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Inverted velocity profile in the cylindrical Couette flow of a rarefied gas
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The cylindrical Couette flow of a rarefied gas is investigated, under the diffuse-specular reflection condition
of Maxwell’s type on the cylinders, in the case where the inner cylinder is rotating whereas the outer cylinder
is at rest. The inverted velocity profile for small accommodation coefficients, pointed out by Tibbs, Baras, and
Garcia[Phys. Rev. 56, 2282(1997)] on the basis of a Monte Carlo simulation, is investigated extensively by
means of a systematic asymptotic analysis for small Knudsen numbers as well as the direct numerical analysis
of the Boltzmann equation, and the parameter range in which the phenomenon appears is clarified.
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[. INTRODUCTION equation. For actual numerical computation, we will assume
hard-sphere molecules or the Bhatnagar-Gross-K(B&k)
Cylindrical Couette flow, which is a textbook example in model[7,8].
classical fluid dynamics, is also one of the most fundamental
problems in the kinetic theory of gasg¢%| and has been B. Basic equation
investigated from various points of view. The recent interest

extends to topics such as the validity of the principle of the IWe f':os"tnmttmduie ;Ovrcifhnfk:‘t'ginggeiﬁ) |tshthexcylln<:rl[—h
frame indifference[2] and the bifurcation of flows when cal coordinate syste axis being the axes of the

: . . linders; & is the molecular velocity ané, , &,, and¢, are
ke pl h | ; . T S0 S5z @

Ezg/i\g]oratmn and condensation take place on the cymder%’ r, 6, andz componentsf(r, &) is the velocity distribution

One of such examples is given in a paper by Tibbs, Barasf,un(:t'o_n 01‘_tt(1)e gas rrr]]olec‘:gule;a;c;s the densityp, fv f’h afrlld
and Garcid 6], where the cylindrical Couette flow of a rar- vzl(vft_ U_IE__ t)harte ther, . andz cqmﬁ)r?nents of ef (t)r\lN
efied gas is analyzed numerically by means of the direct® O_C' y, 11S IN€ lemperature, angl IS the pressure of the
simulation Monte CarldDSMC) method under the diffuse- gas; aniR IS the gas consta}nt per unit mass. The dimension-
specular reflection condition of Maxwell's type on the cylin- €SS quantities corresponding ¥, 1, £=(&.£.£2), f. p,
ders in the case where the inner cylinder is rotating whereag, T, andp, which are denoted by, , r, £=(¢;,4.{2), T,
the outer one is at rest. Their result shows that when the, v,, T, andp, respectively, are defined by
accommodation coefficients of the cylinders are srfiadl.,

when the major part of the molecules undergo specular re- - V, ~ T &
flection), the flow speed of the gas increases with the dis- VI:(—ZRT ¥z r= f_| = —(ZRT 172’
tance from the inner cylinder, which is contrary to the ordi- 0 0
nary velocity profile of the Couette flow when only the inner 3
cylinder is rotating. p_CRTOT. = P s U @
The aim of the present paper is'to investigate the phenom— Pav P Pay’ o (2RTy) 12’
enon of the inverted velocity profile more comprehensively
and to clarify the parameter range where it appears. T A P
=3 P Ry T,
Il. FORMULATION OF THE PROBLEM 0 Pay lo
A. Problem where p,, is the average density of the gas between the
Let us consider a rarefied gas between two coaxial circucylinders. Thereforep is normalized as
lar cylinders with common temperatuflg: the inner cylin-
der with radiusr, is rotating at a constant surface spé&gd 2 rO/rIFAd?— 1 @)
whereas the outer cylinder with radiug is at rest. Assum- (rolr)?—1J1 pET= 2

ing the diffuse-specular reflection condition of Maxwell's

type on the _cylinders a_nd restricting ourselve_s to th'e axially Then, the Boltzmann equation in the dimensionless form
as well as circumferentially uniform case, we investigate thgggds

steady behavior of the gas on the basis of the Boltzmann
ot &Gt Ly ot 2

*Electronic address: aoki@aero.mbox.media.kyoto-u.ac.jp “or T 9 r 9Ly \/;Kn

3(§,9), (3)
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Kn=Iqy/r,, (4)  the normal profile(i.e.,f)@ decreasing witlt) to the inverted
o one at small accommodation coefficients.
whereJ(f,f) is the dimensionless collision term, the explicit

form of which _is given in Appendix A, Kn is the Knudsen_ 1. ASYMPTOTIC ANALYSIS FOR SMALL KNUDSEN

number, and, is the mean free path of the gas molecules in NUMBERS

the equilibrium state at rest at densjy, and temperature

To. For hard-sphere moleculesl, is given by I In this section we consider the case where the accommo-

=(\/§77d2pau/m)‘l, m andd being the mass and diameter dation coefficientsy; ande, as well as the Knudsen num-

of a molecule. ber Kn, are small and carry out a systematic asymptotic
The boundary conditions on the cylinders are written agnalysis of the boundary-value problei®) and (5a—(6b),

follows: on the inner cyIinde(atf=1), for ¢,>0, following Refs.[10-13 as a guideline. To begin with, we

assume that; andag are of the order of Kn; that is, we put

fLO=1—ant(1,— 4,80,
(1= a)itL=brnly &) a;=B1e, ap=pPoeE, e=(\m/2)Kn<1, 9

b 3/26XF[ G=(&=V)?=¢2l, (5a) where 8, and B, are given constants, andis a small pa-
rameter(of the order of Kn that is mainly used in this sec-
tion. Our aim is to derive a set of fluid-dynamic equations

o= —2\/;f grf(l,gdg (5b) and its appropriate boundary conditions in the leading order,

(<0 i.e., the order of KA (or €°. Since the method of the
. asymptotic analysis is described in detail in the recent mono-
and on the outer cylindelatr =ro/r), for {,<0, graph by Sond13], we give only the brief outline of the

. . analysis and show the main result.
f(ro/r,O=1—ao)f(rolry,—&r.{s.{2)

oo A. Fluid-dynamic equation

2 2 2
+ao W—3,26Xp( —{—8-8),  (6a First, putting aside the boundary conditidss)—(6b), we
look for a moderately varying solutiorfy, satisfying
afH/aF=O(fH), in the form of a power series @f

so=2\7 | sirol 0dL (60 orm e
{r fH:fHO+fH16+fH2€2+".' (10)

where a; and g are the accommodation coefficient of the
inner cylinder and that of the outer cylinder, respectively, andThls f, is called the Hilbert solution or expan5|on L&,

dg=d¢{,dg,dZ, . o A Ugn. ..., be themacroscopic quantities, v,, ..., corre-
The macroscopic quantitigs v,, T, andp are given by spondlng to the Hilbert solution. Then, they are also ex-
panded as
- ~ 1 R
=f fdZ, vﬁ;f £ofdg, hy=hyo+hyre+hyae?+ - -, (11
(7)

5 whereh representg, v,, T, or p. The explicit expressions
T= —Af [224(Lp—v )2+ 21FdE, p=pT. of hyy, in terms off,,,, are obtained by substitutint= f,

3p andh=hy in Eq. (7) and by equating the coefficients of the
same power Ok.

Here and in what follows, the domain of integration with If we substitute Eq.(10) into Eq. (3) and arrange the

respect tal is its whole space unless the contrary is stated. ower of . we obtain a sequence of intearal equations
It should be noted that the local Maxwellian distribution P € q 9 q

corresponding to the solid-body rotatié] with 9 ,= ¥, for the coefficientsfy,,, WhI.Ch can be sAoIved from the
ie. lowest order. For the leading-order terfi,,, we have

I(Fo. F1o)=0, which means thdt,, is a local Maxwellian
distribution. As for the higher-order terfly,,, we obtain a
linear integral equation, containing the collision tedniin-
earized arouncﬁHo, with inhomogeneous terms consisting of

where pg is a constant determined by E¢p), is the exact the earlier terms,,,, (n<m) of the Hilbert expansion. Since
solution of the present problem when+#0 andag=0. In  the corresponding homogeneous equation has the summa-
view of this fact, one can naturally think that the inverted fional invariants(multiplied by fy;0) as nontrivial solutions,
velocity profile(i.e., ug increasing withr) takes place when the inhomogeneous terms should satisfy solvability condi-
ag becomes small. Our interest is to see the transition frontions, which are reduced to the form

f=—3,2exp<v2 rexd — 22— (L~ ViN2—¢2, (8
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1 - - - where, represents 1 andy/r,, and B,, and §,, are as
Ifhm gg Ifum &l Ifim follows: " " "
4 L——+ =< — —= d¢=0,
2 ar r 9& r 9gs Bumpr. Gu=1 for F.=1 173
L = 1 Or r = L
(12) w | w w
where Bw=Bo, JSy=-—1, for ry,=rolr,. (17b
2 2. 2 In addition, the operator§ andD are defined by
== (E+ G O™ (13 - B
o ST, 01=F(Tw, = &1 £9000), (189
The application of this condition téyy, fyi, ..., in the
successive solution process of the sequence of the integral __° J 2.0
equations from the lowest order leads to the fluid-dynamic Dl (.= Sl < OwrT(rw, §dg
equations fohy, in Eq. (11). ) R )
To summarizef,,, is obtained as Xexp(— 7= (8= Vw)?—¢3), (18D
- N where
R PHO L+ (Lo vono)?+ 2
'|:H0:,\—3/2 Xp — =< , (14) \'\/ for F -1
(7Tho) Tho Vo= W™ (19
w ~
0 for r,=rqolr,.

and f,;; as the form given in Appendix BEq. (B1)]. The

f|UId dynamlc equanons in the leading order, i.e., those for SincefHo is a local Maxwellian given by Eq(14), it
PHo» Ugnos Tho, and ppo, are obtained in the following satisfies the specular-reflection condition on the cylinders,
form: ie.,

fHO:S[’fHo]- (20)
= =0, (158

dr r In other words, it satisfies Eq16) in the leading order.
However, as in the usual situatih3], the terms ofO(¢€) of
condition(16) cannot be satisfied by the next-order tefim

=0, (15b  of the Hilbert expansion. To obtain the solution satisfying the
boundary condition, therefore, we need to introduce the so-
called Knudsen layers.

deo B 2pH0U§HO

d

y1r2T1/2( dv go v 0HO>
r

A ~ ~ 2 . .
5 dA o deT ) N 71“1'1/2( dU(iHo _v€H0> o, Let us seek the solution in the form
4 dr dr dr r P_F 4% (21)
(15(:) H K
A o with
PHO=PHo THo: (150 .. A
fK:le€+fK2€ + .. (22)

where y; and vy, are functions oﬁ'Ho and their functional
form depends on the molecular modsée Appendix B for
hard-sphere molecules, they are constants givenyby
=1.270 042, v,=1.922284; for the BGK modely;=1v,
=TH2. y,TH2 and y,TH2 are, respectively, the dimension-
less viscosity and thermal conductivity. Equatiofi$a—
(15d) are equivalent to the compressible Navier-Stokes equa-
tions. The appropriate boundary conditions for this set of
equations are derived in the following subsection.

Here, f is the correction to the Hilbert solutiofy, appre-
ciable only in the thin layers of thickness of the ordeedbr
of the mean free path in the dimensionalariable adjacent
to the cylindersKnudsen layers Expansion(22) is started
from e order becauséHo could satisfy the boundary condi-
t|on in the leading order.

To handle the two Knudsen layers on the inner and outer
cylinders in a unified way, we introduce the following vari-
ables:

B. Knudsen layers and fluid-dynamic boundary conditions y=r—1, n=yle, (,=¢, (23

Now we take into account the boundary conditions that
were put aside in the preceding subsection. The boundarjear the inner cylinderr(=1); and
conditions(5a)—(6b) with Eqg. (9) can be recast as
y=rolt, =1, n=yle, {h=—1¢, (24

f(rw,0)=(1=€eBy)SLF(Ty, 0] . ,
L near the outer cylinderr&rg/r)). Here,y is the normal
+epyDlf(ry,0)] for 6,4,>0, (16 coordinate measured from each cylinder toward the gas, and
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7 is the stretched normal coordinate. We suppose that the d0 g0 D omo o
length scale of variation of is e, i.e., Vay| - & + Tolt, — BopHov g0=0, (293
fe=Ffx(min Lo, 25 .
k=fx(7,¢n.L0:¢7) (295 . 4T o +1 L
or df« 1dan=0(fy), and thatf vanishes rapidly ag— . AT Bopro(Tro= 1)+ 5 BoPro(v mo)™=0.
If we substitute Eq(21) [with Egs. (10) and (22)] into (29b)

Egs.(3) and(16) and take into account the explicit forms of . _
fuo andfy, as well as the properties 6f , we obtain the !N deriving Egs. (280 and (29b from Eq. (27) with W

. - N . ~ ={? Egs.(283 and(29a have been used. Equatiof8a—
anz;riegle%nain%lﬁ)?/v:dary conditions fbg,, which are sum (29b give the boundary conditions for the fluid-dynamic

equationg 153 —(15d).
In this way, the boundary conditions for the leading-order

Znﬁzzj((ﬁo)wﬁm), (269  fluid-dynamic equation$15a—(15d) are obtained from the
an first-order Knudsen-layer proble(26a—(26¢). At the same
time, it should be noted that the former boundary conditions
fri=S ]+ SL(FuDwl— Fudw— BuS (Frow] can be derived without solving the latter problem. This pro-
. cedure to determine fluid-dynamic boundary conditions in
+BuwDl(fho)wl] for ¢,>0, at =0, the case of a small accommodation coefficient or specularly

(26b) reflecting boundary was first devised in Rgf4], where the
thermal creep along a specularly reflecting wall was clarified.
Then, it was applied in Ref$15] and[16], where the fluid-
dynamic system for small Knudsen numbers was derived for
the general geometry with a speculariyp] or almost specu-
) A~ A PO i . larly [16] reflecting boundary when the system was close to
=0, ie, atr=r,,, andJ(f, g) is defined by Eq(Al) in 3 niform equilibrium state at rest. The existence and unique-
Appendix A. Equation$26a—(26¢) are essentially the half- oqq of a solution of a half-space problem that contains the
space boundary-value problem of the linearized BOltzmamﬂ)roblem(ZESa)—(ZGc) as a special case have been proved by
equation. ) _ Golseet al.[17].

Let us denote any of 1¢, and{* by ¥. If we multiply As is easily seen in the course of analysis, if the accom-
Eq.(26a by ¥ and integrate it over the whole spacelpive  modation coefficients are of the order of unifie., a
have @/dn) [V {,fx:d{=0 because of the property of the =Q(1) and ag=0(1)], the boundary conditions for Egs.
collision integrald. Condition(26¢) then gives (159—-(15d become the so-called nonslip conditions:

f1—0, as 7o, (260

where (), indicates the value of the Hilbert solution wat

f W Fade=0 for 7=0. 27 Vpo=Vi, Tho=1, atr=1,
(30)
We now consider Eq27) on the boundary;=0, using Eq. vo=0. Tho=1. at r=rolr.
(26b) with the explicit forms off ;o andfy; for {,>0 inthe  These can be obtained formally by lettigg—  in Eq. (28)
integral. Then we find that E27) with ¥ =¢, and{? gives  and Bo— in Eq. (29).
two compatibility conditions for the boundary values of the
leading-order term$y [Eq. (11)] and of their derivatives.
[Equation(27) with =1 and{, is automatically satisfied, ] . . ;
whereas that with? = ¢,, does not give any additional con- ~ We have derived the fluid-dynamic equatid§a—(15d
dition, consisting only of the boundary values lof, and ~@nd their boundary condition&88—(29b) for the leading
dhyo/dy.] The two compatibility conditions, arranged in an ©rder in Kn (or €) under assumptioi10). Some numerical
appropriate form for each cylinder, are given as follows: onresults of this system for hard-spAhere molecules are shown in
the inner cylinderatr=1), Fig. 1. That is, the velocity profile 49 is shown in the case
where 8,=Bo=p, ro/r,=2, andV,=V,/(2RTy)¥?= 0.1
dl}(-)HO R L [(@], 0.3[(b)], and 0.5[(c)]. The dashed line in Fig.(&)
Vryil —=— = 0o | + Bipro(Vi—0eno) =0, (288  indicates the solution given by E¢34) below [see the sen-
dr tences following Eq(34)]. In the figures, the inverted veloc-
R ity profile is observed fo3<0.5.
dTho A~ . 1 - ~ . 5 Since the above system cannot be solved analytically, we
ar ~Bipro(Tho— 1) + EBIPHO(VI ~Uro) =0, consider the case where the rotation speed is simaiimuch
(28h) larger than the Knudsen numbeMore specifically, we as-

sume thatV,<1 and thuso gyo<1 (V, and vy are sup-
and on the outer cylinde(lat?zro/rl), posed to be positiye Correspondingly, we pLﬁiHO=1+ w,

C. Flow properties at small Knudsen numbers

5
Z\/Eyz
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(b) V2/(2RTy)'* = 0.3

1 115
(c) Vi/(2RTy)'? =

FIG. 1. Velocity profile given by the fluid-dynamic system

(159—-(15d) and(283—(29b) for hard-sphere molecules. TP&@HO
versusr/r,(=r) is shown for various values o8, =Bo

three values oV, /(2RT,)Y4=V,) in the case offo/r;=2. (a)
V| I(2RT)*?=0.1, (b) V,/(2RTy)¥?=0.3, (¢ V,/(2RT)1’2

=B and

PHYSICAL REVIEW E 68, 016302 (2003

du
\/EY1<_E+FO_/F| —Bou=0, (33a
——f 72 ~Bom=0, (33b)

where y* and y; are y; and y, at Tyo=1, respectively.
This system can be solved readily and gives

u=Ar"14+Br, o=7=P=0, (34)
where
_1r1o

= B|,80V|, (353

1 N -
=5 |2Vl | —oBoVi, (3D

lo ry 2
D= (r———)ﬁuﬂo+2\/—71 (r—> /3.}

| (o]

(350

Equation(34) corresponds to the solution of the incompress-
ible Navier-Stokes equations. It should be noted that the

=0.5. The dashed line irfc) indicates the solution given by Pressure gradient due to the centrifugal force appears in the

Eq. (34).

Tho=1+7, andpyo=1+P with |o|<1, |7|<1, and|P|
<1. Incidentally, we write vyyo=uU<1.
Kn<{any ofV,, u, |o|, |7/, and|P|}<1. Then,
neglect the higher-order terms, Eq$59—(15d) reduce to

dl3—0 (31a
dr
d|{.,/du u
—|r? —=-= =0, (31b)
dr dr r
d|[.dr
—A(I’—A =0, (310
dr\ dr
P=w+r, (31d

and boundary condition§839—(29b) to the following: on

the inner cylinder(atr=1),

J‘m( —U)+,6’|(V| u)=0, (323

5 d
VT —— Bir=0, (32b)
4 dr

and on the outer cylinde@atr=rg/r,),

Note that
if we

higher order, so that there is no pressure gradient in the lead-
ing order[Eq. (313]. Solution (34) is also plotted in Fig.
1(c) (dashed ling Even for\7,=0.5, the difference between
the solution of the compressible system and @B4) is very
small. If the latter is plotted in Fig. (&), the difference is
invisible.

If we assume the specular-reflection condition on both
cylinders from the beginning.e., if ;= ap=0 in Egs.(5a
and (6a)], the solution is indeterminate because the solid-
body rotation with an arbitrary angular spefeh. (8) with

V, replaced by an arbitrary constaris a solution. On the
contrary, if we take the limi3,—0 andBo— 0, keeping the
ratio y=pBo/pB, fixed, in Eq. (34), then we haveu
H\A/|F/[1+ (ro/r)3x], that is, the limiting flow is the solid-
body rotation with an angular speed determined uniquely by
ratio y.

D. Continuum limit

In this subsection, we comment briefly on the continuum
limit. The continuum limit is the limit where the Knudsen
number Kn(or €) vanishes. In this limit, because of E®),
the boundary conditions on both cylinders approach the

specular reflection. On the other hand, we have pyo,

Us—Ugno, T— Tho, and p—pyo in this limit because the
Knudsen-layer correction appears in the ordereofThis
means that the continuum limit of the Couette flow for the
specular-reflection condition is uniquely determined if the
limit is taken appropriately, i.e., in such a way thgt and
ao vanish in proportion tee [Eqg. (9)], and the limiting so-
lution depends on the proportionality constanss &nd 3p).

016302-5



AOKI et al. PHYSICAL REVIEW E 68, 016302 (2003
In contrast, ifa; and ag are set to be zero from the begin- 2a 7
ning, the solution is indeterminate for any Kn including the v ,(r)=
continuum limit. Finally, if the continuum limit Ka-0 is

taken for any fixedy, and ag, then the limiting solution is

—aag C o~ V2) Vr (2 20)
— = €&X — sin
atag—ajag p - ¢

given .by the solution of Eqe.159—(15d) with the nonslip + \/;j‘D @2+ E exp(©2)erf® sing,do,|, (39)
condition(30) even whena, and ag are small. 0 2

IV. CASE OF FREE-MOLECULAR FLOW A o~ 1 2A2 2C 2a0— ajap

T(I’)Zg—gvg-l-,\— T—2 ++—_(p
Next, we consider the other extreme case where the 3pm @ T xoT xdo
Knudsen number is infinitely large, i.e., the free-molecular
flow. In this case, one can obtain the exact solution to the n 2a—mao  2C exp —V?)
original system, Eq(3) (with the right-hand side equal to ot apg— aag 3,377 !
zerg and boundary conditiongsa—(6b), in the following
form: v2r?
X —(2cp— sin 2¢)+ ¢
G —— 2-00) (e<|bl<m—¢)
r, —,&X ¢ T ¢), ® 3
w32 ? ¢ +\V7| | @3+ 20 |exp©2)erf@do,|, (40
(369 ol 2 ‘

1oaw C where® =Vr sind,, and eriz= (2/\7) [§ exp(~t?)dtis the
2 alL™ao error function. Constant in Eqgs.(36) and(38)—(40) is de-
f(r’O_a, +ao— ajap Wwexp( L+ 2V, sing,— termined by Eq(2). In the derivation of the above solution,
we have assumed thaiy# 0. It should be noted that when
s ap C a;=ag, all the macroscopic quantities are independent of
=Vi)+ PP —2&XA(— £-0) the accommodation coefficient, though the velocity distribu-
tion function still depends on it. Resul{88)—(40) will be
shown in some figures in Sec. V.

(m—@<|8<m), (36b
V. NUMERICAL ANALYSIS FOR WHOLE RANGE
o @ OF KNUDSEN NUMBER
fr.o= a+ao—ajag XA & +2iVig, sing,~ Finally, we consider the case of arbitrary Knudsen num-
bers. Here, we use two different numerical approaches: one
. ao(l—a)) c is the stochastic method known as the direct simulation
=V sexp(— {5 {5) Monte Carlo(DSMC) method[18,19 and the other is a de-

T (€ Larlotbsivi
“aTdoT@% terministic finite-difference method based on the BGK

model. We hereafter restrict ourselves to the case where the
(0<|6/< ), (360  accommodation coefficients are common to both cylinders
and pute, = ap=a.
where
A. Monte Carlo simulation
L=(C+ Y2 g,=arctari{,/L,) We start with the DSMC computation. Since the method
p=orTLp) Uy ol6r) o . X
(37) is widely used and described in many pla¢ese, e.g., Refs.
R [20-22 in addition to Refs[18,19)), we give only the result
p=arcsin 1), of analysis, omitting the description of the solution process.
In this subsection, we assume that the gas molecules are hard
and C is a constant. Then, the macroscopic quantities arépheres. In the actual computation, we use 200 uniform cells

obtained from Eqgs(7) and (36) as follows: in r,<r<rg and 200 simulation particles per cell on the
average.
. C 20— ¢ ag Figure 2 S’I:IOWS some results“forolr,=2 anq
p(r)=—|m—2¢+ — V,/(2RT)YA(=V,)=0.5. More specifically, the velocity
atag—ajag

profile v,/ (2RT,)YA(=0,) is plotted for various values of
20— aja0 ) a (=a,=ap) in the case of Kr0.02, 0.05, 0.1, 1, 10,
* a+ ag— aag ;exp( D) and 100. Note that the Reynolds number =Réd/
. \/F_yl)(f/,/Kn) (cf. Ref. [13]) in the present computation,
x| o+ \/;f 0 exp(@z)erfG)deg}, (38)  Which is less than 45, is below the critical Reynolds number
0 for the Taylor-Couette instabilit}y23] so the flow is axially

016302-6



INVERTED VELOCITY PROFILE IN THE . .. PHYSICAL REVIEW E 68, 016302 (2003

range ofa for the inverted profile will be discussed in the

0.5F b 0.5k . .
following subsection.

B. Finite-difference analysis of the BGK model

o
1
&
e
19
o
T

ve/ (2RTp)Y/?
Vg / (2RT 0) /2

°°‘°°%%% : In order to obtain more detailed information on the pa-
- . rameter range for the inverted velocity profile, we carry out a

001 deterministic numerical analysis using the BGK model rather
/e 1 15 /e P than the original Boltzmann equation. We emplc_Jy the_finite-_
(a) Kn = 0.02 (b) Kn = 0.05 difference method developed by Sone and Sugimoto in their
study of strong evaporation from spherical and cylindrical
skl ] 03 condensed phas¢g5—27.

a= A difficulty inherent in the finite-difference analysis is

0.2 f.//°-5 i caused by the fact that the molecular velocity distribution

function around a convex body generally contains disconti-
nuities[28]. The method mentioned above is capable of de-
Boceran - Eulagum““‘mgs s scribing the behavior of the discontinuity around a spherical
:::\ K °°°°° — or cylindrical body. In the present problem, the situation is
N slightly more complicated because the discontinuity caused
! L5 o/t 2 Dby the inner cylinder, in general, reaches the outer cylinder
() Kn=1 and is reflected there by the specular-reflection part of the
0.3 : : : 0.3 boundary condition6a). Therefore, we need to adjust the
above-mentioned scheme to the present problem. But, since
the method is essentially the same as that described in detail
in Refs.[25—-27], we give only the result of the analysis.
Figure 3 shows the velocity profile for the BGK model,
corresponding to Fig. 2. The meaning of the dashed and dot-
ted lines in Figs. @)—3(c) is the same as in Fig. 2, but the

relation y;=vy,=T}2, which corresponds to the BGK
2 model, is used in Eq$159—(15d) and(28a—(29b). Figures

1)0/(2RT0)1/2

0.1 ey

ve/(2RTy)Y/?
o
&

'Ug/(2RT0)1/2

/ : N
(f) Kn = 10; " 4 and 5 show, respectively, the density and temperature pro-

files for the BGK model for typical Kn in the same case as in
FIG. 2. The numerical result by the DSMC method for hard- Fig. 3. Figure 3 is very similar to Fig. 2, though there is a

sphere molecules: velocity profile. The/(2RTo)*2 is shown for  gmall quantitative discrepancy.

various values ofy; = ao=a and Kn in the case af,/r;=2 and As is seen from Figs. 2 and 3, the velocity profile is
Vi/(2RT)"*=0.5. (8) Kn=0.02, (b) Kn=0.05, (c) Kn=0.1, (d)  monotonically decreasing whem is close to unity. Ife is
CK;:Sl . ég) rft?r:elr%aflﬂs};::; (;Lr?%fIEE]Z__S(E;):)’(E.hSed)dsvsi?he(:)(lJISre]dlggll- decreased for a fixed Kn, the monotonicity ceases at a rela-
f.'onsf W!th the nonslip conditiong30). In (f), .the th'Ck. dOt.'d?Shed profile becomes monotonically increasing. We show the criti-
ine indicates the free-molecular flow soluti¢®9), which is inde- . :
pendent ofa. cal valuea, versus Kn for the BGK model in F|g. 6, where
ro/r;=2 andV,/(2RTy)Y?=0.1 and 0.5. They, is almost
the same for both values of,/(2RT,)*? and becomes
and circumferentially unifornisee also Refi24]). In Figs.  |argest at Kr=0.7~0.8. From Eq(34), we have the follow-
2(a)-2(c) [Kn=0.02, 0.05, and 0.1], the numerical solution ing «. for small Kn and small V,/(2RTy)¥4Kn
of the fluid-dynamic system for smadt and Kn, i.e., Egs. <V, /(2RTO)1/2<1];
(158—(150 and (289—(29b), is shown by the dashed line
for «=0.01, 0.05, 0.1, and 0.2, and the numerical solution ac=(ml2)(r,Iro)yy Kn. (41)
of Egs.(158—(15d) and(30) (nonslip conditionis shown by
the dotted line. In Fig. @) (Kn=100), the free-molecular- Thjs result for the BGK modely* = 1) is also shown by the
flow result, Eq.(39), is shown by the thick dot-dashed line. sqjid line in Fig. 6. The range of parametessand Kn, for
For Kn=1, the inverted velocity profile is observed far  which the profile exhibits a local minimum is within the
=<0.1, but it is limited to smallerr when Kn is either small  reach of laboratory experimenit®9].
or large. For small Kn andy, the fluid-dynamic solution Here, we comment on the comparison between the result
shows good agreement with the DSMC result, so that théor hard-sphere molecules and that for the BGK model. As is
dashed lines in Figs.(8—2(c) are not seen clearly. For Kn well known, the way of comparison between the results for
=100, the profile is weakly dependent an which is con-  different molecular models is not unique. One of the standard
sistent with the free-molecular-flow result, and thus the in-ways is the following. The viscosity coefficient, corre-
verted velocity profile is not observed even to+=0.01. The  sponding to the reference densjiy, and temperaturé&j is

016302-7
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(a) Kn = 0.02

r/rr

I o 105
0.5k 1
g !
20.25 =
F
0951
0 1 1 L 0 1 s
1 L5 oy 2 1 15y 2 1
(a) Kn =0.02 (b) Kn =0.05
1.03

0/ Pav

0.97

r/rr
() Kn=10

(f) Kn = 100

FIG. 3. The numerical result by the finite-difference method for

the BGK model: velocity profile. The ,/(2RTy)Y? is shown for
various values ofy,= a¢g=a and Kn in the case of/r;=2 and 1.05
V, /(2R Ty)*?=0.5. (a) Kn=0.02, (b) Kn=0.05, (c) Kn=0.1, (d)
Kn=1, (e) Kn=10, (f) Kn=100. In(a)—(c), the dashed line indi- e
cates the numerical solution of Egdl59—(15d with boundary P
conditions(283—(29b), and the dotted line that of the same equa-
tions with the nonslip condition&30). In (f), the thick dot-dashed

line indicates the free-molecular flow soluti¢®89), which is inde-
pendent ofa.

given by uo= (V7/4) ¥} pa (2RTo) ¥4 (cf. Sec. 3.9 of Ref.

r/rr

[13]). If we suppose that is a fundamental quantity and is
common to all the molecular models, then we obtain the 1.05
relations among the mean free paths or the Knudsen numbel
for the different molecular models. In the case of hard—sphereg
molecules and the BGK model, we have the following rela- &

tionship:

lO(BGK):1'27O 0420(HS)1 1r

(42) 1
Kn(BGK) = 1270 042 KWS) f

where the suffixeBGK) and (HS) indicate the quantities

PHYSICAL REVIEW E 68, 016302 (2003

1.056

2/ pew

0.95F"

1.02

1.5 r/ry
(b) Kn =0.1

FIG. 4. The numerical result by the finite-difference method for
the BGK model: density profile. The/p,, is shown for various
values of ¢y=ag=a and typical values of Kn in the case of
ro/r;=2 andV,/(2RTy)¥?=0.5. (a) Kn=0.02, (b) Kn=0.1, (c)
Kn=1, (d) Kn=10. In (a) and (b), the dashed line indicates the
numerical solution of Egs(153—(15d with boundary conditions
(283—(29b), and the dotted line that of the same equations with the
nonslip conditiong30). In (d), the thick dot-dashed line indicates
riry 2 the free-molecular flow solutioB89), which is independent od.

1.05

T/Ty

1.05

T/To

L5y 2

(d) Kn=10

FIG. 5. The numerical result by the finite-difference method for

for the BGK model and those for hard-sphere moleculesihe BGK model: temperature profile. THéT, is shown for various
respectively. In Fig. 7, we compare the velocity profile forvalues of ;= ao=« and typical values of Kn in the case of
the BGK model with that for hard-sphere molecules in thery/r;=2 andV,/(2RT,)¥?=0.5. (a) Kn=0.02, (b) Kn=0.1, (c)

case whereo/r,=2, V,/(2RTy)"?=0.5, and Kis=0.1,

016302-8
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R served previously by the Monte Carlo simulatigi. After

° Vi/(2RTy)'* =01 the formulation of the problem in Sec. Il, we first considered
+05 e the near continuum case in Sec. Ill, where we derived the
fluid-dynamic system for small accommodation coefficients
by means of a systematic asymptotic analysis of the Boltz-
0.1 CHE. mann equation and showed that the system describes the

// . inverted velocity profile. Next, we considered the other ex-

0.2+

Q¢

treme case, the free-molecular-flow limit, in Sec. IV and de-
rived the analytical solution. In this case, the macroscopic
T ST TR guantities do not depend on the accommodation coefficients

Kn if they are common to both cylinders. Finally in Sec. V, we

carried out numerical analysis of the original Boltzmann sys-
tem for a wide range of the Knudsen number by using two
different approaches: one is the Monte Carlo simulation
(DSMC method for hard-sphere molecules and the other is a

deterministic finite-difference analysis of the BGK model.
On the basis of these numerical results, the range of the
’ ¢ accommodation coefficients that gives the inverted velocity

with that at Kn=0.1 for hard-sphere molecules. The figure o ofiles(more precisely, the profile that is not monotonically

shows very good agreement. _ . decreasingwas clarified for certain cases of the driving pa-
The data for the computational system in the f'”'te'rameters[al —ap=a, To/r,=2, andV,/(2RTy)2=0.1

difference analysis are as follows. Regiorfi<ro/r, is  and 0.5].
divided into 240 nonuniform intervaléhe minimum size is To conclude the paper, we discuss the inverted velocity
4.284<10°° at the cylinders, and the maximum size is profile from a qualitative, physical point of view. The rotat-
6.545<10 % around F=1.5); region G<{,<x [see Eq. ing inner cylinder imparts the circumferential component of
(37)] is replaced by & {,=<6.912 and then divided into 48 the momentum to the diffusely reflected molecules. Wagen
nonuniform intervals(the minimum size is 6.2810 ° at is small, the rate of the transfer of the circumferential mo-
{,=0, and the maximum size 0.4231 §f=6.912); region ~mentum is small, but it is supplied continuously. When Kn is
—7<0,<m [see Eq.37)] is divided into 272 uniform in- small, the circumferential momentum is transferred to the
tervals(note that, can be eliminated by suitable integration entire gas by molecular collisions. If the outer cylinder is
in the case of the BGK mod¢R5,27). specularly reflecting ¢o=0), the circumferential momen-
tum is not transferred to the outer cylinder. In other words,
there is no braking effect by the outer cylinder. Then, the gas
is accelerated until solid-body rotation, in which the transfer
In the present study, we investigated the cylindrical Cou-0f the circumferential momentum vanishes, is established.
ette flow of a rarefied gas between two coaxial circular cyl-This situation, in which the velocity profile is inverted since
inders in the case where the inner cylinder is rotatingu>r, corresponds to Eq8). When ag is small but non-
whereas the outer one is at rest. The diffuse-specular reflegero, some of the circumferential momentum is transferred to
tion condition of Maxwell’s type was assumed on the cylin-the outer cylinder by the diffusely reflected molecules, and
ders. Special attention was focused on the inverted velocitits reaction brakes the rotation of the gas near the outer cyl-
profile (the velocity profile increasing with the distance from inder. But, if the braking effect is small, the velocity profile
the inner cylinderfor small accommodation coefficients ob- remains inverted, as in solid-body rotation. The numerical
result shows that this is the case whers ag and they are
' sufficiently small. When Kn is sufficiently large (&nl), a
05 i competing effect arises: because collisions in the gas are
rare, most of the circumferential momentum imparted to the

FIG. 6. The critical accommodation coefficiemt versus Kn for
the BGK model in the case of, /r;=2 andV, /(2R Ty)¥?=0.1 and
0.5. The solid curve indicates EGi1).

using the conversion formul@2). More specifically, the re-
sult at Kn=0.127004 2 for the BGK model is compared

VI. CONCLUDING REMARKS

i diffusely reflected molecules on the inner cylinder is trans-
E ferred not to the gas but to the outer cylinder directly. There-
2025 fore, in contrast to the case of small Kn, the gas away from
s the inner cylinder is not accelerated. In this case, the number

of the molecules with higher speed in the circumferential
direction is larger near the inner cylinder, so that the inver-
sion of the velocity profile does not appear.

2

1 L5 p/py
FIG. 7. The comparison between the result for the BGK model ACKNOWLEDGMENT
and that for hard-sphere molecules using conversig®). The . o o
v ol (2RTy)¥2 versusr/r, is shown forrg/r,=2, V,/(2RTy)? This work was supported by a Grant-in-Aid for Scientific

=0.5, and Kiug)=0.1. The solid line indicates the result for the ResearchGrant No. 14350047from the Japan Society for
BGK model, and the symbdD that for hard-sphere molecules. the Promotion of Science.
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APPENDIX A: COLLISION INTEGRAL

The collision integral(f,f) is defined by the following
bilinear integral operatod(f,g):

30)=5 [ (81516, ~T,0)Bands,
(Ala)
B=B(|V-e/|V,IV]), V=& ¢ (Alb)
=+ (V-ee, §,=L—(V-9e (Alc)

wheref’, T/, f, andf, stand forf(¢) with £&=¢', ., &
and{, , respectively, and the same fgr ¢, is the variable
of integration corresponding i) ande is a unit vectorB is
a non-negative function ofV-¢/|V| and |V| depending
on the molecular modelfor hard-sphere moleculesB
=|V-¢€l/4\27); dQ is the solid-angle element arousgdand

d,
(Ala) is all directions ofe and the whole space &, . (See
Sec. 2.9 in Ref[13].)

In the BGK model, the collision terrd(f,f) is replaced
by the following Jggk(f):

Jeek(H=p(fe—1),

P SN O (T Dol
° (xT)? T ’

wherep, v,, andT are given in Eq(7) [v,=0v,=0 is used
in Eqg. (A2b)].

(A2a)

(A2b)

APPENDIX B: HILBERT SOLUTION  f,,

The first-order Hilbert squtiorﬁHl is obtained in the fol-
lowing form:

f =f PH1 ZaﬁHlZG E(ZZ_E)
PHo Tho Tho 2
1 dTwor  ~- . To
— = LA Tho) — =
Puo dr Puo
do v
x ( d—"r'“ "H°> LTBE T | (BY
where
~ & ~ Ly U(?HO ~ {;
== Lo=—= =75 (B2a)
T T YT
=+ (B2b)

=d{,,d¢, 4dl,,; the domain of integration in Eg.

PHYSICAL REVIEW E 68, 016302 (2003

The functionsA and B are the solutions of the following
integral equations:

5
ET(grA(g’THO)): - Q( (2— 5) s

subsidiary condition: (B3)
| a tuyexni- ae=o,
L1 LeB(L, Tro))=— 2L L, (B4)

where = (£7+ {5+ £2)Y? [Eq. (13)], and Lr(4(£)) is the
linearized collision operator defined bg,(¢4(&)) in Ref.
[13] [Eq. (A.23) in Sec. A.2 of Appendix A therewith a

:THO' i.e.,

cT(¢(§>)=f E(L)(&'+ b, — d— b, )BrdQdL,

(B5a)
Br="Tha’B(IV-d/|V], THoIVD, (B5b)
()= ¥%exp— ), (B50)
L= (G Gt DY (B50)

where¢’, ¢, , ¢, ande, stand forg() with (=¢', ¢, , &,
andZ, [cf. Eq.(Alc)], respectively. The coefficientg, and
v, occurring in the fluid-dynamic equatiofEgs.(15b) and
(150] are expressed in terms of the functiodsand B as
follows:

n( >=LJM§GB@? yexp(— (2)dL (B63)
1 HO 15\/; 0 » 'HO

¥2(Tho) (B6b)

2
15\/—J LPAL Tho)exp(— £2)d.

Since £ generally depends ofi,, and the molecular
model, functions4 andB and thusy; andy, also depend on
them. In the case of hard-sphere moleculds,B, y,;, and

v, are independent of 4, and are given by13]
AL Tuo)=AQ),  B(&,Tho) =B(2),

y,=1.270042, y,=1.922284.

(B7a)
(B7b)

FunctionsA(¢) andB(¢) are given in Table 3.1 in Ref13].
For the BGK model, these quantities are giver] 53

5 A A
AL Tro) = Tl’z( 5), B(¢,Two)=2Ths, (B3

y1=7,=THs. (B8b)
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