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A closed macroscopic equation for the motion of the two-dimensional adiabatic piston is derived from
standard hydrodynamics. It predicts a damped oscillatory motion of the piston towards a final rest position,
which depends on the initial state. In the limit of large piston mass, the solution of this equation is in
quantitative agreement with the results obtained from both hard disk molecular dynamics and hydrodynamics.
The explicit forms of the basic characteristics of the piston’s dynamics, such as the period of oscillations and
the relaxation time, are derived. The limitations of the theory’s validity, in terms of the main system param-
eters, are established.
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I. INTRODUCTION

Consider an isolated cylinder with two compartments,
separated by a piston. The piston is free to move without
friction along the axis of the cylinder and it has a zero heat
conductivity, hence its designation as the adiabatic piston.
This construction, first introduced by Callen �1�, became
widely known after Feynman discussed it in his famous lec-
ture series �2�. Since then it has attracted considerable atten-
tion �3–5�. For a sufficiently large piston mass, the following
scenario describes the evolution of the system �6,7�. Starting
from a nonequilibrium configuration �i.e., different pressures
in each compartment� the piston performs a damped oscilla-
tory motion. The oscillations eventually die out and the sys-
tem reaches an intermediate state of “mechanical equilib-
rium,” with equal pressure on each side of the piston, but
different densities and temperatures �see Fig. 1�. On a second
�much longer� time scale, a slow relaxation towards the “full
thermodynamic equilibrium” state with equal temperatures
and densities takes place �Fig. 2�.

This construction is interesting for two reasons. First, the
second stage of the relaxation �e.g., t�5�105 in Fig. 2�
provides a microscopic example of a so-called Brownian
motor �8,9�: the fluctuations of the momentum exchanges
between piston and particles establish a microscopic “ther-
mal” contact between the two compartments. As a result, a
slow effective heat transfer and a concomitant systematic
motion of the piston appears, until eventually full thermody-
namic equilibrium is reached. Both compartments are then at
equilibrium, with the same temperature and pressure.

Second, there is an apparent paradox regarding the ther-
modynamic limit, N→�, V→�, N /V=n��, where N rep-
resents the total number of particles, V the volume of the
cylinder, and n the global number density of the fluid. The
piston motion arises from a pressure difference �P exerted
by the fluid on each side of it. The resulting acceleration ap is
then given by ap=�PS /M, where M and S denote the piston
mass and surface, respectively. In the thermodynamic limit,
the behavior of the piston greatly depends on how we take
this limit at the piston level. The natural way is to fix once
and for all the ratio M /S �i.e., fixed piston thickness� and to

consider the limit M→�, S→� with finite, nonzero piston
acceleration ap, so that the first stage of the evolution re-
mains essentially unchanged. The piston thus eventually
reaches the mechanical equilibrium state where each com-
partment is practically at thermodynamic equilibrium with
different temperatures and densities. It then follows from ba-
sic principles of equilibrium statistical mechanics that inten-
sive state variables such as temperature, pressure, and den-
sity tend to their �most probable� macroscopic values in the
thermodynamic limit, i.e., their fluctuations vanish �10�. As a
result the microscopic “thermal” contact between the two
compartments and the resulting heat transfer also vanish.
This in turn implies that the second stage of the relaxation
simply disappears so that the intermediate mechanical equi-
librium state becomes the genuine final equilibrium state of
the system �MD simulations illustrating this behavior are
presented in Sec. II, Fig. 3�. As noticed by several authors
�11–13�, the application of the maximum entropy criterion to
predict this equilibrium state subsequently runs into trouble
if the thermodynamic limit is taken prior to the t→� limit.
The physical reason appears to be the degeneracy of the me-
chanical equilibrium state: any state with the two compart-
ments separately at equilibrium, with the same pressure and
the piston at rest, is a possible equilibrium state. Equality of
temperatures need not be achieved, because of the adiabatic
property of the piston, leading to the paradoxical conclusion
that in the thermodynamic limit the final state is not unique.

FIG. 1. Piston position versus time, obtained from MD simula-
tions. Piston mass is M =512 where particle mass, m, is taken as
unity; other parameters are as in Fig. 5.
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Our interest in this paper is mainly with respect to this last
issue. We first reiterate that the above-mentioned paradox is
directly related to the order in which the limits are taken, so
that it has to be put on a purely mathematical ground. Here
we focus only on actual physical systems where the system
size, although arbitrarily large, remains nevertheless finite.
But even in this case the problem is not solved completely. In
fact, it is clear that in the limit of a large piston mass, the
much slower Brownian motor regime is practically elimi-
nated. But then the resulting degeneracy of the mechanical
equilibrium state raises the question as to whether it can be
predicted from the initial state by a macroscopic theory.

In contrast to most previous theoretical approaches based
on kinetic theory �e.g., �4,14–17��, we investigate this ques-
tion by means of standard hydrodynamics. A further distinc-
tion is that practically all the earlier numerical studies were
based on point particle �collisionless� gases �5,6� while here
we use full molecular dynamics �MD� simulations of hard
disk fluids �7,18�. A detailed comparison of these micro-
scopic simulations with hydrodynamics predictions will be
presented in the next section. The results are used as a guide-
line to build a simple macroscopic theory with progressively
increasing levels of sophistication �Secs. III and IV�, leading
finally to a closed piston equation of motion �18� �Sec. V�.
We will then show that this equation describes very accu-
rately the motion of a heavy piston from an arbitrary initial
state up to the final mechanical equilibrium state. This in turn
allows us to express the limitations of the theory’s validity
and the main characteristics of the piston dynamics, such as
the period of oscillations, the relaxation time, and so forth, in
terms of the basic parameters of the system �Sec. VI�. Fi-
nally, a summary of the work, with its advantages and weak-
nesses, will be presented in Sec. VII where some perspec-
tives for future work are also discussed.

II. MOLECULAR DYNAMICS VERSUS
HYDRODYNAMICS

We consider a two-dimensional fluid composed of N hard
disks of diameter d and mass m. The disks are separated in

two groups of N /2 particles each, left �L� and right �R� of the
piston. They are enclosed in a rectangular box of surface S
=Lx�Ly �Lx�Ly� oriented along the x and y axes �see Fig.
3�. To simplify the discussion, lengths and masses will be
scaled by the disk diameter d and mass m, respectively, i.e.,
d=m=1. Similarly, by an appropriate scaling of time and
energy, the equilibrium temperature and the Boltzmann’s
constant are set to unity. Initially, the piston is at rest, located
at position Xp�0�=Lx /5, and both compartments are in equi-
librium with same temperature TL�t=0�=TR�t=0�=T0=1 �in
system units�. Note that due to this asymmetric initial posi-
tion, the initial pressures left and right are not equal.

We have performed extensive MD simulations for differ-
ent values of the main parameters �piston mass M, system
width Ly, total number of hard disks N, etc�. The system
length and the number density are fixed to Lx=4800 and n
=1/360�0.002 778. Note that for such a low number den-
sity the fluid behaves basically as a Boltzmann gas. An en-
semble average over different realizations �i.e., different
simulation runs� leads to the “macroscopic” quantities of in-
terest, namely the fluid state variables, as well as the piston
position Xp�t� and velocity vp�t�. These results are then com-
pared with the corresponding hydrodynamic predictions. In
this section the ratio of piston mass to system width is al-
ways M /Ly =4/3, with a piston mass ranging from M =16
�Ly =12, N=160� to M =8192 �Ly =6144, N=81 920�.

For the chosen set of parameters, a detailed numerical
analysis shows that the separation between the short- and
long-time regimes, corresponding respectively to the relax-
ation to the “mechanical” and “full thermodynamic” equilib-
rium states, becomes apparent for a piston mass of about
M �256. This is illustrated in Fig. 4 where the piston posi-
tion versus time is shown for increasing values of M. As can
be seen, for M =16 there is no separation between short- and
long-time regimes; the piston oscillates and smoothly relaxes
to the final thermodynamic equilibrium state �Xp /Lx=0.5�.
Increasing the mass by a factor of four �M =64� does not
change the situation much, except that the relaxation time is
now significantly larger. Another fourfold increase �to M
=256� is required before the expected time separation re-
gimes become apparent. The last curve �dashed line� corre-
sponds to M =8192, which well approximates the behavior of
the system in the thermodynamic limit �M→�, Ly→�, N
→� with M /Ly =4/3 and N /LxLy =n�0.002 778�. In this
case the piston undergoes a damped oscillatory motion and
quite rapidly reaches the “mechanical” equilibrium state. Its

FIG. 2. Same as Fig. 1, but extended fivefold in time.

FIG. 3. Hard disk molecular dynamic setup.

FIG. 4. Piston position, normalized by Lx, versus time for in-
creasing values of M. The other parameters are Lx=4800, n
=0.002 778, with M /Ly =4/3, Xp�0�=Lx /5 and vp�0�=0.

MANSOUR, GARCIA, AND BARAS PHYSICAL REVIEW E 73, 016121 �2006�

016121-2



trajectory then remains perfectly flat �to within the statistical
errors� for the rest of time presented in the figure. Of course
this behavior lasts only for a finite period of time, typically
of the order of the time scale shown in the figure �t�2
�105�. In general, no matter how massive the piston, there
always exists a sufficiently long time scale after which the
system will eventually reach its full thermodynamic equilib-
rium state. As we already pointed out in the Introduction, the
intermediate mechanical equilibrium state can be considered
as the genuine final equilibrium state of the system only in
the thermodynamic limit, provided that this limit is taken
prior to the limit t→�. Note that for sufficiently large mass
�M �256�, the first stage of the piston’s motion becomes
practically independent of its mass, mainly because the ratio
M /Ly is kept constant. Other cases will be considered in the
next section.

The �left and right� hydrodynamic equations, correspond-
ing to the above microscopic setup, read �19�

��

�t
= − � · ��v� , �1�

�
�v

�t
= − ��v · ��v − �P − � · � , �2�

�cv
�T

�t
= − �cvv · �T − T� �P

�T
�

�

� · v + � · �	 � T� − 
i,j
�vi

�xj
,

�3�

where � is the mass density, P is the hydrostatic pressure, cv
is the constant-volume specific heat, and � is the two-
dimensional stress tensor:


i,j = − �� �vi

�xj
+

�v j

�xi
− �i,j � · v� − 
�i,j � · v , �4�

where � and 
 are the shear and bulk viscosities, respec-
tively. The boundary conditions are those of thermally iso-
lated stress-free rigid walls in the x direction �direction of the
piston motion� and periodic in the y direction. In particular,

vx�x = Xp� = vp, vx�x = 0� = vx�x = Lx� = 0,

� �T

�x
�

x=Xp

= � �T

�x
�

x=0,Lx

= 0. �5�

Note that the particle flux, and thus the associated linear
momentum and energy fluxes, must vanish at the fluid-piston
boundaries.

To solve the hydrodynamic equations, we still need the
equation of state and the explicit form of transport coeffi-
cients. As is well known, for hard disks fluids the equation of
state is is well approximated by �20�

P = nkBT��n� �6�

with

��n� =
1 + �2n2/128

�1 − �n/4�2 , �7�

where n is the number density �recall that the disk diameter d
is set to unity in system units�. Note that the results presented
in this article are for a dilute gas �n=1/360� for which �
�1. As for the transport coefficients, we rely on their
Enskog expressions �20�:

� = 0.2555n	�mkB�1 +
2

�ng2
+ 0.4365�ng2�	T , �8�


 = 0.1592�3/2n2g2
	T , �9�

	 = 1.029nkB
3/2	�/m�3

2
+

2

�ng2
+ 0.4359�ng2�	T ,

�10�

where g2 is the pair correlation function at contact:

g2 =
1 − 7n�/64

�1 − n�/4�2 . �11�

Finally, Newton’s equation of motion for the piston reads

M
d2Xp

dt2 = Ly�PL
xx − PR

xx�x=Xp
, �12�

where Pxx= P− ��+
��vx /�x is the pressure tensor, con-
tracted in the x direction. We note that the hydrodynamic
equations, and thus the piston equation of motion, are
uniquely specified without any adjustable parameter. We now
compare the numerical solution of these equations with the
result obtained through the corresponding MD simulation.

We first consider a relatively small piston mass M =64
�with Ly =48�. Figure 5 shows the �ensemble� average piston
position versus time. For this relatively small mass there is
no clear separation between the short- and long-time regimes
�cf. Fig. 4�. Nevertheless, hydrodynamics and MD are in
quantitative agreement for the first two or three oscillations,
with deviations increasing at longer times. The same behav-
ior is observed for the average temperatures and densities on
each side of the piston �see Fig. 6�.

The situation is somehow different for the piston velocity,
where very good quantitative agreement between MD and
hydrodynamics is observed for a span of many oscillations

FIG. 5. Piston position, normalized by Lx, versus time for M
=64. The other parameters are Lx=4800, Ly =48, n=0.002 778,
Xp�0�=Lx /5 and vp�0�=0.
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�cf. Fig. 7�. This result, at first unexpected, is related to the
fact that the degeneracy of states, which occurs at the ther-
modynamic limit, concerns mainly the final piston position
but not its final velocity, which is simply zero. For finite
piston mass, the piston velocity does not vanish at the inter-
mediate quasi-equilibrium state; it nevertheless becomes ex-
tremely small so that the actual discrepancy with MD re-
mains within the estimated statistical errors �about 1%�.
What is perhaps more striking is the behavior of the average
fluid pressure. As can be seen in Fig. 8, surprisingly good
quantitative agreement is found even for a piston mass as
small as M =1 �Ly =48, N=640�. So far, we have no convinc-
ing argument to explain this observation.

As we have shown above, for the set of parameters that
we have adopted, the separation between the short- and long-
time regimes becomes apparent for larger piston mass start-
ing at about M �256. As a consequence, the agreement be-
tween hydrodynamics and MD improves dramatically as
soon as M �256. This is illustrated in Fig. 9 where quanti-
tative agreement is demonstrated for a piston mass M =512.
For instance, the discrepancy remains below 3%, long after
the mechanical equilibrium state has been reached �t=1.5
�105�, and drops below the estimated statistical errors
�about 1%� for M =1024. These observations lead us to the
first major conclusion of this work. While hydrodynamics
cannot describe the details of the very long time scale re-
gime, dominated by the fluctuation-driven heat transfer by
the piston’s Brownian motion, it quite accurately predicts the
damped oscillatory motion leading to the mechanical equi-
librium state. This in turn suggests that a simple macroscopic
theoretical description must be possible in the limit of a large
piston mass. We now set up such a description at progres-
sively increasing levels of sophistication.

III. A SIMPLE HYDRODYNAMIC THEORY

The equation �12� shows that the motion of the piston is
expected to be notably slow in the limit of large ratio M /Ly,

in which case one can reasonably assume that each compart-
ment undergoes an �quasi-static� adiabatic transformation.
For the case of a dilute gas, this implies that PV�= P0V0

�

=const, where � is the ratio of the constant-pressure and
constant-volume specific heats, cp /cv, and the subscript “0”
refers to initial values at t=0. On the other hand, VL�t�
=Xp�t�Ly and VR�t�= �Lx−Xp�t��Ly, where the subscripts “L”
and “R” refer to the left and right compartments, respec-
tively. Neglecting all possible dissipative processes, the
Newtonian equation of motion for the piston reads

M
d2Xp

dt2 = Ly�PL − PR� = Ly
1−��CL

Xp
� −

CR

�Lx − Xp��� , �13�

where the C �left and right� is a constant given by C= P0V0
�.

This is a closed piston equation of motion that has been
already obtained on the basis of dynamical systems theory
�14�. Simple kinetic theory, based on Maxwellian point-
particle �i.e., collisionless� gases, leads basically to the same
result �15–17�. For the case of a dilute two-dimensional gas
under consideration here, we have �=2 and P0V0
=NkBT0 /2 so that

M
d2Xp

dt2 = mN
vth

2

2
�Xp�0�

Xp
2 −

Lx − Xp�0�
�Lx − Xp�2 � , �14�

where vth= �kBT0 /m�1/2 is the thermal velocity �equal to 1 in
system units�. It has been shown recently that the solution of
�14� is in poor agreement with MD simulations �18�. Our
main purpose in this article is to set up an improved theory,
based on hydrodynamics, that includes the effect of dissipa-
tive processes as well.

In deriving the result �13�, we have implicitly assumed
that the left and right pressure difference accelerates only the
piston and not the embedded fluid. This in turn implies that

FIG. 7. Piston velocity versus time. Parameters are as in Fig.
5.

FIG. 8. Left pressure profile for M =1. The other parameters are
as in Fig. 5.

FIG. 6. Left and right temperature profiles versus time. Param-
eters are as in Fig. 5.

FIG. 9. Piston position, normalized by Lx, versus time for
M =512. The other parameters are as in Fig. 4.
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the fluid velocity remains identically zero in the course of
time, if initially so. However, the velocity of the fluid layer
in direct contact with the piston is obviously equal to the
velocity of the piston, while remaining zero for the fluid
layers at the opposite, outer boundaries. Hence, instead of
assuming zero fluid velocity throughout the system, a less
restrictive assumption is to consider a linear fluid velocity
profile along the x direction:

vL�x,t� = vp�t�
x

Xp�t�
, vR�x,t� = vp�t�

Lx − x

Lx − Xp�t�
, �15�

where vL and vR represent the x component of the fluid ve-
locity in the left and right compartments, respectively, and
vp=dXp /dt is the piston velocity. The y component of the
fluid velocity is not affected by the piston’s motion so that it
remains zero if initially so. This in turn implies that the hy-
drodynamical variables remain functions of one spatial coor-
dinate only �coordinate x�. To obtain the appropriate piston
equation of motion we now solve the hydrodynamic equa-
tions, it being understood that the assumption �15� replaces
the momentum equation �2�.

Inserting �15� into the continuity equation �1�, we
first prove �see Appendix A� that the density remains
homogeneous, if initially so, its explicit expression being
given by

�L�t� =
mN

2LyXp
, �R�t� =

mN

2Ly�Lx − Xp�
. �16�

Using this result and the energy conservation principle, we
next derive �see Appendix B� the general form of the piston
equation of motion:

M̂
d2Xp

dt2 = Ly�P̄L − P̄R� − Lyvp� �̄L

Xp
+

�̄R

�Lx − Xp�
� , �17�

where P̄ and �̄ are the spatially averaged hydrostatic pres-
sure P and viscosity coefficient �=
+�, respectively, and

M̂ = M�1 +
mN

3M
� �18�

is a “renormalized” piston mass. As mentioned above, in this
paper we restrict ourselves to the case of hard disk fluids for
which the hydrostatic pressure is a linear function of the

temperature �cf. Eq. �6��. As a result, P̄�� ,T�= P�� , T̄� and

the space-averaged temperature T̄ is precisely the “homoge-
neous” temperature that we used in the simple adiabatic
theory �13�.

However, unless we neglect the dissipative processes, the
equation of motion �17� remains coupled to the temperature

equation �3�, since we do not yet have an explicit form of T̄
in terms of piston position and velocity. To solve this prob-
lem, we need an additional assumption regarding the viscos-
ity coefficient �. In general, transport coefficients are taken
to be constant since their dependence on state variables is
weak �e.g., for a Boltzmann gas ��	T�. Numerical solution
of the hydrodynamic equations �1�–�3� fully support this ap-
proximation, the discrepancies remaining always below 3%.

However, for the sake of generality, here we shall adopt the
less restrictive assumption that the viscosity coefficient de-
pends only on the “global” space averaged state variables,

i.e., �=��� , T̄�. Within this rather weak assumption, we
prove in Appendix C that, as with density, the temperature
remains homogeneous over time, if initially so, and obeys
�cf. Eq. �C9� in Appendix C�

�TL

�t
= −

vp

Xp
�LTL +

2Ly

kBN

�L

Xp
vp

2 �19�

with a similar expression for the right compartment. Note
that the function ��n�=�(n�Xp�) is defined in �7� and
�L
���L ,TL�, where we have dropped the “bar” notation
since temperature remains homogeneous.

The hydrodynamic problem is now reduced to a set of
three coupled ordinary differential equations: the piston
equation of motion �17� and the �left, right� temperature
equations �19�. To check the validity of this simplified
theory, we consider a whole new set of MD simulations with
Ly =48, N=640 hard disks, Lx=4800 �as before
n=0.002 778�, and a piston mass ranging from M =64 to
M =8192. Unlike the MD simulations presented in Sec. II,
here the system width Ly and the number of particles N are
fixed, so that the piston motion gradually slows down as we
consider increasing values of M, allowing comparison with
the theory. Note that the relatively small number of particles
�N=640� allows one to consider a large number of sample
paths �typically of the order of 105� within reasonable com-
putational time, lowering significantly the statistical error.

As seen in Fig. 10, where the piston position versus time
is shown, excellent agreement is observed between MD and
the corresponding numerical solution of Eqs. �17� and �19�,
even for the relatively moderate piston mass of M =2048.
Specifically, the observed amplitude discrepancy remains be-
low 1% after 15 periods of oscillations, with a corresponding
phase shift discrepancy of about 0.3%. Unfortunately, an
analytical treatment appears to be extremely difficult without
further simplifications. This issue will be addressed in the
next section.

IV. THE IDEAL GAS LIMIT

Consider the temperature equation �19�. To obtain a
closed piston equation of motion, one has to express the �left

FIG. 10. Piston position obtained from MD and the numerical
solution of Eqs. �17� and �19�, for M =2048. The other parameters
are N=640, Lx=4800, Ly =48, Xp�0�=Lx /5, and vp�0�=0.
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and right� temperature in terms of piston position and veloc-
ity. This, however, proves to be extremely difficult mainly
because of the �nonlinear� state dependence of the viscosity
coefficient that appears in the viscous heating term �the for-
mal solution is given in Appendix C, Eq. �C10��. On the
other hand, in the limit of large piston mass, the piston ve-
locity becomes quite small �recall that the system width and
the number of particles are fixed�. The viscous heating term
can thus be neglected since it is proportional to the square of
the velocity gradient. This approximation is further justified
in view of the fact that the viscous heating term is also in-
versely proportional to the total number of particles N, which
is usually quite large. Within this restriction, one can easily
show that �cf. Appendix C�:

T�t� = T0e−��t� �20�

with

��t� = �
Xp�0�

Xp�t� �̂�
�



d
 , �21�

where the function ��n�=�(n�Xp�)= �̂�Xp� is defined in �7�
and the subscript “0” refers to initial values at t=0. The
equation of state �6� then implies

P�t� = P0
Xp�0�
Xp�t�

�̂

�̂0

e−��t�. �22�

Inserting �20� and �22� into �17� leads to a closed piston
equation of motion.

For a dilute two-dimensional gas, as considered here, �
�1 so

��t� = ln
Xp�t�
Xp�0�

. �23�

The temperature �20� and pressure �22� thus read

T�t� = T0
Xp�0�
Xp�t�

, P�t� = P0�Xp�0�
Xp�t�

�2

�24�

so that

Xp�t�T�t� = const, Xp
2�t�P�t� = const. �25�

Since �=2, this latter result implies that PV�=const. We thus
arrive at the conclusion that the system �piston+gas� under-
goes an adiabatic transformation despite the presence of dis-
sipative damping terms appearing in the pressure tensor �cf.
Eq. �17��. It should however be realized that this property is
a direct consequence of neglecting the viscous heating term
in the temperature equation �cf. Eq. �C10� in Appendix C�.

It is instructive to analyze first the case of an idealized
system, ignoring dissipative processes. In this case, the equa-
tion �17� becomes identical to the equation �14� obtained
from the simple adiabatic theory, but with the replacement of

the piston mass M by M̂ =M +mN /3. The fact that the pres-
sure difference across the piston also induces an acceleration
of the fluid thus results in a mere renormalization of the
piston mass. While this correction becomes vanishingly
small in the limit of large M, it gives a dramatic improve-

ment over the simple theory, Eq. �14�, for moderate values of
M. This is illustrated in Fig. 11 where the piston position
versus time for M =2048 is shown. Clearly the profile based
on the simple adiabatic theory becomes significantly out of
phase with respect to MD results after only two oscillations.
This is not the case for the improved adiabatic theory where
perfectly synchronized oscillations are observed even after
seven oscillations.

The relevance of the improved theory is further high-
lighted by computing explicitly the piston’s period of oscil-
lation. Upon introducing dimensionless variables xp�t�
=Xp�t� /LX, x0=Xp�0� /LX, and

� = t
vth

	2Lx
�mN

M̂
�1/2

, �26�

Eq. �17� becomes �recall that vth= �kBT0 /m�1/2 is the thermal
velocity�

d2xp

d�2 =
x0

xp
2 −

1 − x0

�1 − xp�2 �27�

subject to initial conditions xp=x0 and dxp /d�=0 at �=0.
This equation is identical to the Newton equation for a par-
ticle �the piston� of unit mass in a force field, derived from
the potential

U�xp� =
x0

xp
+

1 − x0

1 − xp
. �28�

Conservation of total energy implies

1

2
�dxp

d�
�2

+ U�xp� = U�x0� = 2. �29�

The exact time-dependent solution of �27� can be found by
integration of the energy equation �29� in terms of elliptic
functions. In particular, the �scaled� period �p of the piston
oscillations, for x0= 1

5 , reads

�p = 	2�
x0

1/2 dx
	U�x0� − U�x�

� 1.456. �30�

Figure 12 clearly shows that the estimated period of oscilla-
tions, obtained from MD simulations, approaches quite rap-
idly the corresponding theoretical value as the piston mass
increases. For instance, the discrepancy is about 0.7% for

FIG. 11. Piston position versus time for M =2048. The dotted
line represents MD results, the dashed line the simple adiabatic
theory, Eq. �14�, and the full line the improved adiabatic theory
predictions. The other parameters are as in Fig. 10.
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M =2048, far below the estimated statistical errors �about
2%�. Note that Eq. �14�, based on the simple adiabatic
theory, leads to a discrepancy of about 6%, which is nearly
ten times worse than the improved adiabatic theory.

Furthermore, we observe that the “kinetic energy” in �29�
vanishes at xp=x0, as required by the initial condition, but
also at xp= 1

2 , implying that the extreme position reached by
the piston, in an ideal system, is the middle of the system.
Now, since the principal effect of viscous dissipation is to
slow the piston’s motion, we arrive at the conclusion that the
piston will never cross the middle of system, independently
of the parameter values and of its initial position. This some-
how unexpected prediction is nicely confirmed by MD simu-
lation results presented in Fig. 13.

Finally, even though the above improved adiabatic theory
does not include dissipation, one expects that the “final” po-
sition of mechanical equilibrium, xeq, will correspond to the
minimum of U�x�, namely

xeq =
x0 − 	x0�1 − x0�

2x0 − 1
. �31�

Again this is �for large mass� in perfect agreement with MD.
For example, for x0= 1

5 and M =2048, the estimated �me-
chanical� equilibrium position from MD is 0.34±.02, while
the result �31� predicts xeq= 1

3 .

V. INCLUDING DISSIPATION

In a dilute gas, the bulk viscosity coefficient 
�0 and the
shear viscosity coefficient � is independent of the density,
but depends on temperature as �cf. Eq. �8��:

� = �0
	T, �0 �

1

2d
	mkB

�
. �32�

Inserting this result into �17� and using relations �24�, one
finds the following dimensionless closed piston equation of
motion:

d2xp

d�2 =
x0

xp
2 −

1 − x0

�1 − xp�2 − �
dxp

d�
� x0

1/2

xp
3/2 +

�1 − x0�1/2

�1 − xp�3/2� , �33�

where

� = �0Ly� 2

M̂NkB
�1/2

�
Ly

2d� 2m

�M̂N
�1/2

�34�

is a dimensionless friction coefficient. For M =2048, the nu-
merical solution of this equation has an amplitude discrep-
ancy, compared with MD simulation results, of about 6%
after 15 periods of oscillation �recall that it was below 1%
for the general theory presented in Sec. III, Fig. 10�. The
discrepancy, however, drops to about 2% for M =4096 and to
less than 1% for M =8192. We thus conclude that, for suffi-
ciently large piston mass, Eq. �33� describes correctly the
piston motion from an arbitrary initial position x0 to the cor-
responding mechanical equilibrium rest position xeq, given
by �31�.

Unfortunately, an analytical treatment of Eq. �33� appears
to be quite difficult in view of the highly nonlinear character
of the viscous damping term. Further simplifications can be
achieved provided we restrict ourselves to initial piston po-
sitions x0 close to the thermodynamic equilibrium position of
1
2 . Recalling that x0�xeq�

1
2 �cf. Eq. �31��, one may linearize

xp around xeq in Eq. �33�, obtaining the following damped
harmonic oscillator equation of motion �see also Ref. �13��:

d2xp

d�2 + 2�
dxp

d�
+ �0

2�xp − xeq� = 0 �35�

with

� =
�

2
� x0

1/2

xeq
3/2 +

�1 − x0�1/2

�1 − xeq�3/2� = 2� + O„�x0 − 1/2�2
… �36�

and

�0
2 =

2x0

xeq
3 �1 − xeq�

= 16 + O„�x0 − 1/2�4
… . �37�

The solution of �35� reads

xp��� = A exp�− ���cos��� + �� , �38�

where �= ��0
2−�2�1/2 is the angular frequency, A= �x0

−xeq� / cos���, and tan���=−� /�. The period �h of oscilla-
tions is thus given by

�h =
2�

��0
2 − �2�1/2 �

2�

�0
�

�

2
. �39�

To check the validity of �35�, we consider another set of
microscopic simulations, with the same parameter values as
before, except that the initial piston position is now set to
x0=2/5 �instead of 1/5�. In Fig. 14 we compare the density

FIG. 12. The estimated �scaled� period of oscillations of the
piston versus M for x0= 1

5 . The statistical errors are about 2%. The
dashed straight line represents the corresponding adiabatic approxi-
mation, Eq. �30�. The other parameters are as in Fig. 10.

FIG. 13. The piston first extreme position versus M for x0= 1
5 .

Estimated statistical errors are about 1%. The other parameters are
as in Fig. 10.
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as a function of time, as obtained from MD, with its corre-
sponding harmonic approximation, based on �38�. Surpris-
ingly, a quite good quantitative agreement is observed al-
ready for M =1024 where the period of oscillations,
estimated from MD simulations, is about 1.556±0.030,
whereas �39� gives 1.57, a discrepancy of less than 1.5%.
However, this discrepancy does not improve for larger piston
mass. Detailed numerical analysis shows that the validity of
the harmonic approximation is basically controlled by the
proximity of the initial piston position to the thermodynamic
equilibrium position �middle of the system�, provided M
�512. Nevertheless, this approximation proves to be quite
useful in providing explicit expressions for the main charac-
teristics of the piston dynamics.

VI. VALIDITY OF THE SIMPLE THEORY

The greater the mass of the piston, the slower its motion.
From this intuitive observation, we derived a simple theory
that accurately describes the dynamics of the system, pro-
vided that the piston mass is sufficiently large. Yet so far we
have not specified what is meant by the criterion of a “suf-
ficiently large” piston mass. Large compared to what? How
do the other parameters of the system, such as the system
dimension Lx�Ly or the fluid mass mN, influence the valid-
ity of the theory? To answer these questions, we need to
determine the characteristics of the piston’s dynamics, such
as the period of oscillations, the relaxation time, and so forth,
in terms of the basic parameters of the system.

We first consider the period of oscillations and notice that
its value, obtained in MD simulations, varies only from 1.45
to 1.60 �in dimensionless units� for a broad range of piston
mass �64�M �8192� and for widely separated initial posi-
tions �x0=0.2 or x0=0.4�. The harmonic value �h=� /2
�1.57 thus provides a relatively good estimate of the
oscillation period. Switching back to the original time
variable �i.e., �→ t�, the piston’s period of oscillations is
�cf. Eq. �26��:

tp =
�	2

2vth
Lx� M̂

mN
�1/2

. �40�

Recall that vth= �kBT0 /m�1/2 is the thermal velocity �equal to
1 in system units�.

Interestingly, for fixed N and Lx the period scales as the
square root of the renormalized piston mass, �M +mN /3�1/2,

and not as M1/2. For sufficiently large piston mass, as com-
pared to the fluid mass, these scalings are equivalent, but
when the two masses are of the same order of magnitude we
have the opportunity to determine whether the renormaliza-
tion of the piston mass is a spurious artifact of the linear fluid
velocity assumption, or if it has a fundamental, physical ori-
gin. Detailed MD simulations clearly indicate the latter. This
is shown in Fig. 15 where the period of oscillations, scaled
either by �M /mN�1/2 or by �M̂ /mN�1/2, versus M, is depicted
for x0=0.2. As can be seen, both sets converge to a constant
value, as the piston mass is increased, but the latter con-
verges much faster than the former. Furthermore, for large M
�M �2048�, the measured value of the period is about 9904,
whereas the harmonic approximation �40� gives 10 663, a
discrepancy close to 7%. This result clearly confirms the
validity of �40� since the MD simulations were done for an
initial piston position of x0=0.2, for which the harmonic ap-
proximation is not accurate.

The situation is quite similar for the relaxation time �−1

�cf. Eq. �36�� where, upon switching back to the original time
variable, one gets

trelax = C
	�

vth
Lx� M̂d

mLy
� . �41�

The numerical constant C depends weakly on the initial pis-
ton position x0 and it is practically independent of M. For
instance, C�x0=0.4��0.50 whereas C�x0=0.2��0.51. Note
that �41� implies that if the ratio M /Ly is constant, then the
relaxation time is nearly independent of the piston’s mass. As
shown in Sec. II, this prediction is nicely confirmed by MD
simulations for M �256 �cf. Fig. 4�. Note that a similar re-
laxation time was predicted by Crosignani and Di Porto �13�
for a piston embedded in a point-particle �collisionless� fluid
maintained in a Maxwellian thermal equilibrium state.

Another interesting quantity is the maximum piston
speed, which is reached at about the first quarter period of
oscillation, after the piston is released. The corresponding
piston position is the mechanical equilibrium position xeq.
Neglecting viscous dissipation, relation �29� gives �in the
original space and time variables�

�vp�max = vth
	2 − U�xeq��mN

M̂
�1/2

. �42�

This implies that, in ideal systems, the maximum speed of a
massive piston is proportional to the square root of the ratio

FIG. 14. The left and right density profiles versus �scaled� time,
for M =1024 and x0=2/5. The other parameters are as in Fig. 10.

FIG. 15. The piston period of oscillations versus mass, scaled

either by �M /mN�1/2 �dashed line� or by �M̂ /mN�1/2 �solid line�, for
an initial piston position x0= 1

5 . The other parameters are as in Fig.
10.
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of the fluid mass and the �renormalized� piston mass, the
proportionality factor being only a function of the piston’s
initial position x0 �cf. Eq. �31��. Detailed MD simulations
confirm this conclusion as shown in Fig. 16 where the maxi-
mum piston speed, scaled either by �mN /M�1/2 or by

�mN /M̂�1/2, versus M, is presented for x0=0.2. As the piston
mass is increased both sets of data converge to a constant
value but here again the rate of convergence of the latter data
set, using the renormalized mass M̂, is much faster than for
the set scaled by M. Furthermore, the measured maximum
piston speed for the largest piston mass �M =8192� is about
0.446, as compared with the ideal system approximation �42�
prediction of 0.447.

There is a simple explanation for this remarkable agree-
ment: The MD simulations, presented in Fig. 16, were per-
formed for fixed system width �Ly =48�. In this scenario the
relaxation time increases linearly with piston mass �cf. Eq.
�41��, diminishing significantly the effect of viscous damping
on the early stage dynamics �e.g., t� tp�. Therefore, in this
initial stage, the system behaves essentially as if it were an
ideal system, for which �42� is exact. For this very same
reason, the discrepancy with the theory increases with Ly,
reaching a value of about 7% when the relaxation time be-
comes comparable to the period of oscillations. Nevertheless,
since the principal effect of viscous dissipation is to slow the
piston’s motion, its maximum velocity is bounded by the
corresponding ideal system limit, given by Eq. �42�. The
general result is thus obtained upon replacing the equality
sign in Eq. �42� by a bounding inequality sign �i.e., by “�”�.
Note that in all cases the maximum piston speed remains
well below the sound speed, 	�kBT0 /m=�1/2vth, so shock
waves are not produced by the piston’s motion �22�.

Relations �40�–�42� completely characterize the piston dy-
namics. Although their explicit form has been derived di-
rectly from the �damped� harmonic approximation, detailed
MD simulations show that, for sufficiently large piston mass,
they give the correct functional form over a broad range of
system parameters, including the piston’s initial position x0
�cf. Figs. 15 and 16�. Recalling that, in system units, the
thermal velocity, the particles’ mass, and their diameter are
all set to unity �i.e., vth=d=m=1�, one may summarize our
basic results as

tp 
 Lx� M̂

Mf
�1/2

, �43�

�vp�max 
 � M̂

Mf
�−1/2

, �44�

trelax 

Lx

Ly
M̂ , �45�

where Mf =mN is the fluid mass �recall that M̂ =M +mN /3�.
For completeness, we also note that the piston cannot cross
the thermodynamic equilibrium position �in our case, the
middle of the system�, regardless of its initial position, pro-
vided its initial velocity is zero; this result was proven is Sec.
IV �cf. Fig. 13�.

The results derived above are quite helpful for under-
standing the characteristics of the piston dynamics in terms
of the main system parameters. But they are not sufficient for
establishing the limit of the validity of our simple theory.
This issue can be addressed indirectly by the following argu-
ment. The theory rests on one major assumption: the linearity
of the fluid velocity profile. As we have shown, this assump-
tion, in turn, implies that the state of the fluid remains ho-
mogeneous. On the other hand, the piston’s motion generates
inhomogeneous hydrodynamic modes that propagate through
the fluid, eventually damping out by viscous dissipation. For
a closed, near equilibrium system of length L, the relaxation
times of these inhomogeneous modes are of the order of �21�

�k � ��eq

�eq

k2�2

L2 �−1

, k = 1,2, . . . . �46�

One can thus expect that the system remains homogeneous if
the relaxation time of the slowest �k=1� inhomogeneous
mode does not exceed the half-period of the piston oscilla-
tions, given by Eq. �40�. Noticing that near equilibrium the
compartment length is about Lx /2, the required condition
reads

��eq

�eq

4�2

Lx
2 �−1

�
�	2

4vth
Lx� M̂

mN
�1/2

. �47�

For a dilute Boltzmann gas, ��� �cf. Eq. �32��, so that this
relation leads to

M

mN
+

1

3
�

2

�5Lx
2neq

2 d2. �48�

For the MD simulation parameters �neq=0.002 778, Lx
=4800, N=640, d=1�, one gets M �530, which is quite
close to the result that we obtained in the corresponding
microscopic simulation. We thus conclude that this simple
argument, based on the separation of time scales for inertial
versus viscous processes, yields a good estimate for the limit
of validity of our theory.

VII. CONCLUDING REMARKS

In this paper we have analyzed the dynamics of the adia-
batic piston using both microscopic molecular dynamics
�MD� simulations and the standard hydrodynamic theory. For
a sufficiently large piston mass, the dynamics splits in two

FIG. 16. The piston maximum speed �vp�max versus mass, scaled

either by �mN /M�1/2 �dashed line� or by �mN /M̂�1/2 �solid line�, for
an initial piston position x0= 1

5 . The other parameters are as in Fig.
10.
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well-separated time regimes. Starting from a nonequilibrium
configuration �i.e., different pressures in each compartment�
the piston performs a damped oscillatory motion reaching, in
the first time regime, an intermediate state of “mechanical
equilibrium” with the same pressure but different densities
and temperatures in each compartment. In the second �much
longer� time regime, which is dominated by the fluctuation-
driven heat transfer by the piston, a slow relaxation brings
the system to the thermodynamic equilibrium state with
equal temperatures and densities. While hydrodynamics is
unable to describe the piston dynamics in the long time re-
gime, it quite accurately predicts all the details of the first
time regime, as demonstrated by the excellent agreement
with MD simulations, even for relatively small piston mass
�about a third of the fluid mass�.

At first sight, the formulation of an equation of motion for
a massive piston seems simple. Since the motion of the pis-
ton slows down as its mass, M, is increased, it is reasonable
to assume that, in the limit of large M, each compartment
undergoes an �quasi-static� adiabatic transformation. On the
basis of this idea, a macroscopic theory leading to a simple
closed piston equation of motion was derived earlier
�14,17,18�. This theory, however, neglects completely the
motion of the embedded fluid and the associated dissipative
processes. Consequently, its predictions are in poor agree-
ment with molecular simulations.

Instead of imposing a zero fluid velocity throughout the
system, a less restrictive assumption is to consider a linear
fluid velocity profile. With this assumption, and neglecting
the spatial dependence of the viscosity coefficient, we have
shown that the fluid density and temperature of each com-
partment remains homogeneous in the course of time, if ini-
tially so. The hydrodynamic equations then reduce to a set of
three coupled ordinary differential equations that lead to
quantitative agreement with MD even when the piston mass
is comparable to the fluid mass.

For larger piston mass �about eight times the fluid mass�,
the viscous heating term in the temperature equation may be
neglected. With this approximation, we finally derived a
closed piston equation of motion that remains valid from an
arbitrary initial state up to the final mechanical rest state.
Once more, the validity of this simple equation is fully con-
firmed through extensive MD simulations. Note that for ini-
tial piston positions sufficiently close to the equilibrium
state, this equation reduces straightforwardly to a damped
harmonic oscillator equation �cf. Eq. �35��.

The main advantage of the �damped� harmonic approxi-
mation is that it allows us to express the basic characteristics
of the piston dynamics, such as the period of oscillations, the
maximum piston velocity, and the relaxation time, in terms
of the main system parameters �cf. relations �40�–�42��. Re-
markably, detailed MD simulations show that, for large
enough piston mass, these relations feature the correct func-
tional form over a broad range of system parameters, includ-
ing the piston’s initial position x0, their validity being only
limited by the validity of hydrodynamic description �cf. re-
lations �43�–�45��. One may also recall one last interesting
result which concerns the extreme position reached by the
piston. As proven in Sec. III, this quantity is bounded by the
thermodynamic equilibrium position, i.e., the piston can

never cross the thermodynamic equilibrium position �in our
case, the middle of the system�, regardless of its initial posi-
tion, provided its initial velocity is zero.

The success of the theory presented here for the adiabatic
piston is yet another confirmation of the robustness of hydro-
dynamics. As demonstrated by laboratory experiments and
molecular simulations �23–25�, hydrodynamics remains
valid for astronomically large nonequilibrium constraints.
Breakdown occurs, however, when the length or time scale
of the problem becomes comparable to the molecular �mean
free path or time� scale �e.g., �26–28��. Hydrodynamics re-
mains valid since we consider physical scales, for both pis-
ton and fluid, that are much larger than the molecular scale.
This point raises a related question: What is the limit of
validity of the present theory in terms of the main system
parameters? As mentioned above, the theory, derived from
hydrodynamics, rests on one major assumption: the linearity
of the fluid velocity profile. This assumption, in turn, implies
that the scalar hydrodynamic variables �i.e., density and tem-
perature� remain homogeneous in the course of time, if ini-
tially so. Such a homogeneous behavior is expected to occur
if the relaxation time of the slowest inhomogeneous hydro-
dynamic mode, generated by the piston motion, does not
exceed half of the period of oscillations. This general argu-
ment leads to an inequality, imposing a limiting value for the
ratio of the piston to fluid mass above which the theory is
expected to be valid. The predicted value for this ratio is in
good agreement with all our observations in MD simulations.

It is important to recall that the present theory’s derivation
rests mainly on physical arguments. More precisely, we
started with an assumption, examined the consequences of
this assumption, and then derived the physical conditions
under which those consequences are expected to be valid. Of
course, we have used extensive MD simulations to check,
step by step, all the details of the theory. Nevertheless, no
matter how plausible, we do not yet have a mathematical
proof of the validity of our main assumption, i.e., the linear
fluid velocity profile assumption. A complete mathematical
justification of this assumption requires an appropriate
asymptotic expansion of the hydrodynamic equations in the
limit of large piston mass. So far, we have not been able to
achieve this goal with the required mathematical rigor.

Finally, one may ask whether the present theory can be
extended to include the long-time scale relaxation toward
thermodynamic equilibrium. The dynamics of that regime
are dominated by the fluctuation-driven heat transfer due to
the piston’s Brownian motion. While there is no fluctuation
source in conventional hydrodynamics, the question arises as
to whether Landau-Lifshitz fluctuating hydrodynamics �19�
could be used to describe this regime. At present, we do not
have a clear answer to this question. The fluctuating hydro-
dynamic equations are much more difficult to handle analyti-
cally than their deterministic forms, but numerical tech-
niques are known �29�. The main difficulty with this
approach is the numerical instability that occurs if energy
conservation is not rigorously imposed in the scheme de-
signed to integrate the fluctuating hydrodynamic equations
�recall that the global system is thermally isolated�. This
problem proves to be quite delicate to handle, mainly be-
cause of the moving boundary conditions, but work in this
direction is in progress.
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APPENDIX A

We start with the continuity equation �1�, focusing first on
the left compartment. Using the explicit form of the velocity
�15�, one finds

��L

�t
= − �L

vp

Xp
− vp

x

Xp

��L

�x
. �A1�

Let

�L�x,t� =
mN

2Xp�t�Ly
�̂L�x,t� . �A2�

Clearly,

1

Xp�t��0

Xp�t�

�̂L�x,t�dx = 1, �A3�

which simply expresses the conservation of the fluid mass in
the left compartment. Inserting �A2� into �A1�, one gets

��̂L�x,t�
�t

= − vp
x

Xp

��̂L

�x
. �A4�

The general solution of this equation reads �recall that vp
=dXp /dt�

�̂L�x,t� = F� x

Xp�t�
� , �A5�

where F is an arbitrary function satisfying initial and bound-
ary conditions. In particular, since initially the system is ho-
mogeneous,

�̂L�x,t = 0� = F� x

Xp�0�� = const, �A6�

which, using the mass conservation relation �A3�, implies
that

�̂L�x,t� = 1. �A7�

Straightforward calculations lead to the same conclusion for
the right compartment, so

�L�t� =
mN

2LyXp�t�
, �R�t� =

mN

2Ly�Lx − Xp�t��
. �A8�

We thus conclude that at this level of approximation �linear
velocity profile� the density of the fluid remains homoge-
neous in time, if initially so.

APPENDIX B

The total energy of the system reads

E = Ly�
0

Xp �1

2
�LvL

2 + �LeL�dx + Ly�
Xp

Lx �1

2
�RvR

2 + �ReR�dx

+
1

2
Mvp

2, �B1�

where �e is the internal energy density of the fluid. Since the
total energy is conserved, its time derivative is zero. Using
the explicit expressions of velocity �15� and density �16� to
evaluate the integral over the space of the fluid kinetic en-
ergy, one finds

0 = Ly
�

�t��0

Xp

�LeLdx + �
Xp

Lx

�ReRdx� + �M +
mN

3
�vp

dvp

dt
.

�B2�

Using the thermodynamic relation

de = cvdT + �P − T� �P

�T
�

�
�d�

�2 , �B3�

one obtains from �1� and �3�

��e

�t
= −

�

�x
v�e − P

�

�x
v +

�

�x
	

�

�x
T + �� �v

�x
�2

, �B4�

where �=
+�. Given the boundary conditions �5�, it then
follows that

�

�t
�

0

Xp

�LeLdx = �vp�LeL�x=Xp
+ �

0

Xp �

�t
��LeL�dx ,

=− P̄Lvp + �̄L
vp

2

Xp
�B5�

whereas

�

�t
�

Xp

Lx

�ReRdx = � − vp�ReR�x=Xp
+ �

Xp

Lx �

�t
��ReR�dx

= + P̄Rvp + �̄R
vp

2

Lx − Xp
, �B6�

where P̄ and �̄ stand for the space average of P and �,
respectively. Inserting �B5� and �B6� into �B2�, one readily
finds

M�1 +
mN

3M
�dvp

dt
= Ly�P̄L − P̄R� − Lyvp� �̄L

Xp
+

�̄R

�Lx − Xp�
� .

�B7�

APPENDIX C

We start with the hydrodynamic equation for temperature
�3� and recall that the density is homogeneous but remains a
function of time through the piston position Xp�t� �cf. Eq.
�16��. One may thus write the function ��n�, defined in �7�,
as ��n�= �̂�Xp�. Furthermore, as discussed in Sec. III, the
transport coefficients are assumed to depend only on the
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“global” space averaged state variables, and not on their lo-
cal values. To avoid cumbersome notations, we shall write
them as a function of time, using their very same symbols.

For instance, �=�(��t� , T̄�t�)
��t�, where T̄�t� stands for
the spatial average �homogeneous� temperature.

Using the explicit form of the velocity �15� and density
�16� and noticing that for a two-dimensional Enskog gas cv
=kB /m, the temperature equation for the left compartment
�we drop the subscript “L”� reads

�T

�t
= − x

vp

Xp

�

�x
T − T

vp

Xp
�̂�Xp� +

2Ly

kBN
�Xp

�

�x
	

�

�x
T +

��t�
Xp

vp
2� .

�C1�

To solve this equation, we first define the function � as

��t� = �
Xp�0�

Xp�t� �̂�
�



d
 �C2�

so that ��t=0�=0. We next introduce the auxiliary function
��x , t�,

T�x,t� = e−��t����x,t� +
2Ly

kBN
�

0

t

dt�
��t��
Xp�t��

vp
2�t��e��t��� .

�C3�

Obviously, ��x , t� obeys the same initial and boundary con-
ditions as T�x , t�, i.e.,

��x,t = 0� = T0, � ��

�x
�

x=0
= � ��

�x
�

x=Xp�t�
= 0. �C4�

Inserting �C3� into �C1�, one readily finds

��

�t
= − x

vp

Xp

�

�x
� +

2Ly

kBN
Xp

�

�x
	

�

�x
� . �C5�

We finally proceed to the change of variable

� =
x

Xp�t�
, 0 � � � 1. �C6�

Using the chain rule, and recalling that vp=dXp /dt, one ob-
tains

����,t�
�t

=
2Ly

kBN

�

��

	

Xp�t�
�

��
���,t� �C7�

with initial and boundary conditions �cf. Eq. �C4��

���,t = 0� = T0, � ����,t�
��

�
�=0

= � ����,t�
��

�
�=1

= 0.

�C8�

The result �C7� shows that � obeys a heat equation in an
adiabatically closed vessel. Therefore, if � is uniform ini-
tially, then it remains so in the course of time. In particular, if
��t=0�=T0, then ��t�=T0, for all time.

We thus arrive at the conclusion that, within the linear
velocity assumption, both the density and the temperature
�and thus the pressure� remain spatially homogeneous in the
course of time, if initially so. In particular, the temperature
equation takes the following simple form

�T

�t
= − T

vp

Xp
�̂�Xp� +

2Ly

kBN

��t�
Xp

vp
2. �C9�

Replacing ��x , t� by T0 in the relation �C3�, one obtains

T�x,t� = e−��t��T0 +
2Ly

kBN
�

0

t

dt�
��t��
Xp�t��

vp
2�t��e��t��� .

�C10�

Since ��t�=�(T�t�), this expression is just a convenient way
of writing the equation �C9�. On the other hand, the last term
in �C10� represents the viscous heating effect and can be
neglected for the case of a large piston mass since it is pro-
portional to the square of the piston velocity. With this as-
sumption,

T�t� = T0e−��t�. �C11�
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