Homework 21 (Due Tuesday, May 8th)

1. (a) Show that the probability of a fluctuation goes as

$$
\mathcal{P} \propto \exp \left\{-\frac{1}{2 k C_{p}}(\Delta S)^{2}-\frac{\kappa_{S} V}{2 k T}(\Delta P)^{2}\right\}
$$

(see (15.1.15) in Pathria). (b) Using the above result and

$$
\overline{\Delta V^{2}}=\left(\frac{\partial V}{\partial S}\right)_{P}^{2} \overline{\Delta S^{2}}+\left(\frac{\partial V}{\partial P}\right)_{S}^{2} \overline{\Delta P^{2}}+2\left(\frac{\partial V}{\partial S}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{S} \overline{\Delta S \Delta P}
$$

to show that $\overline{\Delta V^{2}}=k T V \kappa_{T}$ (Hint: From thermodynamics we have $\left.\kappa_{T}=\kappa_{S}+T V \alpha^{2} / C_{P}\right)$.
2. Write a program to simulate the motion of random walkers in one dimension. Call $x_{i}(t)$ the position of walker i at time t; initially all N walkers start at the origin $\left(x_{i}(0)=0\right.$ for $\left.i=1, \ldots, N\right)$. At integer times the walkers flip a coin and take a unit step to the left or to the right with equal probability, so

$$
x_{i}(t+1)=x_{i}(t)+\Re_{i}^{ \pm}
$$

where $\Re^{ \pm}$is +1 or -1 with equal probability. At each time step, after moving all the walkers, compute the variance of their positions,

$$
\left\langle x^{2}\right\rangle=\frac{1}{N} \sum_{i=1}^{N} x_{i}^{2}
$$

Graph $\left\langle x^{2}\right\rangle$ versus t; use at least $N=1000$ walkers advancing to at least $t=100$.
3. Experimental measurements (W. Pospisil, Ann. Phys., vol. 83 pg. 735; 1927) of Brownian motion of soot particles (radius $4 \times 10^{-5} \mathrm{~cm}$) immersed in a water-glycerine solution (viscosity, 2.78×10^{-2} poise; temperature $18.8^{\circ} \mathrm{C}$) indicate that after a 10 -second interval the variance of the horizontal displacement of the particles is $\left\langle x^{2}\right\rangle=3.3 \times 10^{-8} \mathrm{~cm}^{2}$. From this data, determine Boltzmann's constant; use Stoke's law to obtain the mobility from the viscosity.
4. In the Langevin theory, the velocity of a Brownian particle is given by

$$
M \frac{d \mathbf{v}}{d t}=\mathcal{F}(t)=-\frac{\mathbf{v}}{B}+\mathbf{F}(t)
$$

(a) Show that at equilibrium (i.e., as $t \rightarrow \infty$),

$$
\langle\mathbf{v}(t) \cdot \mathbf{F}(t)\rangle=\frac{3 k T}{M B} \quad \text { and } \quad\langle\mathbf{v}(t) \cdot \mathcal{F}(t)\rangle=0
$$

(b) Show that at equilibrium (i.e., as $t \rightarrow \infty$),

$$
\langle\mathbf{r}(t) \cdot \mathcal{F}(t)\rangle=-3 k T \quad \text { and } \quad\langle\mathbf{r}(t) \cdot \mathbf{F}(t)\rangle=0
$$

