Homework 13 (Due Tuesday, March 20th)

1. Show that the equation of state for the nondegenerate $\left(g_{d}=1\right)$ ideal Bose gas may be written in the form of a virial expansion,

$$
\frac{P v}{k T}=1-\frac{1}{4 \sqrt{2}}\left(\frac{\lambda^{3}}{v}\right)+\left(\frac{1}{8}-\frac{2}{9 \sqrt{3}}\right)\left(\frac{\lambda^{3}}{v}\right)^{2}-\ldots
$$

where $v=V / N$ is the volume per particle; see eqns. $(7.1 .13,14)$ in Pathria and Beale. Note that this is a high temperature expansion so you may neglect the low temperature ground state correction (i.e., the term that contributes when $z \approx 1$). Hint: Use the series representations of the Bose integrals $g_{3 / 2}$ and $g_{5 / 2}$.
2. Consider a two-dimensional ideal Bose gas (i.e., particles are on a surface).
(a) Show that

$$
\ln \mathcal{Q}=\frac{A g_{d}}{\lambda^{2}} g_{2}(z)-g_{d} \ln (1-z)
$$

where \mathcal{Q} is the grand canonical partition function, A is the area of the container (i.e. two-dimensional "volume"), g_{d} is the degeneracy factor for the energy levels and g_{2} is a Bose integral.
(b) Show that the number of particles in the excited states diverges as $z \rightarrow 1$ for $T \neq 0$ (i.e., no Bose-Einstein condensation for a two dimensional boson gas).
3. (a) Show that for a 2-dimensional Fermi gas in an area A,

$$
\frac{N}{A}=\frac{g_{d}}{\lambda^{2}} f_{1}(z)=\frac{g_{d}}{\lambda^{2}} \ln (1+z)
$$

and for a 2-dimensional Bose gas,

$$
\frac{N}{A}=\frac{g_{d}}{\lambda^{2}} g_{1}(z)=\frac{g_{d}}{\lambda^{2}} \ln (1-z)
$$

Note that there is no Bose-Einstein condensation in the 2-D Bose gas.
(b) Show that for a 2-dimensional Fermi gas in an area A,

$$
U=\frac{g_{d} A k T}{\lambda^{2}} f_{2}(z)
$$

and that the corresponding result for a 2-D Bose gas is,

$$
U=\frac{g_{d} A k T}{\lambda^{2}} g_{2}(z)
$$

4. (a) Show that the isothermal compressibility, K_{T}, for a Bose gas above the critical temperature is

$$
K_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T, N}=\frac{V}{N k T} \frac{g_{1 / 2}(z)}{g_{3 / 2}(z)}
$$

Hint: Use the series representation to evaluate derivatives.
(b) The standard deviation in the number of particles in a volume V depends on the compressibility, specifically,

$$
\sigma_{N}=\sqrt{\left\langle N^{2}\right\rangle-\langle N\rangle^{2}}=N \sqrt{\frac{k T K_{T}}{V}}
$$

Find σ_{N} for a Bose gas in the high temperature (i.e., non-quantum) limit.
(c) Obtain an expression for σ_{N} in the low temperature limit as T approaches the critical temperature (i.e., condensation temperature) from above. Your expression should contain z but not $g_{\nu}(z)$ (take the appropriate limit). Describe the behavior of σ_{N} in this limit. Hint:

$$
g_{\nu}\left(e^{-\alpha}\right) \approx \frac{\Gamma(1-\nu)}{\alpha^{1-\nu}} \quad 0 \leq \nu<1, \quad 0<\alpha \ll 1
$$

