective in designing the algorithm follows the adaptive mesh and algorithm (AMAR) approach
introduced in [17]. In contrast to other AR approaches (see, e.g. [15]), the AMAR approach maintains a solu-
tion of the macroscopic model over the entire domain (see Fig. 1). An error estimation criterion is used to
estimate where the improved-representation of the particle method is required. That region, which can change
dynamically, is then “covered” with a particle patch. In this hierarchical representation, the solution is given
by the particle solution on the region covered by the particle patches and the continuum solution on the
remainder of the domain.

The coupling between the particle and continuum regions uses the analog of constructs used in developing
hierarchical adaptive mesh refinement algorithms. For simplicity, we will assume that there is a single refined
patch and that the mesh spacing for the continuum solver is equal to the lattice spacing Ax,,. Generalization of
the approach to include multiple patches (e.g. [39]) and allowing the continuum mesh to be an integral multi-
ple of Ax,, (e.g. [4]) is fairly straightforward.

Integration on the hierarchy is a three step process. First, we integrate the continuum algorithm from ¢ to
/"1 ie., for a continuum step At. The old and new states, uj and u"*!, are retained until the particle time step
is complete. Continuum data at the edge of the particle patch is interpolated in time to provide Dirichlet
boundary conditions for the particle method.

We have considered both of the time-evolution schemes discussed in Section 2. For the equal time step ver-
sion, we choose Az, so that A7, = At/ M, for a specified integer M,. We then advance the particle method by M,
steps until the particle and the continuum solver are at the same time. For the random time version of the
algorithm, the particle method is advanced by moves, each with a random time increment, until the next tran-
sition would advance the particle time beyond #**! at which point the two solutions are synchronized. We note
that at the synchronization juncture the particle and continuum solutions are not quite at the same time level.
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Fig. 1. Schematic of AERW/PDE hybrid. Advance: (A) advance continuum solution; (B) set boundary conditions for AERW from time-
interpolated PDE solution; (C) advance particle system by AERW. Synchronize: (D) replace overlaying continuum values with particle
values; (E) reset PDE interface cells by refluxing.

For the most part, this has little effect on the computational results; however, it does lead to errors of approx-
imately 1% in the mean solution at equilibrium, which are not observed with the temporally synchronized
version.

4.2. Synchronization

The initial stage of the integration process essentially advances the macroscopic model separately with a
one-way coupling to the microscopic model by way of the Dirichlet boundary conditions. The macroscopic
model is not influenced by the microscopic model; the goal of the synchronization process is to correct the
macroscopic solution to reflect the effect of the microscopic model as though the integration were tightly
coupled.

There are two components to the synchronization process. First, on the region covered by the particle rep-
resentation we replace the continuum solution obtained from the SPDE discretization by the more accurate
particle representation, i.e, set

M,

1
=Y ) 25)

v =1

for each cell covered by the particle patch. Second, the continuum cells immediately adjacent to the particle
region, which supplied boundary data for the particle region during its advance, are corrected by “‘refluxing”.
Specifically, suppose the left boundary of the particle patch occurs in cell J + 1. The value in continuum cell J
was updated with the continuum scheme
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At n n
u, =u;— E( J¥12 T FJfl/Z) (26)

with the fluxes F' computed from the continuum values (see Eq. (20)). The microscopically correct flux is given
by the net number of particles moving across edge J + 1/2 rather than by the continuum flux F7_, /2~ To per-
form the refluxing correction we monitor the number of particles, N, , and N}, ,, that move into and out of
the particle region, respectively, across the continuum/particle interface at edge J + 1/2. We then correct the

continuum solution as

Niap —Niap
, 27
AxM, (27)

it =+ gFﬁ-H/Z -
This update effectively replaces the continuum flux component of the update to u*! on edge J + 1/2 by the
flux of particles through the edge. The use of particle fluxes is seamless at the interface because the continuum
flux is already stochastic (see Egs. (21) and (22)). An analogous refluxing step occurs in the cell adjacent to the
right-hand boundary of the particle region. Finally, note that this synchronization procedure guarantees exact
conservation of integrated density. The technical details of refluxing in higher dimensions (e.g., the treatment
of corners) are discussed in Garcia et al. [17].

4.3. Refinement criterion and regridding

The AMAR framework allows us to dynamically change the location of the particle region. There are sev-
eral possible strategies for designing refinement criteria. For the examples described in Section 5.3, we will
focus on criteria that identify cells where the solution has a large gradient characteristic of a viscous shock
profile. A straightforward measurement of the local gradient of the solution (e.g., (1,41 — u;)/Ax) is not ade-
quate since the inherent fluctuations could trigger refinement even at equilibrium. What is needed is a robust
measure that identifies viscous shocks without generating substantial ““false positives” leading to unnecessary
refinement. To this end we define a regional gradient using

I 13
Di=<r 15 ;”ﬁi -3 ; Uj—(i-1) | » (28)
where the stencil size S is specified; we take S = 4 in the computations in the following section. From Eq. (3)
one may casily estimate the expected standard deviation ¢ of D resulting from equilibrium fluctuations and set
a tolerance of Ca, where C is a constant. To estimate where to place the particle region in the adaptive code we
compute the regional gradient at each point; if | D;| exceeds the tolerance level, then cells jand j + 1 are tagged.
Since we restrict ourselves to a single particle patch, the largest interval containing all tagged cells is then the
new particle region. If multiple patches were allowed then tagged cells would be collected to form particle re-
gions; techniques for collecting tagged cells in an optimal manner are well established in the mesh refinement
literature [7].

Once the new particle region has been identified, it must be initialized. For continuum cells that were
already in the particle region, we simply retain the distribution of occupied sites. For cells that were not in
the previous particle region, we use the continuum density to compute Ny, the desired number of particles
for filling a column. The simple way to do this is to take Ny = ujM, randomly rounded to the nearest integer;
an alternative approach would be to fill randomly each site with probability ;. We use the former approach
since it preserves conservation of total density (to within quantization rounding). We note the regridding algo-
rithm does not need to be done every step. Simple estimates based either on CFL considerations or estimates
of discrete traveling wave velocities can be used to determine how often to regrid [6].

5. Computational examples
This section presents a series of computational examples, of progressively increasing sophistication, that

demonstrate the accuracy and effectiveness of the algorithm refinement hybrid. We consider four numerical
schemes: the asymmetric excluded random walk (AERW) from Section 2; the stochastic PDE (SPDE) for Bur-
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gers’ equation from Section 3 and two algorithm refinement hybrids from Section 4. The first hybrid couples
the AERW and SPDE, with the particle scheme in a single patch within the system. The second hybrid is sim-
ilar but without a stochastic flux, that is, using a deterministic PDE (DPDE). Both fixed-patch and adaptive
hybrids are considered as well as a handful of minor variants, discussed below.

Mean

I
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©
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T
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Fig. 2. Mean (u), variance (8u*(x)) and center point correlation (Su(x)3u(0) ) versus x for a system at equilibrium (#; = ug = 0.5). Lines
are: SPDE/AERW hybrid with Az = 0.05 (red dashed dot); SPDE/AERW hybrid with Az = 0.1 (solid red); SPDE/AERW hybrid with
At = 0.2 (red dotted); AERW (green); SPDE with Az = 0.05 (solid blue); predicted variance (u)(1 — (u))/ M, (dashed black). Note that for
the correlation (du(x)du(0)) the large spike at x = 0 is omitted from the plot.
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The following parameter values are common to the simulations in all the examples: M, =150,
Ax =Ax, =001, t=1, p.,=1/2, pr =py =1/2, and ¢; = 0.01. The particle time step is chosen to be small
(At, ~ t/(75N)) so the probability of a move occurring during a time step is taken as NAz,/t. For a system
length of L the viscous relaxation time is 7. = L*/e; in our simulations 7, = O(10*). For the simulations of
steady states the system is initialized near the final state and allowed to relax for a time that is long compared
to the relaxation time (typically for >1007,) before taking samples.

5.1. Equilibrium state

First, we consider the simplest scenario, a system at the equilibrium state with equal, fixed density at
x = —0.5 and 0.5. The probability of moving to the right is p_, = 0.55, corresponding to a cell Reynolds num-
ber of Re. = 0.20 (weakly hyperbolic). The single-algorithm simulations (AERW and Burger’s SPDE) have
100 sites or grid points in the x-direction. The AR hybrids introduce a fixed particle patch at the center of
the system between x = —0.1 and x = 0.1 with M, = 20. The hybrid simulation is performed at three contin-
uum time step sizes: Az = 0.05, 0.1, and 0.2. Since incremental time stepping is used in the particle algorithm,
to keep Az, = At/M, < At we take three corresponding values: M, = 8000, 14,000, and 28,000. Each simula-
tion is run to a final time of 7'=2x 10", which corresponds to N,= T/At continuum time steps (e.g.,
N,=4x10® for the smallest Az).

Typical results from the various numerical schemes are shown in Fig. 2 where the mean, (u); variance, (8u°);
and correlation, (dudu’) of density are plotted versus position. These three quantities are estimated from sam-
ples as

. x107° Correlation
T T

%
;
;
%

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Fig. 3. Center point correlation versus x for a system at equilibrium (u;, = ug = (u) = 0.5) with the SPDE method using mean and
instantaneous solution for the noise amplitude. Lines are SPDE: 1 using the mean (blue); SPDE: 2 using the instantaneous solution
(magenta); AERW (green). Time step is Az = 0.05.
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where Ny = N, — N, is the number of samples and N, is the number of continuum time steps that the system is
allowed to relax before sampling begins. Typical values for the steady-state runs were Ny = 10° and N, = 10°.

Even at equilibrium the stochastic PDE scheme does not exactly match the AERW results, for example the
SPDE method has an error of about 1.8% in the variance and a relative error in the correlation of (Sudu’)/
(du?) ~ 1%. This discrepancy is expected since the numerical scheme uses the instantaneous solution to com-
pute the amplitude of the noise instead of the mean (see Eqs. (14) and (23)). This effect is illustrated in Fig. 3,
which compares simulations where the mean and instantaneous state are used to calculate the noise amplitude
and verifies that the former is in agreement with the AERW results. Obviously the mean is known at equilib-
rium but for time-dependent, non-equilibrium problems the SPDE method needs to use instantaneous values
of the state to evaluate the noise. In any case, Eq. (14) is only rigorously valid at equilibrium.

In general, the SPDE/AERW hybrid gives good results with a small discrepancy due to the effect just
described regarding the noise amplitude. For the hybrid simulations, there is a small error in the mean of
approximately 0.3% of the solution which decreases to about 0.2% when At is decreased to 0.05. This error
is due to the buildup of the discrepancy between SPDE and AERW models at the boundaries of the particle
patch in the hybrid. In the variance, we see an error of about 0.6% in the SPDE part of the domain, due to the
same effect. In addition, there are spikes at the edges of the particle patch, representing an error of 3% at

) x10° Variance
T

O L L 1 1 1 L L
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

. X1 0—5 Correlation with center point
T T T

-5 .

— Hybrid
—— Hybrid w/o noise in SPDE domain

—10 I I I I I I I I I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

X

Fig. 4. Variance (5u%(x)) and center-point correlation (8u(x)du(0)) versus x for a system at equilibrium (#;, = ug = 0.5). Lines are SPDE/
AERW hybrid (red); DPDE/AERW hybrid (blue) (compare with Fig. 2). For both cases Re. = 0.20 (p_, = 0.55) and Az =0.05.
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At = 0.2 decreasing to about 0.3% at Ar = 0.05, evidently due to the temporal truncation error in the SPDE
solver. These errors neither increase nor decrease with further sampling.

Fig. 4 illustrates the effect on fluctuations when the continuum PDE scheme does not include a stochastic
flux. Clearly, the variance drops to near zero inside the DPDE regions, left and right of the particle patch, yet
the variance within the patch remains nearly correct except near the interface. As discussed in Section 1, this
general result was observed in previous studies of AR hybrids for parabolic systems [4,5] but it was not obvi-
ous that hyperbolic systems would be similar. Even more interesting is the appearance of a large correlation of

Mean
0.9 T T T T T T T T T
—— Hybrid AERW/SPDE
0.8 — - Hybrid AERW/DPDE [
AERW
0.71 — SPDE n

5L | | N 1 ! !
-0.4 -0.2 0 0.2 0.4

Fig. 5. Mean (i), variance (3u*(x)) and center point correlation (du(x) du(0)) versus x for a rarefaction steady state (. = 0.9, ug = 0.1).
Lines are Hybrid AERW/SPDE (red); Hybrid AERW/DPDE (dashed dot red); AERW (green); SPDE (blue).
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fluctuations in the particle region of the DPDE/AERW hybrid, an effect that will be discussed in the following
subsection.

Orne final note. Using periodic boundary conditions gives similar results to those presented above for
Dirichlet boundary conditions. Furthermore, using periodic boundary conditions we confirmed that the
AR hybrids conserve total density, > u;, exactly. (When the grids move dynamically this exact conservation
is lost because of quantization effects in defining a particle distribution from the continuum data.)

5.2. Rarefaction steady state

Next, we consider non-equilibrium states by taking different densities at the left and right boundaries. For
¢ > 0 the steady solutions to Burgers’ equation are a shock wave if u; <ug and a rarefaction wave if u; > ug.
In this subsection we examine the latter, turning to shocks in the last two examples.

The parameters used for the rarefaction steady state are uy, = 0.9, ug = 0.1, L =1, Re, = 0.20 (p_. = 0.55),
T=4x10", and A7 = 0.05. In the hybrid, M, = 8000 and the particle patch is fixed between x = —0.1 and 0.1.

Fig. 5 shows typical results from the simulations. All methods give good agreement with the AERW
method in the mean. As in the equilibrium case, the hybrid AERW/SPDE gives good agreement in the var-
iance with both the AERW and SPDE solvers. However, when the AERW is coupled to the deterministic PDE
solve, the variance falls to zero outside the particle patch while remaining close to the correct value inside the
particle patch (similar to the equilibrium result of Fig. 4).

Fig. 5 shows that a long-range correlation, predicted by [13,19,31], is observed in the AERW, SPDE, and
AERW/SPDE solvers and the three simulations are in good agreement with each other. This figure also shows
that the AR hybrid using a deterministic PDE solver erroneously enhances this correlation; Fig. 2 shows a sim-

t=10000

5051

Refinement region

ooty — DPDE
0 | | | | | | | | |
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t=70000
1 T T

-0.5 0 0.5 1 1.5 2 25 3 3.5 4 4.5

Fig. 6. Instantaneous density u(x, ¢) versus position x for a moving shock (u#; = 0.1, ug = 0.8) for Re. = 0.20 (p_. = 0.55), which has shock
speed o = 5 x 107°. Methods used are AERW/SPDE hybrid (red); DPDE (blue); vertical green lines delineate the AERW particle region
of the hybrid.
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ilar effect appearing even at equilibrium, where no correlation is expected. It is not clear why this occurs since
the correlation in a related AR hybrid of the “train” model is diminished [5]. One possible explanation is the
induction of spurious correlations, even at equilibrium, when a reservoir does not generate the correct fluctu-
ations spectrum [36].

5.3. Shock tracking

Unlike the rarefaction case, when uy < up the deterministic solution develops a shock wave in finite time
propagating with speed ¢ = ¢(1 — u;. — ur). When viscous terms are added, the solution forms a smooth trav-
eling wave moving at speed o. Figs. 6-8 show examples of propagating shock waves for increasing cell Rey-
nolds number. For these examples we have used the automatic criterion discussed in Section 4.3 to localize the
particle region around the shock. Note that in each case the refinement criteria does a good job of localizing
the particle region near the shock. For the most diffuse case, p_, = 0.55, the solution looks essentially like the
deterministic solution with superimposed noise. On the other hand, for the stronger shocks the fluctuations
introduce sufficient perturbations to noticeably shift the shock location; this drift in the shock position is
investigated further in the next subsection.

t=2504.9

> 0.5

Refinement region
— DPDE

0
-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Fig. 7. Instantaneous density u(x, 7) versus position x for a moving shock (u. = 0.1, ug = 0.8) for Re. = 0.95 (p_. = 0.7), which has shock
speed 0 = 2 x 107*. Methods used are AERW/SPDE hybrid (red); DPDE (blue); vertical green lines delineate the AERW particle region
of the hybrid.
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t=1669.8

S 05

Refinement region
DPDE

-0.5 0 0.5 1 1.5 2 25 3 3.5 4 4.5

t=13360
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0
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Fig. 8. Instantaneous density u(x, ) versus position x for a moving shock (uy, = 0.1, ug = 0.8) for Re. = 1.87 (p_. = 0.8), which has shock
speed ¢ = 3 x 10~*. Methods used are AERW/SPDE hybrid (red); DPDE (blue); vertical green lines delineate the AERW particle region
of the hybrid.

5.4. Shock diffusion

Motivated by the observations in the previous section regarding the variation in the shock position, we con-
sider the diffusion of the position of a stationary shock. Shock drift is well known in other particle simulations,
such as in shock tube modeling by DSMC, which must correct for the drift when measuring profiles for steady
shocks [10]. The general problem has been analyzed for the AERW and many results are known [2,1,16,22] but
here we focus on the variance of the shock location as a function of time. We define a shock location, s(¢) by
fitting a Heaviside function of equal integrated density, that is,

s(t) L2 L2
/ ude—i—/ updx = u(x,t)dx (32)
iy s(0) Y

from which we find

S(l‘) _ Lﬁ(l) — I/Z(I/IL —+ LIR)
L/2

Up — Ur
where u = L' [~ 12 u(x,¢) dx is the instantaneous average density. The shock location fluctuates with a diffu-
sion similar to that of a simple random walk [16] so averaging over ensembles from the same initial state gives

(85%) ~ 29t (34)

with a shock diffusion coefficient, 2, that depends on Reynolds number, shock strength, etc. Note that this
expression for the variance is not accurate at very short times (due to relaxation transient from initial state)
or at very long times (due to finite system size). Also note that the variance of the total mass, (L*3u?), diffuses

, (33)
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Fig. 9. Variance of shock location (3s(7)?) versus time ¢ for a deterministically steady shock (1. = 0.1, ug = 0.9). Methods used are AERW
with p_, = 0.7 (green); SPDE/AERW hybrid with p_, = 0.55 (blue); SPDE/AERW hybrid with p_, = 0.7 (red); SPDE/AERW hybrid with
p—, = 0.8 (black); DPDE/AERW hybrid with p_, = 0.7 with 8 cells of additional buffering (magenta).

in the same fashion. This indicates that the diffusion of s is different than other shock profile variables (e.g.,
center-of-mass location) that fluctuate even if # is constant.

Fig. 9 shows typical results for the variance in the shock position from an ensemble of runs versus time. The
hybrid algorithm is used for p_, = 0.55, 0.7 and 0.8 with a time step of 0.05 integrated for two million steps; for
each of these simulations the dynamic shock refinement criteria was used (see Section 4.3). The statistics were
computed from 400 samples for p_, = 0.55, 800 samples for p_, = 0.7, and 1200 samples for p_, = 0.8, which
reflects increasing fluctuations in the shock drift at higher Reynolds number, Re.. For the intermediate case
(p— = 0.7) we also ran the pure AERW for 400 sample over a shorter interval, demonstrating that SPDE/
AERW hybrid accurately captures the behavior of the system. (Only this case was compared and the pure
AERW results are for a shorter time because of the large computational expense of running the ensemble
of pure particle simulations.) As expected, the shock diffusion depends on the shock strength with the stron-
gest shock (p_, = 0.8) exhibiting the most drift.

The most interesting feature observed in these simulations was the absence of shock diffusion in the AR
hybrid using a deterministic PDE solver. This deficiency persisted even when the refined (i.e., particle) region
was widened by eight cells, roughly doubling its size. The absence of shock diffusion may be, in part, due to the
definition of shock location yet alternative ways of measuring the position of the shock are expected to also
exhibit significantly reduced diffusion. Given that the localization of shock fronts is an important question
addressed in gas dynamics simulations, the suppression of shock diffusion is a cautionary warning that the
fidelity of multiscale hybrids may depend on the accuracy of the stochastic modeling.

6. Conclusions and further work
We have constructed a hybrid algorithm that couples an excluded random walk with a viscous Burgers’

equation that represent the mean field approximation to the dynamics. The algorithm allows the random walk
to be used locally to approximate the solution while modeling the system using the mean field equations in the
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remainder of the domain. In tests of the method we have demonstrated that it is necessary to include the effect
of fluctuations, represented as a stochastics flux, in the mean field equations to ensure that the hybrid pre-
served key properties of the system. As expected, not representing fluctuations in the continuum regime leads
to a decay in the variance of the solution that penetrates into the particle region. Somewhat more surprising is
that the failure to include fluctuations was shown to introduce spurious correlations of fluctuations in equi-
librium simulations and for rarefactions. Even more troubling is the observation that using a deterministic
PDE solver coupled to the random walk model suppresses the drift of shock location seen with the pure ran-
dom walk model and with the AR hybrid using a stochastic PDE solver.

We plan to extend this basic hybrid framework to the solution of the compressible Navier—Stokes equations
in multiple dimension. For that extension we will use a Direct Simulation Monte Carlo algorithm for the
microscopic model coupled to a finite difference approximation to the continuum equations, as described in
[17]. The Landau-Lifshitz fluctuating hydrodynamic equations will be used to represent microscopic fluctua-
tions at the continuum level. [18,23]. At present, the challenge remains to establish accurate finite difference
schemes for solving these stochastic PDEs.
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