Homework 22 (Due Thursday, May 10th)

For the problems below you'll be computing means and variances for fluid properties in a volume element by evaluating averages of the form

$$
\langle X\rangle=\sum_{N=0}^{\infty} \int d \mathbf{v}_{1} \ldots \int d \mathbf{v}_{N} X\left(N, \mathbf{v}_{1}, \ldots, \mathbf{v}_{N}\right) P_{N}(N) P_{v}\left(\mathbf{v}_{1}\right) \ldots P_{v}\left(\mathbf{v}_{N}\right)
$$

The distribution of the velocities, $P_{v}(\mathbf{v})$, for classical particles is the Maxwell-Boltzmann distribution with mean and variance,

$$
\begin{aligned}
\langle\mathbf{v}\rangle & =\int d \mathbf{v} \mathbf{v} P_{v}(\mathbf{v})=\overline{\mathbf{u}} \\
\left.\left.\langle | \delta \mathbf{v}\right|^{2}\right\rangle & =\int d \mathbf{v}|\mathbf{v}-\langle\mathbf{v}\rangle|^{2} P_{v}(\mathbf{v})=\frac{3 k_{B} T}{m}
\end{aligned}
$$

where $\overline{\mathbf{u}}$ is the center-of-mass velocity of the particles. Note that thermodynamic equilibrium does not imply $\overline{\mathbf{u}}=0$ since a system is in equilibrium in all inertial frames of reference.

The distribution for the number of particles, $P_{N}(N)$, depends on the equation of state for the fluid. For the present analysis we take the mean and the variance,

$$
\begin{aligned}
\langle N\rangle & =\sum_{N=0}^{\infty} N P_{N}(N)=\bar{N} \\
\left\langle\delta N^{2}\right\rangle & =\sum_{N=0}^{\infty}(N-\langle N\rangle)^{2} P_{N}(N)=\sigma_{N}^{2}
\end{aligned}
$$

as given. In dense fluids σ_{N}^{2} is small since it is proportional to the fluids' compressibility; in the case of a dilute gas, N is Poisson distributed with $\sigma_{N}^{2}=\bar{N}$.

1. Define the instantaneous fluid velocity as the average velocity of the particles,

$$
\hat{\mathbf{u}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{i}
$$

(a) Show that $\langle\hat{\mathbf{u}}\rangle=\overline{\mathbf{u}}$. Note that you need to exclude the $N=0$ case since it is meaningless to assign an instantaneous velocity when there are no particles. (b) Show that for the variance of instantaneous fluid velocity,

$$
\left.\langle | \hat{\mathbf{u}}-\left.\langle\hat{\mathbf{u}}\rangle\right|^{2}\right\rangle=\frac{3 k_{B} T}{m \bar{N}}\left(1+\frac{\sigma_{N}^{2}}{\bar{N}^{2}}+\ldots\right)
$$

Again, be careful with the case where $N=0$.
2. One may define an instantaneous temperature as,

$$
\hat{T}=\frac{1}{\frac{3}{2} k_{B} N}\left(K-\frac{1}{2} m N|\hat{\mathbf{u}}|^{2}\right) \quad \text { where } \quad K=\sum_{i=1}^{N} \frac{1}{2} m\left|\mathbf{v}_{i}\right|^{2} \quad \text { and } \quad \hat{\mathbf{u}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{v}_{i}
$$

(a) Explain and justify this expression for temperature. (b) Show that $\langle\hat{T}\rangle \neq T$. As in the previous problem, be careful with how you treat the $N=0$ case. (c) Show that the alternative definition,

$$
\hat{T}^{\prime}=\frac{1}{\frac{3}{2} k_{B}(N-1)}\left(K-\frac{1}{2} m N|\hat{\mathbf{u}}|^{2}\right)
$$

gives $\left\langle\hat{T}^{\prime}\right\rangle=T$ (be careful with both the $N=0$ and $N=1$ cases). (d) Explain and justify this new expression for the temperature, specifically the physical meaning behind the change from N to $N-1$ in the second definition.

