Homework 6 (Due Thursday, February 16th)

1. Consider two systems, A and B, with states $n_{A}=1, \ldots, \Gamma_{A}$ and $n_{B}=1, \ldots, \Gamma_{B}$.
(a) We define the entropy of system A as

$$
S_{A}=-k \sum_{n_{A}} \mathcal{P}_{A}\left(n_{A}\right) \ln \mathcal{P}_{A}\left(n_{A}\right)
$$

and similarly for system B. Show that if we consider the combined system, A and B together, with the assumption that the interaction between the systems A and B is negligible, that entropy is extensive. Specifically, show that by assuming that $\mathcal{P}_{A B}\left(n_{A}, n_{B}\right)=\mathcal{P}_{A}\left(n_{A}\right) \mathcal{P}_{B}\left(n_{B}\right)$ we find that $S_{A B}=S_{A}+S_{B}$.
(b) Suppose that we defined the entropy of system A in a more general form as,

$$
S_{A}=-k \sum_{n_{A}} \mathcal{P}_{A}\left(n_{A}\right) f\left(\mathcal{P}_{A}\left(n_{A}\right)\right)
$$

and similarly for system B. Show that the requirement that entropy is extensive means that $f(x)=\ln x$. Again, assume that the interaction between the systems is negligible.
2. (a) Use the derivation in Appendix C of Pathria and Beale replacing equation (C.4) by the integral,

$$
\int_{0}^{\infty} e^{-r} r^{2} d r=2
$$

and show that,

$$
V_{3 N}(R)=\int \ldots \int \prod_{i=1}^{N}\left(4 \pi r_{i}^{2} d r_{i}\right)=\frac{\left(8 \pi R^{3}\right)^{N}}{(3 N)!}
$$

where the integrals are constrained to the region of space such that

$$
0 \leq \sum_{i=1}^{N} r_{i} \leq R
$$

(b) Use this result to formulate the entropy, $S(U, V, N)$, for an extremely relativistic ideal gas using the micro-canonical ensemble. Specifically, assume that the gas has N particles and the energy of each particle is $\epsilon=p c$ where c is the speed of light. There is no interaction energy between the particles. You may assume that the number of states with energy $E=U$ is approximately the same as the number with $E \leq U$.
(c) Show that in an adiabatic process for this gas $P V^{\gamma}$ is constant with $\gamma=4 / 3$.

