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Inverted velocity profile in the cylindrical Couette flow of a rarefied gas
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The cylindrical Couette flow of a rarefied gas is investigated, under the diffuse-specular reflection condition
of Maxwell’s type on the cylinders, in the case where the inner cylinder is rotating whereas the outer cylinder
is at rest. The inverted velocity profile for small accommodation coefficients, pointed out by Tibbs, Baras, and
Garcia@Phys. Rev. E56, 2282~1997!# on the basis of a Monte Carlo simulation, is investigated extensively by
means of a systematic asymptotic analysis for small Knudsen numbers as well as the direct numerical analysis
of the Boltzmann equation, and the parameter range in which the phenomenon appears is clarified.
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I. INTRODUCTION

Cylindrical Couette flow, which is a textbook example
classical fluid dynamics, is also one of the most fundame
problems in the kinetic theory of gases@1# and has been
investigated from various points of view. The recent inter
extends to topics such as the validity of the principle of
frame indifference@2# and the bifurcation of flows when
evaporation and condensation take place on the cylin
@3–5#.

One of such examples is given in a paper by Tibbs, Ba
and Garcia@6#, where the cylindrical Couette flow of a ra
efied gas is analyzed numerically by means of the dir
simulation Monte Carlo~DSMC! method under the diffuse
specular reflection condition of Maxwell’s type on the cyli
ders in the case where the inner cylinder is rotating wher
the outer one is at rest. Their result shows that when
accommodation coefficients of the cylinders are small~i.e.,
when the major part of the molecules undergo specular
flection!, the flow speed of the gas increases with the d
tance from the inner cylinder, which is contrary to the or
nary velocity profile of the Couette flow when only the inn
cylinder is rotating.

The aim of the present paper is to investigate the phen
enon of the inverted velocity profile more comprehensiv
and to clarify the parameter range where it appears.

II. FORMULATION OF THE PROBLEM

A. Problem

Let us consider a rarefied gas between two coaxial cir
lar cylinders with common temperatureT0: the inner cylin-
der with radiusr I is rotating at a constant surface speedVI ,
whereas the outer cylinder with radiusr O is at rest. Assum-
ing the diffuse-specular reflection condition of Maxwel
type on the cylinders and restricting ourselves to the axi
as well as circumferentially uniform case, we investigate
steady behavior of the gas on the basis of the Boltzm
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equation. For actual numerical computation, we will assu
hard-sphere molecules or the Bhatnagar-Gross-Krook~BGK!
model @7,8#.

B. Basic equation

We first introduce some notations: (r ,u,z) is the cylindri-
cal coordinate system with thez axis being the axes of the
cylinders;j is the molecular velocity andj r , ju , andjz are
its r, u, andz components;f (r ,j) is the velocity distribution
function of the gas molecules;r is the density,v r , vu , and
vz (v r5vz50) are ther, u, andz components of the flow
velocity, T is the temperature, andp is the pressure of the
gas; andR is the gas constant per unit mass. The dimensi
less quantities corresponding toVI , r, j5(j r ,ju ,jz), f, r,

vu , T, andp, which are denoted byV̂I , r̂ , z5(z r ,zu ,zz), f̂ ,
r̂, v̂u , T̂, and p̂, respectively, are defined by

V̂I5
VI

~2RT0!1/2
, r̂ 5

r

r I
, z5

j

~2RT0!1/2
,

f̂ 5
~2RT0!3/2

rav
f , r̂5

r

rav
, v̂u5

vu

~2RT0!1/2
, ~1!

T̂5
T

T0
, p̂5

p

RravT0
,

where rav is the average density of the gas between
cylinders. Therefore,r̂ is normalized as

2

~r O /r I !
221

E
1

r O /r I
r̂ r̂dr̂51. ~2!

Then, the Boltzmann equation in the dimensionless fo
reads

z r

] f̂

] r̂
1

zu
2

r̂

] f̂

]z r
2

z rzu

r̂

] f̂

]zu
5

2

ApKn
Ĵ~ f̂ , f̂ !, ~3!
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Kn5 l 0 /r I , ~4!

whereĴ( f̂ , f̂ ) is the dimensionless collision term, the explic
form of which is given in Appendix A, Kn is the Knudse
number, andl 0 is the mean free path of the gas molecules
the equilibrium state at rest at densityrav and temperature
T0. For hard-sphere molecules,l 0 is given by l 0

5(A2pd2rav /m)21, m andd being the mass and diamet
of a molecule.

The boundary conditions on the cylinders are written
follows: on the inner cylinder~at r̂ 51), for z r.0,

f̂ ~1,z!5~12a I ! f̂ ~1,2z r ,zu ,zz!

1a I

s I

p3/2
exp@2z r

22~zu2V̂I !
22zz

2#, ~5a!

s I522ApE
zr,0

z r f̂ ~1,z!dz, ~5b!

and on the outer cylinder~at r̂ 5r O /r I), for z r,0,

f̂ ~r O /r I ,z!5~12aO! f̂ ~r O /r I ,2z r ,zu ,zz!

1aO

sO

p3/2
exp~2z r

22zu
22zz

2!, ~6a!

sO52ApE
zr.0

z r f̂ ~r O /r I ,z!dz, ~6b!

wherea I and aO are the accommodation coefficient of th
inner cylinder and that of the outer cylinder, respectively, a
dz5dz rdzudzz .

The macroscopic quantitiesr̂, v̂u , T̂, andp̂ are given by

r̂5E f̂ dz, v̂u5
1

r̂
E zu f̂ dz,

~7!

T̂5
2

3r̂
E @z r

21~zu2 v̂u!21zz
2# f̂ dz, p̂5 r̂T̂.

Here and in what follows, the domain of integration wi
respect toz is its whole space unless the contrary is state

It should be noted that the local Maxwellian distributio
corresponding to the solid-body rotation@9# with v̂u5V̂I r̂ ,
i.e.,

f̂ 5
r̂0

p3/2
exp~V̂I

2r̂ 2!exp@2z r
22~zu2V̂I r̂ !22zz

2#, ~8!

where r̂0 is a constant determined by Eq.~2!, is the exact
solution of the present problem whena IÞ0 andaO50. In
view of this fact, one can naturally think that the invert
velocity profile~i.e., v̂u increasing withr̂ ) takes place when
aO becomes small. Our interest is to see the transition fr
01630
s

d

.

m

the normal profile~i.e., v̂u decreasing withr̂ ) to the inverted
one at small accommodation coefficients.

III. ASYMPTOTIC ANALYSIS FOR SMALL KNUDSEN
NUMBERS

In this section we consider the case where the accom
dation coefficientsa I andaO , as well as the Knudsen num
ber Kn, are small and carry out a systematic asympto
analysis of the boundary-value problem~3! and ~5a!–~6b!,
following Refs. @10–13# as a guideline. To begin with, we
assume thata I andaO are of the order of Kn; that is, we pu

a I5b Ie, aO5bOe, e5~Ap/2!Kn!1, ~9!

whereb I and bO are given constants, ande is a small pa-
rameter~of the order of Kn! that is mainly used in this sec
tion. Our aim is to derive a set of fluid-dynamic equatio
and its appropriate boundary conditions in the leading ord
i.e., the order of Kn0 ~or e0). Since the method of the
asymptotic analysis is described in detail in the recent mo
graph by Sone@13#, we give only the brief outline of the
analysis and show the main result.

A. Fluid-dynamic equation

First, putting aside the boundary conditions~5a!–~6b!, we
look for a moderately varying solutionf̂ H , satisfying
] f̂ H /] r̂ 5O( f̂ H), in the form of a power series ofe:

f̂ H5 f̂ H01 f̂ H1e1 f̂ H2e21•••. ~10!

This f̂ H is called the Hilbert solution or expansion. Letr̂H ,

v̂uH , . . . , be themacroscopic quantitiesr̂, v̂u , . . . , corre-
sponding to the Hilbert solution. Then, they are also e
panded as

hH5hH01hH1e1hH2e21•••, ~11!

whereh representsr̂, v̂u , T̂, or p̂. The explicit expressions
of hHm in terms of f̂ Hm are obtained by substitutingf̂ 5 f̂ H
andh5hH in Eq. ~7! and by equating the coefficients of th
same power ofe.

If we substitute Eq.~10! into Eq. ~3! and arrange the
power of e, we obtain a sequence of integral equatio
for the coefficients f̂ Hm , which can be solved from the
lowest order. For the leading-order termf̂ H0, we have
Ĵ( f̂ H0 , f̂ H0)50, which means thatf̂ H0 is a local Maxwellian
distribution. As for the higher-order termf̂ Hm , we obtain a
linear integral equation, containing the collision termĴ lin-
earized aroundf̂ H0, with inhomogeneous terms consisting
the earlier termsf̂ Hn (n,m) of the Hilbert expansion. Since
the corresponding homogeneous equation has the sum
tional invariants~multiplied by f̂ H0) as nontrivial solutions,
the inhomogeneous terms should satisfy solvability con
tions, which are reduced to the form
2-2
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E F 1

z

z2
G S z r

] f̂ Hm

] r̂
1

zu
2

r̂

] f̂ Hm

]z r
2

z rzu

r̂

] f̂ Hm

]zu
D dz50,

~12!

where

z5uzu5~z r
21zu

21zz
2!1/2. ~13!

The application of this condition tof̂ H0 , f̂ H1 , . . . , in the
successive solution process of the sequence of the inte
equations from the lowest order leads to the fluid-dynam
equations forhHm in Eq. ~11!.

To summarize,f̂ H0 is obtained as

f̂ H05
r̂H0

~pT̂H0!3/2
expS 2

z r
21~zu2 v̂uH0!21zz

2

T̂H0
D , ~14!

and f̂ H1 as the form given in Appendix B@Eq. ~B1!#. The
fluid-dynamic equations in the leading order, i.e., those
r̂H0 , v̂uH0 , T̂H0, and p̂H0, are obtained in the following
form:

dp̂H0

dr̂
2

2r̂H0v̂uH0
2

r̂
50, ~15a!

d

dr̂
Fg1r̂ 2T̂H0

1/2S dv̂uH0

dr̂
2

v̂uH0

r̂
D G50, ~15b!

5

4

d

dr̂
S g2r̂ T̂H0

1/2dT̂H0

dr̂
D 1g1r̂ T̂H0

1/2S dv̂uH0

dr̂
2

v̂uH0

r̂
D 2

50,

~15c!

p̂H05 r̂H0T̂H0 , ~15d!

whereg1 and g2 are functions ofT̂H0 and their functional
form depends on the molecular model~see Appendix B!; for
hard-sphere molecules, they are constants given byg1
51.270 042,g251.922 284; for the BGK model,g15g2

5T̂H0
1/2 . g1T̂H0

1/2 and g2T̂H0
1/2 are, respectively, the dimension

less viscosity and thermal conductivity. Equations~15a!–
~15d! are equivalent to the compressible Navier-Stokes eq
tions. The appropriate boundary conditions for this set
equations are derived in the following subsection.

B. Knudsen layers and fluid-dynamic boundary conditions

Now we take into account the boundary conditions t
were put aside in the preceding subsection. The bound
conditions~5a!–~6b! with Eq. ~9! can be recast as

f̂ ~ r̂ w ,z!5~12ebw!S@ f̂ ~ r̂ w ,z!#

1ebwD@ f̂ ~ r̂ w ,z!# for dwz r.0, ~16!
01630
ral
c

r

a-
f

t
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where, r̂ w represents 1 andr O /r I , and bw and dw are as
follows:

bw5b I , dw51, for r̂ w51, ~17a!

bw5bO , dw521, for r̂ w5r O /r I . ~17b!

In addition, the operatorsS andD are defined by

S@ f̂ ~ r̂ w ,z!#5 f̂ ~ r̂ w ,2z r ,zu ,zz!, ~18a!

D@ f̂ ~ r̂ w ,z!#52
2

pEdwzr,0
dwz r f̂ ~ r̂ w , z!dz

3exp~2z r
22~zu2V̂w!22zz

2!, ~18b!

where

V̂w5H V̂I for r̂ w51

0 for r̂ w5r O /r I .
~19!

Since f̂ H0 is a local Maxwellian given by Eq.~14!, it
satisfies the specular-reflection condition on the cylinde
i.e.,

f̂ H05S@ f̂ H0#. ~20!

In other words, it satisfies Eq.~16! in the leading order.
However, as in the usual situation@13#, the terms ofO(e) of
condition~16! cannot be satisfied by the next-order termf̂ H1
of the Hilbert expansion. To obtain the solution satisfying t
boundary condition, therefore, we need to introduce the
called Knudsen layers.

Let us seek the solution in the form

f̂ 5 f̂ H1 f̂ K , ~21!

with

f̂ K5 f̂ K1e1 f̂ K2e21•••. ~22!

Here, f̂ K is the correction to the Hilbert solutionf̂ H appre-
ciable only in the thin layers of thickness of the order ofe ~or
of the mean free path in the dimensionalr variable! adjacent
to the cylinders~Knudsen layers!. Expansion~22! is started
from e order becausef̂ H0 could satisfy the boundary cond
tion in the leading order.

To handle the two Knudsen layers on the inner and ou
cylinders in a unified way, we introduce the following var
ables:

y5 r̂ 21, h5y/e, zn5z r , ~23!

near the inner cylinder (r̂ 51); and

y5r O /r I2 r̂ , h5y/e, zn52z r , ~24!

near the outer cylinder (r̂ 5r O /r I). Here, y is the normal
coordinate measured from each cylinder toward the gas,
2-3
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h is the stretched normal coordinate. We suppose that
length scale of variation off̂ K is e, i.e.,

f̂ K5 f̂ K~h,zn ,zu ,zz! ~25!

or ] f̂ K /]h5O( f̂ K), and thatf̂ K vanishes rapidly ash→`.
If we substitute Eq.~21! @with Eqs. ~10! and ~22!# into

Eqs.~3! and~16! and take into account the explicit forms o
f̂ H0 and f̂ H1 as well as the properties off̂ K , we obtain the
equation and boundary conditions forf̂ K1, which are sum-
marized as follows.

zn

] f̂ K1

]h
52Ĵ„~ f̂ H0!w , f̂ K1…, ~26a!

f̂ K15S@ f̂ K1#1S@~ f̂ H1!w#2~ f̂ H1!w2bwS@~ f̂ H0!w#

1bwD@~ f̂ H0!w# for zn.0, at h50,

~26b!

f̂ K1→0, as h→`, ~26c!

where ( )w indicates the value of the Hilbert solution aty

50, i.e., at r̂ 5 r̂ w , and Ĵ( f̂ , ĝ) is defined by Eq.~A1! in
Appendix A. Equations~26a!–~26c! are essentially the half
space boundary-value problem of the linearized Boltzm
equation.

Let us denote any of 1,z, andz2 by C. If we multiply
Eq. ~26a! by C and integrate it over the whole space ofz, we
have (]/]h)*Cznf̂ K1dz50 because of the property of th
collision integralĴ. Condition~26c! then gives

E Cznf̂ K1dz50 for h>0. ~27!

We now consider Eq.~27! on the boundaryh50, using Eq.
~26b! with the explicit forms off̂ H0 and f̂ H1 for zn.0 in the
integral. Then we find that Eq.~27! with C5zu andz2 gives
two compatibility conditions for the boundary values of t
leading-order termshH0 @Eq. ~11!# and of their derivatives.
@Equation~27! with C51 andzz is automatically satisfied
whereas that withC5zn does not give any additional con
dition, consisting only of the boundary values ofhH0 and
dhH0 /dy.# The two compatibility conditions, arranged in a
appropriate form for each cylinder, are given as follows:
the inner cylinder~at r̂ 51),

Apg1S dv̂uH0

dr̂
2 v̂uH0D 1b I r̂H0~V̂I2 v̂uH0!50, ~28a!

5

4
Apg2

dT̂H0

dr̂
2b I r̂H0~ T̂H021!1

1

2
b I r̂H0~V̂I2 v̂uH0!250,

~28b!

and on the outer cylinder~at r̂ 5r O /r I),
01630
he

n

n

Apg1S 2
dv̂uH0

dr̂
1

v̂uH0

r O /r I
D 2bOr̂H0v̂uH050, ~29a!

2
5

4
Apg2

dT̂H0

dr̂
2bOr̂H0~ T̂H021!1

1

2
bOr̂H0~ v̂uH0!250.

~29b!

In deriving Eqs. ~28b! and ~29b! from Eq. ~27! with C
5z2, Eqs.~28a! and~29a! have been used. Equations~28a!–
~29b! give the boundary conditions for the fluid-dynam
equations~15a!–~15d!.

In this way, the boundary conditions for the leading-ord
fluid-dynamic equations~15a!–~15d! are obtained from the
first-order Knudsen-layer problem~26a!–~26c!. At the same
time, it should be noted that the former boundary conditio
can be derived without solving the latter problem. This p
cedure to determine fluid-dynamic boundary conditions
the case of a small accommodation coefficient or specul
reflecting boundary was first devised in Ref.@14#, where the
thermal creep along a specularly reflecting wall was clarifi
Then, it was applied in Refs.@15# and@16#, where the fluid-
dynamic system for small Knudsen numbers was derived
the general geometry with a specularly@15# or almost specu-
larly @16# reflecting boundary when the system was close
a uniform equilibrium state at rest. The existence and uniq
ness of a solution of a half-space problem that contains
problem~26a!–~26c! as a special case have been proved
Golseet al. @17#.

As is easily seen in the course of analysis, if the acco
modation coefficients are of the order of unity@i.e., a I
5O(1) andaO5O(1)], the boundary conditions for Eqs
~15a!–~15d! become the so-called nonslip conditions:

v̂uH05V̂I , T̂H051, at r̂ 51,
~30!

v̂uH050, T̂H051, at r̂ 5r O /r I .

These can be obtained formally by lettingb I→` in Eq. ~28!
andbO→` in Eq. ~29!.

C. Flow properties at small Knudsen numbers

We have derived the fluid-dynamic equations~15a!–~15d!
and their boundary conditions~28a!–~29b! for the leading
order in Kn ~or e) under assumption~10!. Some numerical
results of this system for hard-sphere molecules are show
Fig. 1. That is, the velocity profilev̂uH0 is shown in the case
whereb I5bO5b, r O /r I52, andV̂I5VI /(2RT0)1/25 0.1
@~a!#, 0.3 @~b!#, and 0.5@~c!#. The dashed line in Fig. 1~c!
indicates the solution given by Eq.~34! below @see the sen-
tences following Eq.~34!#. In the figures, the inverted veloc
ity profile is observed forb<0.5.

Since the above system cannot be solved analytically,
consider the case where the rotation speed is small~but much
larger than the Knudsen number!. More specifically, we as-
sume thatV̂I!1 and thusv̂uH0!1 (V̂I and v̂uH0 are sup-
posed to be positive!. Correspondingly, we putr̂H0511v,
2-4
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T̂H0511t, and p̂H0511P with uvu!1, utu!1, and uPu
!1. Incidentally, we write v̂uH05u!1. Note that
Kn!$any of V̂I , u, uvu, utu, anduPu%!1. Then, if we
neglect the higher-order terms, Eqs.~15a!–~15d! reduce to

dP

dr̂
50, ~31a!

d

dr̂
F r̂ 2S du

dr̂
2

u

r̂
D G50, ~31b!

d

dr̂
S r̂

dt

dr̂
D 50, ~31c!

P5v1t, ~31d!

and boundary conditions~28a!–~29b! to the following: on
the inner cylinder~at r̂ 51),

Apg1* S du

dr̂
2uD 1b I~V̂I2u!50, ~32a!

5

4
Apg2*

dt

dr̂
2b It50, ~32b!

and on the outer cylinder~at r̂ 5r O /r I),

FIG. 1. Velocity profile given by the fluid-dynamic syste

~15a!–~15d! and ~28a!–~29b! for hard-sphere molecules. Thev̂uH0

versusr /r I(5 r̂ ) is shown for various values ofb I5bO5b and

three values ofVI /(2RT0)1/2(5V̂I) in the case ofr O /r I52. ~a!
VI /(2RT0)1/250.1, ~b! VI /(2RT0)1/250.3, ~c! VI /(2RT0)1/2

50.5. The dashed line in~c! indicates the solution given by
Eq. ~34!.
01630
Apg1* S 2
du

dr̂
1

u

r O /r I
D 2bOu50, ~33a!

2
5

4
Apg2*

dt

dr̂
2bOt50, ~33b!

where g1* and g2* are g1 and g2 at T̂H051, respectively.
This system can be solved readily and gives

u5Ar̂211Br̂, v5t5P50, ~34!

where

A5
1

D

r O

r I
b IbOV̂I , ~35a!

B5
1

D F2Apg1* S r I

r O
D 2

2
r I

r O
bOGb I V̂I , ~35b!

D5S r O

r I
2

r I

r O
Db IbO12Apg1* F r O

r I
bO1S r I

r O
D 2

b I G .
~35c!

Equation~34! corresponds to the solution of the incompres
ible Navier-Stokes equations. It should be noted that
pressure gradient due to the centrifugal force appears in
higher order, so that there is no pressure gradient in the le
ing order @Eq. ~31a!#. Solution ~34! is also plotted in Fig.
1~c! ~dashed line!. Even forV̂I50.5, the difference betwee
the solution of the compressible system and Eq.~34! is very
small. If the latter is plotted in Fig. 1~a!, the difference is
invisible.

If we assume the specular-reflection condition on b
cylinders from the beginning@i.e., if a I5aO50 in Eqs.~5a!
and ~6a!#, the solution is indeterminate because the so
body rotation with an arbitrary angular speed@Eq. ~8! with
V̂I replaced by an arbitrary constant# is a solution. On the
contrary, if we take the limitb I→0 andbO→0, keeping the
ratio x5bO /b I fixed, in Eq. ~34!, then we haveu

→V̂I r̂ /@11(r O /r I)
3x#, that is, the limiting flow is the solid-

body rotation with an angular speed determined uniquely
ratio x.

D. Continuum limit

In this subsection, we comment briefly on the continuu
limit. The continuum limit is the limit where the Knudse
number Kn~or e) vanishes. In this limit, because of Eq.~9!,
the boundary conditions on both cylinders approach
specular reflection. On the other hand, we haver̂→ r̂H0 ,

v̂u→ v̂uH0 , T̂→T̂H0, and p̂→ p̂H0 in this limit because the
Knudsen-layer correction appears in the order ofe. This
means that the continuum limit of the Couette flow for t
specular-reflection condition is uniquely determined if t
limit is taken appropriately, i.e., in such a way thata I and
aO vanish in proportion toe @Eq. ~9!#, and the limiting so-
lution depends on the proportionality constants (b I andbO).
2-5
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In contrast, ifa I andaO are set to be zero from the begin
ning, the solution is indeterminate for any Kn including t
continuum limit. Finally, if the continuum limit Kn→0 is
taken for any fixeda I andaO , then the limiting solution is
given by the solution of Eqs.~15a!–~15d! with the nonslip
condition ~30! even whena I andaO are small.

IV. CASE OF FREE-MOLECULAR FLOW

Next, we consider the other extreme case where
Knudsen number is infinitely large, i.e., the free-molecu
flow. In this case, one can obtain the exact solution to
original system, Eq.~3! ~with the right-hand side equal t
zero! and boundary conditions~5a!–~6b!, in the following
form:

f̂ ~ r̂ ,z!5
C

p3/2
exp~2zr

22zz
2! ~w,uuzu,p2w!,

~36a!

f̂ ~ r̂ ,z!5
a I~12aO!

a I1aO2a IaO

C

p3/2
exp~2zr

212r̂ V̂Izr sinuz2zz
2

2V̂I
2!1

aO

a I1aO2a IaO

C

p3/2
exp~2zr

22zz
2!

~p2w,uuzu,p!, ~36b!

f̂ ~ r̂ ,z!5
a I

a I1aO2a IaO

C

p3/2
exp~2zr

212r̂ V̂Izr sinuz2zz
2

2V̂I
2!1

aO~12a I !

a I1aO2a IaO

C

p3/2
exp~2zr

22zz
2!

~0,uuzu,w!, ~36c!

where

zr5~z r
21zu

2!1/2, uz5arctan~zu /z r !,
~37!

w5arcsin~1/r̂ !,

and C is a constant. Then, the macroscopic quantities
obtained from Eqs.~7! and ~36! as follows:

r̂~ r̂ !5
C

p S p22w1
2aO2a IaO

a I1aO2a IaO
w D

1
2a I2a IaO

a I1aO2a IaO

C

p
exp~2V̂I

2!

3Fw1ApE
0

w

Q exp~Q2!erfQduzG , ~38!
01630
e
r
e

re

v̂u~ r̂ !5
2a I2a IaO

a I1aO2a IaO

C

r̂p
exp~2V̂I

2!F V̂I r̂

4
~2w2sin 2w!

1ApE
0

wS Q21
1

2Dexp~Q2!erfQ sinuzduzG , ~39!

T̂~ r̂ !5
1

3
2

2

3
v̂u

21
2C

3r̂p
S p22w1

2aO2a IaO

a I1aO2a IaO
w D

1
2a I2a IaO

a I1aO2a IaO

2C

3r̂p
exp~2V̂I

2!

3F V̂I
2r̂ 2

4
~2w2 sin 2w!1w

1ApE
0

wS Q31
3

2
Q Dexp~Q2!erfQduzG , ~40!

whereQ5V̂I r̂ sinuz , and erfz5(2/Ap)*0
z exp(2t2)dt is the

error function. ConstantC in Eqs.~36! and ~38!–~40! is de-
termined by Eq.~2!. In the derivation of the above solution
we have assumed thataOÞ0. It should be noted that whe
a I5aO , all the macroscopic quantities are independent
the accommodation coefficient, though the velocity distrib
tion function still depends on it. Results~38!–~40! will be
shown in some figures in Sec. V.

V. NUMERICAL ANALYSIS FOR WHOLE RANGE
OF KNUDSEN NUMBER

Finally, we consider the case of arbitrary Knudsen nu
bers. Here, we use two different numerical approaches:
is the stochastic method known as the direct simulat
Monte Carlo~DSMC! method@18,19# and the other is a de
terministic finite-difference method based on the BG
model. We hereafter restrict ourselves to the case where
accommodation coefficients are common to both cylind
and puta I5aO5a.

A. Monte Carlo simulation

We start with the DSMC computation. Since the meth
is widely used and described in many places~see, e.g., Refs
@20–22# in addition to Refs.@18,19#!, we give only the result
of analysis, omitting the description of the solution proce
In this subsection, we assume that the gas molecules are
spheres. In the actual computation, we use 200 uniform c
in r I,r ,r O and 200 simulation particles per cell on th
average.

Figure 2 shows some results forr O /r I52 and
VI /(2RT0)1/2(5V̂I)50.5. More specifically, the velocity
profile vu /(2RT0)1/2(5 v̂u) is plotted for various values o
a (5a I5aO) in the case of Kn50.02, 0.05, 0.1, 1, 10,
and 100. Note that the Reynolds number Re5(4/
Apg1)(V̂I /Kn) ~cf. Ref. @13#! in the present computation
which is less than 45, is below the critical Reynolds numb
for the Taylor-Couette instability@23# so the flow is axially
2-6
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INVERTED VELOCITY PROFILE IN THE . . . PHYSICAL REVIEW E 68, 016302 ~2003!
and circumferentially uniform~see also Ref.@24#!. In Figs.
2~a!–2~c! @Kn50.02, 0.05, and 0.1], the numerical solutio
of the fluid-dynamic system for smalla and Kn, i.e., Eqs.
~15a!–~15d! and ~28a!–~29b!, is shown by the dashed lin
for a50.01, 0.05, 0.1, and 0.2, and the numerical solut
of Eqs.~15a!–~15d! and~30! ~nonslip condition! is shown by
the dotted line. In Fig. 2~f! (Kn5100), the free-molecular
flow result, Eq.~39!, is shown by the thick dot-dashed lin
For Kn51, the inverted velocity profile is observed fora
<0.1, but it is limited to smallera when Kn is either small
or large. For small Kn anda, the fluid-dynamic solution
shows good agreement with the DSMC result, so that
dashed lines in Figs. 2~a!–2~c! are not seen clearly. For Kn
5100, the profile is weakly dependent ona, which is con-
sistent with the free-molecular-flow result, and thus the
verted velocity profile is not observed even fora50.01. The

FIG. 2. The numerical result by the DSMC method for ha
sphere molecules: velocity profile. Thevu /(2RT0)1/2 is shown for
various values ofa I5aO5a and Kn in the case ofr O /r I52 and
VI /(2RT0)1/250.5. ~a! Kn50.02, ~b! Kn50.05, ~c! Kn50.1, ~d!
Kn51, ~e! Kn510, ~f! Kn5100. In ~a!–~c!, the dashed line indi-
cates the numerical solution of Eqs.~15a!–~15d! with boundary
conditions~28a!–~29b!, and the dotted line that of the same equ
tions with the nonslip conditions~30!. In ~f!, the thick dot-dashed
line indicates the free-molecular flow solution~39!, which is inde-
pendent ofa.
01630
n

e
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range ofa for the inverted profile will be discussed in th
following subsection.

B. Finite-difference analysis of the BGK model

In order to obtain more detailed information on the p
rameter range for the inverted velocity profile, we carry ou
deterministic numerical analysis using the BGK model rat
than the original Boltzmann equation. We employ the fini
difference method developed by Sone and Sugimoto in t
study of strong evaporation from spherical and cylindric
condensed phases@25–27#.

A difficulty inherent in the finite-difference analysis i
caused by the fact that the molecular velocity distributi
function around a convex body generally contains disco
nuities @28#. The method mentioned above is capable of d
scribing the behavior of the discontinuity around a spheri
or cylindrical body. In the present problem, the situation
slightly more complicated because the discontinuity cau
by the inner cylinder, in general, reaches the outer cylin
and is reflected there by the specular-reflection part of
boundary condition~6a!. Therefore, we need to adjust th
above-mentioned scheme to the present problem. But, s
the method is essentially the same as that described in d
in Refs.@25–27#, we give only the result of the analysis.

Figure 3 shows the velocity profile for the BGK mode
corresponding to Fig. 2. The meaning of the dashed and
ted lines in Figs. 3~a!–3~c! is the same as in Fig. 2, but th
relation g15g25T̂H0

1/2 , which corresponds to the BGK
model, is used in Eqs.~15a!–~15d! and~28a!–~29b!. Figures
4 and 5 show, respectively, the density and temperature
files for the BGK model for typical Kn in the same case as
Fig. 3. Figure 3 is very similar to Fig. 2, though there is
small quantitative discrepancy.

As is seen from Figs. 2 and 3, the velocity profile
monotonically decreasing whena is close to unity. Ifa is
decreased for a fixed Kn, the monotonicity ceases at a r
tively smalla, say,ac , i.e., the profile exhibits a local mini
mum whena,ac . Then, with the further decrease ofa, the
profile becomes monotonically increasing. We show the cr
cal valueac versus Kn for the BGK model in Fig. 6, wher
r O /r I52 andVI /(2RT0)1/250.1 and 0.5. Theac is almost
the same for both values ofVI /(2RT0)1/2 and becomes
largest at Kn50.7;0.8. From Eq.~34!, we have the follow-
ing ac for small Kn and small VI /(2RT0)1/2@Kn
!VI /(2RT0)1/2!1#:

ac5~p/2!~r I /r O!g1* Kn. ~41!

This result for the BGK model (g1* 51) is also shown by the
solid line in Fig. 6. The range of parameters,a and Kn, for
which the profile exhibits a local minimum is within th
reach of laboratory experiments@29#.

Here, we comment on the comparison between the re
for hard-sphere molecules and that for the BGK model. As
well known, the way of comparison between the results
different molecular models is not unique. One of the stand
ways is the following. The viscosity coefficientm0 corre-
sponding to the reference densityrav and temperatureT0 is

-

-

2-7
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given bym05(Ap/4)g1* rav(2RT0)1/2l 0 ~cf. Sec. 3.9 of Ref.
@13#!. If we suppose thatm0 is a fundamental quantity and i
common to all the molecular models, then we obtain
relations among the mean free paths or the Knudsen num
for the different molecular models. In the case of hard-sph
molecules and the BGK model, we have the following re
tionship:

l 0(BGK)51.270 042l 0(HS),
~42!

Kn(BGK)51.270 042 Kn(HS) ,

where the suffixes~BGK! and ~HS! indicate the quantities
for the BGK model and those for hard-sphere molecu
respectively. In Fig. 7, we compare the velocity profile f
the BGK model with that for hard-sphere molecules in t
case wherer O /r I52, VI /(2RT0)1/250.5, and Kn(HS)50.1,

FIG. 3. The numerical result by the finite-difference method
the BGK model: velocity profile. Thevu /(2RT0)1/2 is shown for
various values ofa I5aO5a and Kn in the case ofr O /r I52 and
VI /(2RT0)1/250.5. ~a! Kn50.02, ~b! Kn50.05, ~c! Kn50.1, ~d!
Kn51, ~e! Kn510, ~f! Kn5100. In ~a!–~c!, the dashed line indi-
cates the numerical solution of Eqs.~15a!–~15d! with boundary
conditions~28a!–~29b!, and the dotted line that of the same equ
tions with the nonslip conditions~30!. In ~f!, the thick dot-dashed
line indicates the free-molecular flow solution~39!, which is inde-
pendent ofa.
01630
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FIG. 4. The numerical result by the finite-difference method
the BGK model: density profile. Ther/rav is shown for various
values of a I5aO5a and typical values of Kn in the case o
r O /r I52 andVI /(2RT0)1/250.5. ~a! Kn50.02, ~b! Kn50.1, ~c!
Kn51, ~d! Kn510. In ~a! and ~b!, the dashed line indicates th
numerical solution of Eqs.~15a!–~15d! with boundary conditions
~28a!–~29b!, and the dotted line that of the same equations with
nonslip conditions~30!. In ~d!, the thick dot-dashed line indicate
the free-molecular flow solution~39!, which is independent ofa.

FIG. 5. The numerical result by the finite-difference method
the BGK model: temperature profile. TheT/T0 is shown for various
values of a I5aO5a and typical values of Kn in the case o
r O /r I52 andVI /(2RT0)1/250.5. ~a! Kn50.02, ~b! Kn50.1, ~c!
Kn51, ~d! Kn510. See the caption of Fig. 4.
2-8
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INVERTED VELOCITY PROFILE IN THE . . . PHYSICAL REVIEW E 68, 016302 ~2003!
using the conversion formula~42!. More specifically, the re-
sult at Kn50.127 004 2 for the BGK model is compare
with that at Kn50.1 for hard-sphere molecules. The figu
shows very good agreement.

The data for the computational system in the fini
difference analysis are as follows. Region 1< r̂<r O /r I is
divided into 240 nonuniform intervals~the minimum size is
4.28431025 at the cylinders, and the maximum size
6.54531023 around r̂ 51.5); region 0<zr,` @see Eq.
~37!# is replaced by 0<zr<6.912 and then divided into 48
nonuniform intervals~the minimum size is 6.2531025 at
zr50, and the maximum size 0.4231 atzr56.912); region
2p<uz<p @see Eq.~37!# is divided into 272 uniform in-
tervals~note thatzz can be eliminated by suitable integratio
in the case of the BGK model@25,27#!.

VI. CONCLUDING REMARKS

In the present study, we investigated the cylindrical Co
ette flow of a rarefied gas between two coaxial circular c
inders in the case where the inner cylinder is rotat
whereas the outer one is at rest. The diffuse-specular re
tion condition of Maxwell’s type was assumed on the cyl
ders. Special attention was focused on the inverted velo
profile ~the velocity profile increasing with the distance fro
the inner cylinder! for small accommodation coefficients ob

FIG. 6. The critical accommodation coefficientac versus Kn for
the BGK model in the case ofr O /r I52 andVI /(2RT0)1/250.1 and
0.5. The solid curve indicates Eq.~41!.

FIG. 7. The comparison between the result for the BGK mo
and that for hard-sphere molecules using conversion~42!. The
vu /(2RT0)1/2 versus r /r I is shown for r O /r I52, VI /(2RT0)1/2

50.5, and Kn(HS)50.1. The solid line indicates the result for th
BGK model, and the symbols that for hard-sphere molecules.
01630
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served previously by the Monte Carlo simulation@6#. After
the formulation of the problem in Sec. II, we first consider
the near continuum case in Sec. III, where we derived
fluid-dynamic system for small accommodation coefficie
by means of a systematic asymptotic analysis of the Bo
mann equation and showed that the system describes
inverted velocity profile. Next, we considered the other e
treme case, the free-molecular-flow limit, in Sec. IV and d
rived the analytical solution. In this case, the macrosco
quantities do not depend on the accommodation coefficie
if they are common to both cylinders. Finally in Sec. V, w
carried out numerical analysis of the original Boltzmann s
tem for a wide range of the Knudsen number by using t
different approaches: one is the Monte Carlo simulat
~DSMC method! for hard-sphere molecules and the other i
deterministic finite-difference analysis of the BGK mode
On the basis of these numerical results, the range of
accommodation coefficients that gives the inverted veloc
profiles~more precisely, the profile that is not monotonica
decreasing! was clarified for certain cases of the driving p
rameters@a I5aO5a, r O /r I52, and VI /(2RT0)1/250.1
and 0.5].

To conclude the paper, we discuss the inverted velo
profile from a qualitative, physical point of view. The rota
ing inner cylinder imparts the circumferential component
the momentum to the diffusely reflected molecules. Whena I
is small, the rate of the transfer of the circumferential m
mentum is small, but it is supplied continuously. When Kn
small, the circumferential momentum is transferred to
entire gas by molecular collisions. If the outer cylinder
specularly reflecting (aO50), the circumferential momen
tum is not transferred to the outer cylinder. In other wor
there is no braking effect by the outer cylinder. Then, the
is accelerated until solid-body rotation, in which the trans
of the circumferential momentum vanishes, is establish
This situation, in which the velocity profile is inverted sinc
vu}r , corresponds to Eq.~8!. When aO is small but non-
zero, some of the circumferential momentum is transferre
the outer cylinder by the diffusely reflected molecules, a
its reaction brakes the rotation of the gas near the outer
inder. But, if the braking effect is small, the velocity profi
remains inverted, as in solid-body rotation. The numeri
result shows that this is the case whena I5aO and they are
sufficiently small. When Kn is sufficiently large (Kn@1), a
competing effect arises: because collisions in the gas
rare, most of the circumferential momentum imparted to
diffusely reflected molecules on the inner cylinder is tran
ferred not to the gas but to the outer cylinder directly. The
fore, in contrast to the case of small Kn, the gas away fr
the inner cylinder is not accelerated. In this case, the num
of the molecules with higher speed in the circumferen
direction is larger near the inner cylinder, so that the inv
sion of the velocity profile does not appear.
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APPENDIX A: COLLISION INTEGRAL

The collision integralĴ( f̂ , f̂ ) is defined by the following
bilinear integral operatorĴ( f̂ ,ĝ):

Ĵ~ f̂ ,ĝ!5
1

2E ~ f̂ 8ĝ
*
8 1 f̂

*
8 ĝ82 f̂ ĝ* 2 f̂ * ĝ!B̂dVdz* ,

~A1a!

B̂5B̂~ uV•eu/uVu,uVu!, V5z* 2z, ~A1b!

z85z1~V•e!e, z
*
8 5z* 2~V•e!e, ~A1c!

where f̂ 8, f̂
*
8 , f̂ , and f̂ * stand for f̂ (z) with z5z8, z

*
8 , z,

andz* , respectively, and the same forĝ; z* is the variable
of integration corresponding toz, ande is a unit vector;B̂ is
a non-negative function ofuV•eu/uVu and uVu depending
on the molecular model~for hard-sphere molecules,B̂
5uV•eu/4A2p); dV is the solid-angle element arounde, and
dz* 5dz* rdz* udz* z ; the domain of integration in Eq
~A1a! is all directions ofe and the whole space ofz* . ~See
Sec. 2.9 in Ref.@13#.!

In the BGK model, the collision termĴ( f̂ , f̂ ) is replaced
by the following ĴBGK( f̂ ):

ĴBGK~ f̂ !5 r̂~ f̂ e2 f̂ !, ~A2a!

f̂ e5
r̂

~pT̂!3/2
expS 2

z r
21~zu2 v̂u!21zz

2

T̂
D , ~A2b!

wherer̂, v̂u , andT̂ are given in Eq.~7! @ v̂ r5 v̂z50 is used
in Eq. ~A2b!#.

APPENDIX B: HILBERT SOLUTION f̂H1

The first-order Hilbert solutionf̂ H1 is obtained in the fol-
lowing form:

f̂ H15 f̂ H0F r̂H1

r̂H0

1
2v̂uH1z̃u

T̂H0
1/2

1
T̂H1

T̂H0
S z̃22

3

2D
2

1

p̂H0

dT̂H0

dr̂
z̃ rA~ z̃,T̂H0!2

T̂H0
1/2

p̂H0

3S dv̂uH0

dr̂
2

v̂uH0

r̂
D z̃ r z̃uB~ z̃,T̂H0!G , ~B1!

where

z̃ r5
z r

T̂H0
1/2

, z̃u5
zu2 v̂uH0

T̂H0
1/2

, z̃z5
zz

T̂H0
1/2

, ~B2a!

z̃5~ z̃ r
21 z̃u

21 z̃z
2!1/2. ~B2b!
01630
The functionsA and B are the solutions of the following
integral equations:

~B3!

LT„z rzuB~z,T̂H0!…522z rzu , ~B4!

where z5(z r
21zu

21zz
2)1/2 @Eq. ~13!#, and LT„f(z)… is the

linearized collision operator defined byLa„f(z)… in Ref.
@13# @Eq. ~A.23! in Sec. A.2 of Appendix A there# with a

5T̂H0, i.e.,

LT„f~z!…5E E~z* !~f81f
*
8 2f2f* !B̂TdVdz* ,

~B5a!

B̂T5T̂H0
21/2B̂~ uV•eu/uVu,T̂H0

1/2uVu!, ~B5b!

E~z!5p23/2exp~2z2!, ~B5c!

z* 5~z
* r
2 1z

* u
2 1z

* z
2 !1/2, ~B5d!

wheref8, f
*
8 , f, andf* stand forf(z) with z5z8, z

*
8 , z,

andz* @cf. Eq. ~A1c!#, respectively. The coefficientsg1 and
g2 occurring in the fluid-dynamic equations@Eqs.~15b! and
~15c!# are expressed in terms of the functionsA and B as
follows:

g1~ T̂H0!5
8

15Ap
E

0

`

z6B~z,T̂H0!exp~2z2!dz, ~B6a!

g2~ T̂H0!5
16

15Ap
E

0

`

z6A~z,T̂H0!exp~2z2!dz. ~B6b!

Since LT generally depends onT̂H0 and the molecular
model, functionsA andB and thusg1 andg2 also depend on
them. In the case of hard-sphere molecules,A, B, g1, and
g2 are independent ofT̂H0 and are given by@13#

A~z,T̂H0!5A~z!, B~z,T̂H0!5B~z!, ~B7a!

g151.270 042, g251.922 284. ~B7b!

FunctionsA(z) andB(z) are given in Table 3.1 in Ref.@13#.
For the BGK model, these quantities are given as@13#

A~z,T̂H0!5T̂H0
1/2S z22

5

2D , B~z,T̂H0!52T̂H0
1/2 , ~B8a!

g15g25T̂H0
1/2 . ~B8b!
2-10
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