
Homework 11 (Due Tuesday, March 13th)

1. Graph the fermi integral f3/2(z) from z = 0.1 to 100 on a loglog scale. On the same plot graph the

small z approximation f3/2(z) ≈ z and the large z approximation f3/2(z) ≈ 4/(3
√
π)(ln z)3/2.

2. The chemical potential at T = 0 equals the Fermi energy. Obtain µ in the low temperature limit

(but for T > 0) by keeping the next order in the expansion for f3/2 (z). Specifically, use
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where ϵF is the Fermi energy.

3. In the low temperature limit the Fermi equation of state is,
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Show that the Helmholtz free energy for the ideal Fermi gas at low temperatures is
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where a1 and a2 are constant, positive coefficients, which you need to find. [Hint: Use dA = −PdV−SdT

and integrate on an isotherm; fix the constant of integration by the value at T = 0.]

4 (a) Show that for an ideal Fermi gas,
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Note that this result holds also holds for Bose quantum gases above the critical temperature.

(b) Show that for an ideal Fermi gas,
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Note that the same result holds for a Bose gas with the functions fn/2 replaced with gn/2.

(c) Show that for an ideal Fermi gas,
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Note that the same result holds for a Bose gas with the functions fn/2 replaced with gn/2.

(d) Show that in the low temperature limit the ratio of heat capacities in a Fermi gas is
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and find the numerical constant, A.

1


