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1 The Equations of Motion

1. Consider two disks of radius R, the first rolls on a horizontal surface and the second rolls on top
of the first (see Fig. 1). We may uniquely define the positions by specifying the Cartesian co-ordinates
of the centers of the disks, (z1,y;) and (z2,y2), respectively. However, since the disks roll without
slipping, given the constraints that the first disk remains in contact with the ground and the second
disk remains in contact with the first, we are left with only two degrees of freedom (for simplicity we’ll
only consider the case where the second disk is above the ground).

Suppose we take as our generalized coordinates, ¢; and g2, the angles of rotation for each disk (see
Fig. 1). Take the Cartesian origin at the base of the first disk before rotation so if g1 = g2 = 0 then
21 =0,y = R, x5 =0, and y» = 3R.

(a) Express the Cartesian co-ordinates of the first disk in terms of ¢y, that is, find =1 (¢1) and y1 (¢1)-

(b) Find z2(q1,q2) and y2(q1,q2). Check that your expressions give x5 = x; and y» = 3R when
q1 + g2 = 0; also check that they give 23 = 1 + 2R and y» = R when ¢; + g2 = 90°.]

(c) Repeat part (b) for the case where the disks have different radii, Ry and Ra.

2. Figure 2 shows a rectangular block (mass ms, width we, height hs) that slides freely on an inclined
plane (mass mj, width wy, height h;, angle § = atan(h;/w1)). The plane itself slides freely on a
horizontal surface. For simplicity, only consider the motion when the block is on the plane (i.e., before
it reaches the bottom of the incline).

The position of the inclined plane may be given by the rectangular coordinates of its lower, left
corner, z; and y; (see the illustration below). Similarly, call 25 and y, the coordinates of the lower, left
corner of the block.

(a) Define the following generalized co-ordinates: ¢; is the horizontal displacement of the inclined
plane; ¢- is the distance that the right edge of the block has traveled down the plane. Express ¢; and
g2 in terms of 1, y1, 2, and y».

(b) Express x1, y1, T2, and y»2 in terms of ¢; and ¢».

(c) The total kinetic energy for the system is

T = smq (37 4 97) + $ma (i3 + J3)

Find T(q1, 42, ¢1,G2), that is, express the kinetic energy as a function of the generalized coordinates.
(d) Consider the rectangular coordinates, z!, y{, =5, and y5, defined by the location of the upper,
right corner of each object. Repeat parts (a)-(c) for these coordinates.

Figure 1: Two disks of radius R, the first rolls on a horizontal surface and the second rolls on top of
the first disk.
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3. Consider the block and inclined plane system from the previous exercise (see Fig. 2). There is no
friction but a constant downward gravitational force (i.e., acceleration g) acts on the two objects.

(a) For this system, find the Lagrangian, L(q1, g2, q1,q2), as L =T — U where U is the gravitational
potential energy and T is the kinetic energy (see previous exercise).

(b) Using Lagrange’s equation find the first equation of motion and express it in the form §; =
f1(G2, m1,m2,0).

(c) Using Lagrange’s equation find the second equation of motion and express it in the form §» =
f2(gam1am270)'

(d) Graph G2/g versus 6 for the following cases: mji > ma; mi = ma; and m; € my. Use a
logarithmic scale on the vertical axis and a linear scale on the horizontal axis (i.e., use a semi-log scale).

(e) Describe, in general terms, how the objects move in the limits m; > ms and m; < mo.

4. (a) From (5.10) in LL, the Lagrangian for a particle moving under a constant force is,
L(r,v)=imv> +F-r

Use this to formulate the Lagrangian for the simple pendulum in the z — y plane following the notation
in Problem 1 on pg. 11 (take m; = m, ¢, = £, ma =0, {5 = 0).
(b) Formulate the Lagrangian in Problem 1 on pg. 11, filling in any steps that LL skip.

5. (a) Consider a system with the following Lagrangian (see Problem 2, page 11 of LL)
L= %mlj?2 + %mg(j:2 + 2&¢l cos d + gi)2£2) + magl cos ¢

where ¢ = z and g2 = ¢ are the generalized co-ordinates. Using Lagrange’s equations, find the
equations of motion and show that if # = 0 then one of the equations of motion reduces to the equation
of motion of a simple pendulum and the other equation of motion reduces to the result that the horizontal
acceleration of particle 2 is zero.

(b) Consider a system with the following Lagrangian (see Problem 4, page 12 of LL)

L = mya®(6? + Q% sin® 0) + 2mya®6? sin® 0 + 2(my + my)ga cosf

m,
E a, X hy
— 0% %) i
- *: (Xllxyl) 0 A 4
Origin

Figure 2: Rectangular block (mass ms, width ws, height ho) slides freely on an inclined plane (mass
my, width wy, height hy, angle § = atan(hy /w;)). The plane itself slides freely on a horizontal surface.
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Figure 3: Bead, mass m, sliding freely on a straight horizontal wire rotating with angular velocity (2.

where ¢; = 6 is the generalized co-ordinate. Using Lagrange’s equations, find the equation of motion

and show that if § = § = 0 then
(my + ma)g

6 = acos
mya$)?

which is the steady-state angle (i.e., the angle if the motion is steady).

6. Consider a bead, mass m, sliding freely on a straight wire; the wire rotates about the origin in the
zy plane with a constant angular velocity €.

(a) Find the Lagrangian, L(r, 7).

(b) From the Lagrangian, find the equation of motion.

(c) Solve the equation of motion to obtain ().

(d) From part (c), find the initial velocity for which r(¢) — 0 as t — oo.
(e) Show that for ¢+ < |©2]~! the solution from part (c) is

1
r(t) & ro + vot + §aoﬂ2t2,

where rg = r(0) and vy = 7(0) are the initial position and velocity. That is, the particle initially moves
with an approximately constant acceleration of ag; obtain an explicit expression for ag.

7. Consider a particle (mass m) constrained to move along a straight line (like a bead on a frictionless
wire); see Fig. 4. The line is at a fixed angle o from the z-axis and rotates with constant angular
velocity, 2, so ¢ = Q. A constant external field acts on the particle, exerting a downward force of
magnitude mg.

(a) Find the Lagrangian L(z,2) =T — U where T is the kinetic energy of the particle and U = mgz
is the potential energy.

(b) From the Lagrangian obtain (but do not solve) the equation of motion.

(c) From the equation of motion show that a particle initially at rest and located at z = z; where
20 = g/(92%tan? o) will remain at zy and that a particle initially at rest and located above (or below)
the point zg will move continuously upward (or downward).

(d) Solve the equation of motion and obtain an explicit expression for z(t), fixing the constants in
the solution of the ODE by using the initial conditions, z(0) and 2(0).
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Figure 4: Bead (mass m) constrained to move on a wire at fixed angle « that rotates with angular
velocity, 2; downward gravity force is mg.

8. Consider a variant of the system in Problem 4 (pg. 12 in LL) for which two point masses, m, are
attached to an axle by massless rods of different lengths. The upper rods (length a;) are attached to
the axle at a fixed hinge point so the angle 6 is allowed to vary. The lower rods (length as) are attached
to a point mass m2, which freely slides up and down along the axis. The axle and the masses m; rotate
about the vertical axis with constant angular velocity ¢ = (2.

(a) Taking the top hinge as the origin and the z axis pointing up the axis, express the z, y, and 2
coordinates of the masses in terms of the spherical co-ordinate angles,  and ¢.

(b) Find the Lagrangian L(6, ¢, 6, 45) taking gravitational acceleration as —gZ.

(c) Show that your result from part (b) agrees with the Lagrangian given in your textbook for the
case where a1 = as = a.

(d) Find the equation of motion for #(t) when a; = as = a.

(e) Using your result from part (d), find the steady state angle 6y, that is, if 6 = 6 = 0 then find
6(t) = 6p. From your result compute the steady state angle for m; = my when aQ2? = g and when
aQ? = 4g.
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2 Conservation Laws

1. Consider a system with the following Lagrangian, expressed in Cartesian co-ordinates,
L= %m(gl?2 + 92 4 2%) — %k(mQ +97)

where m and k are constants.

(a) Is the energy, E, conserved? Justify your answer.

(b) Is the z-component of linear momentum, p, = P - X, conserved? Is the z-component of linear
momentum, p, = P -z, conserved?

(c) Is the z-component of angular momentum, M, = M - X, conserved? Is the z-component of
angular momentum, M, = M - z, conserved?

2. Consider a free particle constrained to move on the surface of a cylinder of radius R whose central
axis is along the z-axis. There is no gravitational potential.

(a) Write down the Lagrangian and, from inspection, explain why we immediately know that the
energy, F/, and the z component of angular momentum, A, are constant in time.

(b) Using the equation of motion explicitly confirm that E and M, are constant in time.

(c) The z component of angular momentum, M,, is not constant in time. Find its time derivative
and express it as M, = f(o, gi), z). For what special cases is M, constant?

(d) Finally, consider a free particle constrained to move on the surface of a sphere of radius R whose
center is at the origin. Explicitly show that the magnitude of the angular momentum is constant.

3. Consider a system with the following Lagrangian (see Problem 4, page 12)
L(8,0) = mya®(6* + Q2 sin” ) + 2m2a?6® sin®  + 2(my + my)ga cos

(a) Find the energy of the system, E(f, 9) Note that the Lagrangian does not depend explicitly on
time so this energy is constant (i.e., integral of the motion).

(b) Find the kinetic energy, T'(6,6) and potential energy U(6).

(c) Show that E # T + U; this is not a contradiction of equation (6.2) since this mechanical system
is not closed.

(d) Find the generalized momentum and the generalized force.

(e) For this system, under what conditions is the generalized momentum constant?

4. Consider the following system (see Fig. 5): Two particles (masses m; and ms) are connected by a
string of length ¢. The first particle moves freely on the zy plane (as on a table top) while the second
moves freely along the z axis (the string passes through a hole at the origin). Gravitational acceleration,
g, acts in the negative 2z direction. )

(a) Write the Lagrangian L(r,0,7,6) where r and 6 are the cylindrical co-ordinates of the first
particle.

(b) Find the energy E and M., the angular momentum about the z axis and explain how we know
that they are constant for this system. Are there any other integrals of the motion?

(c) Show that the motion may be expressed in the form 7 = f(r, E, M,).

(d) Graph |7| versus r taking the values my = my =1, g = 1, M, = 1, for the cases E =1, 2, 4,
and 8.

(e) For E=1.0,1.1,...,7.9,8.0, graph the minimum and maximum values of r. Take m; = ms =1,
g=1 M, =1.
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3 Integration of the Equations of Motion

1. Consider a particle (mass m and energy E) moving in one-dimensional motion with the potential

mgr x>0
U(a:):{ of) <0

where g > 0.
(a) Find the turning points, 1 and z», of the motion.
(b) Find the period of oscillation T'(E).

2. A particle (mass m, position ) moving in a potential U(z) is found to have a period that depends

on its energy E as
[ 2me?
T = 0<E<U,
m Uy— FE - 0

where ¢ and Up are constants, with units of length and energy, respectively.

(a) Find the potential U(x); you may assume that it is symmetric. [Hint: You will probably need
to consult integral tables and maybe look up some hyperbolic trig identities.]

(b) Sketch the potential U(z) versus z, indicating U = Uy and z = £/ on your graph.

(c) Show that in the limit E <« Uy, the potential is approximately quadratic; writing the potential
of simple harmonic motion as Uspam(z) = %ka, find k in terms of Uy and ¢. Show that in this limit

the period is that of simple harmonic motion, which is Tsgy = 2m/m/k.

3. In Problem 2, pg. 40, Landau and Lifshitz give the solution for a particle moving in a central field
U = —a/r?, a > 0. Specifically, for bounded motion (E < 0), they give the results for r(¢) as,

1 |E| 2ma
= =4/ =375 cosh -1
r a—M2/2mCOS ¢ ]

M2
1 m M?2
t=—|— (Br2 - —
|E|\/2<’“ 2m+0‘>

Part A: This part requires using a computer to produce several graphs. For all the computations below,
take the values E = —1/4, m =1, a = 4, M?/2m = 3.

and for t(r) as,

. e,

Figure 5: Two particles (masses my, ms) connected by a string (length £). The first moves on the zy
plane; the second moves along the z axis (downward gravitational acceleration, g).
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(a) Compute 7 for various values of ¢ (at least 20 values between ¢ = 0 and 37) and make an
accurate graph of r versus ¢.

(b) Graph the trajectory by graphing (r,¢) in polar coordinates or converting and graphing the
values in Cartesian co-ordinates, (z,y).

(c) For the values of r obtained in part (a), find the corresponding values of ¢ and graph r versus ¢.

(d) Using the results of parts (a) and (c), graph ¢ versus ¢.
If you write a computer program, include a listing of your program; if you use a simple calculator,
include your tables of values. [Hint: With the parameter values above, the particle reaches the origin
at time ¢ = /8]
Part B: Use equations (14.6) and (14.7) to derive the equations for r(¢) and #(r) given above.

4. Counsider a comet in a parabolic orbit as it passes near the sun (i.e., Kepler problem with E = 0).
Assuming that the Earth’s orbit is circular with radius a.
(a) Show that the time during which the comet is within Earth’s orbit (i.e., » < a) may be written

as
2 2 min min
tin:£T<1+ r ) 1-1
3 a a

where Tmin is the minimum distance from the comet to the sun (perihelion) and 7T is the period of
Earth’s orbit.
(b) Find the maximum time, in days, that a comet in a parabolic orbit can be within Earth’s orbit.

5. Consider a particle, initially at rest, in the attractive central potential U(r) = —a/r at a distance
r = R from the origin. Find the time it takes for the particle to reach the origin and express your result
in terms of T', the period of a circular orbit of radius R for a particle of the same mass.

6. Consider the three-body problem in which three particles (masses m;, ms, and mg, positions ry,
r2, and r3) interact by mutual gravitational attraction. The equation of motion for the first particle

may be written as
G rp —r3
L 2 Gmg—2
lr1 — 123 lr1 —r3f?
with similar equations of motion for the other two particles.

(a) Define the relative position vectors for the three-body problem as

81 =T —I3; S =TI3 —Iy; 83 =TI; —I2

Show that the equations of motion for the relative position vectors are
S;
|sl®

S1 So S3
A= (e 2o )
<|51|3 [sof®  saf

You only need to show this for i = 1 since the result is similar for ¢ = 2 and 3.
(b) Show that when m; = my = ms and A = 0 the three bodies can travel in circular orbits around
the center-of-mass with the relative position vectors forming an equilateral triangle. (Hint: You might

get some clues from the picture below, which shows the more complicated case of m; = mo/2 = m3/3
and A = 0).

§; = —/J/G +m;GA (Z = 1,2,3)

where © = my + ms + mg and
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4 Collisions between Particles

1. Consider the elastic collision of two particles, as described in Section 17. Show that if m; = ms and
|p1 + p2| = 2|mv| then the velocities of the particles after the collision, v{ and v}, are perpendicular.

2. In section 17 Landau and Lifshitz analyze the elastic collision of two particles. Consider the case of
an inelastic collision in which the total momentum is conserved, that is,

' '
mM1Vy + MaVe = M1Vy + MoV,

but a fraction, a < 1, of the internal kinetic energy is lost in the collision. Calling e = 1/a the coefficient
of restitution then
e (smyv?y + Lmavdy) = myv'Ty + Lmav'sy
where the subscript 0 indicates velocities in the center of mass frame of reference (the C system).
Generalize the results on pages 44 and 45 to inelastic collisions. Specifically:
(a) Reformulate equation (17.1) to include the coefficient of restitution.
(b) Reformulate equations (17.2), (17.3) and Figure 15 in LL to include the coefficient of restitution.
(c) Reformulate (17.4) and Figure 16 in LL to include the coefficient of restitution.

3. Consider two cases of a particle (mass m;) moving in the +x direction colliding with a stationary
particle (mass mo).

(a) Take mo > my and suppose the light particle is deflected by the collision such that it moves in
the +y direction. Find v}, that is, the magnitude and direction of the velocity of the massive particle
after collision, in terms of my, ms, and vy, the magnitude of the velocity of the light particle before
collision.

Figure 6: Three-body problem of masses m;, mo, and ms (positions r;, re, and rs) interacting by
mutual gravitational attraction.
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(b) Take m> < my and suppose the collision is such that the deflection angle of the massive particle
is maximum. Find v}, that is, the magnitude and direction of the velocity of the light particle after
collision, in terms of my, mso, and vy, the magnitude of the light particle before collision.
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5 Small Oscillations

1. Consider the system in Problem 2 on page 11 in LL but with the point of support constrained to
move with a constant acceleration ag, that is, z(t) = $aot>.

(a) Find the equation of motion in the small angle approximation, keeping only terms linear in ¢.

(b) Solve the equation of motion from part (a) to obtain ¢(t) taking the initial condition ¢(0) =
¢(0) =0, i.e., initially at rest.

(c) Suppose that we include a frictional force of the form fr, = —ag. Ast — oo, d(t) — ¢o; find

this steady state angle, ¢g from the equation of motion without using the small angle approximation.

2. In center-of-mass coordinates, the Lagrangian for a non-rotating diatomic molecule (reduced mass

m) may be written as
1, o2 46
L(ry=T()-U(r) = gmi — 4e (rﬁ - r_6>
where the first term is the kinetic energy for the separation coordinate r and the second is the Lennard-
Jones potential (a common approximation in molecular physics). Note that € and o are constants.
(a) Find the stable equilibrium distance, rq, in terms of o. Hint: Since the potential is minimum at

ro, it may be found by evaluating
{dU (r)

e UV -0
dr :|7“=7“0
(b) Taylor expand the potential in the form
U(r) =U(ro) + %k(r —ro)? + ...

to find k. Note that for such a molecule the frequency of small oscillations will be w = \/k/m.

(c) Make an accurate graph of the Lennard-Jones potential and its small oscillation approximation,
Uso = U(ro) + $k(r — rg)?. Take the range from r = 0.90 to 1.50; indicate the value of r¢ on your
graph.

3. Consider a pendulum (see Fig. 7 that is constructed by attaching a particle (mass m) to a string of
length £y. The upper end of the string is connected to the uppermost point on a vertical disk of radius
R, as shown below. The pendulum swings back and forth but the string is long enough and amplitude
of the oscillations is small enough that the particle never touches the disk.

(a) Find the Lagrangian in terms of the angle # and show that it may be written as

L= %m(A + B6)%6? + mg[(A + B8) sin 0 + B cos 6]

and obtain explicit expressions for the constants A and B. [Hint: Careful with setting this up; easy to
make errors.]

(b) The system has an equilibrium position at y; obtain an explicit expression for this angle.

(c) Find the frequency of small oscillations about 6.

(d) Obtain an expression for the frequency, w(fmax,min), Where Omax and Omin are the maximum
and minimum angles of the motion, without the small oscillations approximation. You may leave your
result in the form of a definite integral.
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Figure 7: Pendulum consisting of a particle (mass m) on a string (length /) connected to the top of a
disk (radius R).

4. Consider a particle, mass m, that oscillates freely with frequency w. Initially the particle is at rest
(z(0) = z(t) = 0) but an external force acts on it to produce forced oscillations. Specifically, the force
is a square-wave pulse of the form

Fy O<t<T
F(t) = —-Fy, T<t<2T
0 otherwise

where Fj is a constant.
(a) Find the motion z(t) for ¢t > 2T (i.e., after the pulse strikes the system) taking wT = 7.
(b) Compare the energy imparted to the particle by the above square-wave pulse to that imparted

by a constant square pulse,
| Fy O0<t<2T
F() = { 0  otherwise

Again, take wT = .

5. Consider two particles (mass m) connected to springs, as shown in Fig. 8. The spring between the
particles has spring constant k, while the other two springs have spring constant kp; the ends of the
latter are fixed to stationary supports. The system is at rest when the displacements of the particles,
x1 and x5, are zero.

(a) Find the Lagrangian for this system.

(b) Find the frequencies of oscillation for this system.

(c) Find the eigenvectors associated with the frequencies of oscillation and from them sketch the
motion associated with each of the modes of oscillation.

6. A homogeneous, rigid bar (length ¢, mass m) is suspended from a ceiling by a pair of springs (spring
constant k) attached to each end of the bar (see Fig. 9). The amplitude of the motion is small such that
the displacements of the ends from equilibrium rest positions, y; and y», are small (i.e., y1,y> < £); the
horizontal displacement of the bar is negligible.

(a) Find the Lagrangian L(y1,y2, Y1, Y2).
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Ko K, K,

Figure 8: Springs connected to masses and stationary supports.

m

Figure 9: Homogeneous, rigid bar (length ¢, mass m) hanging a pair of springs (stiffness k).

(b) Find the frequencies of small oscillations.

(c) A particle of mass M is attached to the center of the rod such that one frequency is half of the
other. Find M in terms of m.

(d) Suppose that a constant gravitational force, with acceleration g, acts in the —y direction. Do
the frequencies found in parts (b) and (c) do not depend on g7 Justify your answer.

7. Consider a simple pendulum of mass ms and length ¢, with a mass m; at the point of support,
which can move on a horizontal line lying in the plane in which my moves (see Fig. 10). Landau and
Lifshitz give the Lagrangian (pg. 11) as

L= %(ml +my)i? + %m2(€2<i)2 + 20i cos @) + magl cos ¢

(a) Taking the steady state as zo = 0 and ¢o = 0, obtain explicit expressions for the coefficients m
and k; in the small oscillations approximation.

(b) Find the two eigenfrequencies for small oscillations in this system.

(c) Taking m; = meo, find the coefficients, Ay, of the eigenvectors that correspond to the eigenfre-
quencies. Do not bother normalizing these eigenvectors.

(d) From the result obtained in part (c), describe the motion of the system when it oscillates in
the normal mode with the higher frequency (take m; = ms). Draw a simple diagram illustrating your
description.

8. Consider a system of s identical particles (mass m) coupled by springs (stiffness k) with the two
ends attached to rigid supports (see Fig. 11). Call z; the displacement of particle ¢ from its steady state
(i=1,...,s); the Lagrangian may be written as

s s
_1 21 2
L=3m E iy — 5k E (i1 — 24)
i=1 i=0
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Figure 10: A horizontally sliding point of support (mass m;) from which hangs a simple pendulum
(mass mq, length £).

Figure 11: System of masses on springs.

where we define 29 = z541 = 0. Notice that z;11 — z; is the extension of the spring located between
particles i + 1 and 3.

(a) Find the eigenfrequencies, w,, for this system.

[Hint: The determinant of the tri-diagonal, s by s matrix

Ao-1 0 0

-1 X -1 ... 0 .
p.=| 0 -1 x .. 0|_sns+1)e)
s — - .

. . . . sin ¢

0 0 0 A

where A = 2cos ¢.]
(b) Derive the result given in the hint above. [Hint: By expanding in minors, one finds that the
determinant obeys the recursion relation Dy = ADs_1; — Dy_».]

9. Counsider the system illustrated in Fig. 12: two identical simple pendula (mass m, length ¢, grav-
itational acceleration g) coupled by a mass-less spring (stiffness k). The motion of the pendula is in
the zz-plane and we use the generalized co-ordinates 6, and 6>. The potential energy for the spring is
1k(d — do)* where d(61,6>) is the distance between the masses and dp is the separation between the
pivots. Note that the steady state position for the system is 619 = 039 = 0.

(a) Find the exact Lagrangian L(6;, 602, 6, 92), that is, without using the small oscillations approxi-
mation.

(b) Find the kinetic energy in the small oscillations approximation and express it as

2 2

7= 2305 madidy

i=1 k=1

Give explicit expressions for the constant coefficients myy.
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m k
— @ —
w}
Figure 12: Two identical simple pendula (mass m, length ¢, gravitational acceleration g) coupled by a
mass-less spring (stiffness k).

(c) Find the potential energy in the small oscillations approximation and express it as

2 2

U= % S kikbibh

i=1 k=1

Give explicit expressions for the constant coefficients k;. [Hint: The small oscillations approximation
in this case is the same as the small angle approximation so sinf ~ 6 and cosf ~ 1 — %92. Retain only
quadratic terms in the potential; drop higher powers of 8. If you have any linear terms remaining in U,
you’ve made a mistake in your algebra.]

(d) Find the two eigenfrequencies of the system in terms of m, ¢, g, and k. Find the normal
co-ordinates )1 and Q2 in terms of #; and 6.

10. Consider the system illustrated in Fig. 12: two identical simple pendula (mass m, length ¢,
gravitational acceleration g) coupled by a mass-less spring (stiffness k). The motion of the pendula is
in the zz-plane and we use the generalized co-ordinates #; and 5. In the small angle approximation
the Lagrangian may be written as

L = 1m0} +63) — Lmgl(63 + 63) — Lk0*(6, — )

in the absence of friction (see previous exercise). We now consider the motion in the presence of
frictional forces (e.g., imperfect pivot hinges) of the form fg = —afy, where k = 1,2 and a is a
positive coefficient.

(a) Using the trial solution 6, = A exp(rt), find r.

(b) Show that in the limit of large friction, as t — oo, the motion goes as exp(—(mgf/a)t).

(c) Show that the result in part (b) is equivalent to the small oscillations of a single pendulum in
the terminal velocity limit (i.e., negligible acceleration).
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<

Figure 13: Inverted pendulum (mass m, length ¢) with oscillating point of support (Ypivot(t) =
—acosnt).

11. Consider the driven, inverted pendulum (see Fig. 13). The mass m on a rigid, mass-less arm
(length ¢) is displaced from the maximum height by an angle ¢. The point of support (i.e., the pivot)
oscillates vertically, specifically, its vertical position is ypivot(t) = —a cos~yt; take the motion to be in
the zy plane.

(a) Construct the Lagrangian for the inverted pendulum.

(b) From the Lagrangian obtain the equation of motion and show that in the small angle approxi-
mation it may be written as

.. 2
b —wio [14— %cosvt] =0

where wo = 1/g/!.
(c) Show that the equation of motion above may be written as the Mathieu equation,

b+ ¢la—2B8cos2t] =0

and express @ and 3 in terms of w3, 7, a, and /.

(d) Figure 14, taken from Chapter 20 of Abramowitz and Stegun, shows the regions of stable
solutions for the Mathieu equation (vertical axis is «a, horizontal axis is |3|). Show that the driven
inverted pendulum is stable for sufficiently high frequencies and give one example of values for v and a
(in terms of wg and £) that gives a stable solution. [Hint: Read the original caption.]

12. Consider a simple pendulum (mass m, length ¢) in the “medium angle” approximation, that is,
keeping terms up to order ¢(3).

(a) Find the equation of motion.

(b) Taking ¢(") = acoswt, where w = wp + w® + ... and wy = 1/g/¢, show that the method of
successive approximations gives ¢(2) = 0.

(c) Find the leading order non-linear correction to the frequency, w® in terms of a and wy.
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FIGURE 20.6.. Characteristic Ezponent-First Two Stablg ;
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period x. .

_ Definition of »;
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(Constructed from tabular values supplied by T, Tamir Brooklyn
: Polytechnic Institute) .

Figure 14: Regions of stable solutions for the Mathieu equation; from Abramowitz and Stegun.

18
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(d) Find the leading order non-linear correction to the solution, ¢(3).

(e) Show that the result from part (c) is in agreement with the period of oscillation derived in section
11.

(f) Graph the small angle approximation ¢s = acoswpt, and the medium angle approximation
b = ¢ + 3 for wy = 1 and a = 7/2 from t = 0 to t = 67. Take w ~ wy + w?.

13. Consider a system with the Lagrangian
1,2 2 4
L =3mq¢” + Aq” — Bq

where m, A and B are positive constants.

(a) Find all the steady states of this system. Recall that if go is a steady state then ¢(¢) = 0 for the
initial conditions ¢(0) = ¢o and ¢(0) = 0.

(b) From among the steady states choose one of the stable equilibria and find the frequency of small
oscillations about that point.

(c) For the stable equilibrium point used in part (b), find the anharmonic correction, w®, to the
small oscillations frequency for the first approximation (1) = a cos wt.
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6 Motion of a Rigid Body

1. Consider a rigid body consisting of a massless cube of unit length with point masses at each of its
corners (see Fig. 15). Six of these have mass m, and the remaining two, which are on opposite corners,
have mass my.

(a) Consider a coordinate system with its origin at one of the m; point masses and axes along the
edges of the cube. Find the inertial tensor of the body for this coordinate system.

(b) Suppose the cube is rotating with angular velocity €2, where this vector points along the direction
of the line connecting the two masses m;. Find the kinetic energy in terms of m,, m;, and Q; take the
center of mass velocity, V = 0.

(c) Use the parallel axis theorem to find the inertial tensor for a coordinate system with an origin at
the cube’s center and axes perpendicular to the cube’s faces. [Hints: First show that the center of mass
of the body is the geometric center of the cube. Check that if m, = m; then the tensor is diagonal,
that is, axes of the coordinate system are the principal axes.]

2. Consider a massless rigid rod of length ¢ with point masses m, and m; fixed at each end (call
i = mg, + my); see Fig. 16. The principal axes of this body are parallel to the rod and two arbitrary
directions perpendicular to the rod. We take our body-fixed co-ordinates to have an origin at the center
of mass and axes along the principal axes; call Z3 the axis parallel to the rod, pointing from the center
of mass to mass my,.

(a) Find the inertial tensor, in terms of the reduced mass m = m,m;/p and ¢, for the body-fixed
coordinate system.

(b) Suppose that a torque is applied such that the body rotates with a constant angular velocity,
Q. In the body-fixed co-ordinate system the components are 01 = Qsinf, Q5 = 0, and Q23 = Qcosb,

_— "

My My

Figure 15: Massless cube of unit length with point masses its corners; six of mass m, plus two, on
opposite corners, of mass my.
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m
ma b

Figure 16: Massless rigid rod (length £) with point masses (m,, mp) fixed at each end.

where 2 = |Q2| and 6 are constants (see illustration below). Find the components of the applied torque,
K in the body-fixed coordinate system.

(c) For the motion described in part (b), can the applied torque be zero? If yes, when does this
occur?

3. Counsider a solid cylinder (mass density p, length L, radius R;) into which a cylindrical hole (radius
R>) is made. The hole is parallel to the cylinder’s original (i.e., pre-hole) axis but displaced a distance
d from the centerline; the hole is entirely within the cylinder (i.e., d < Ry — R»).

(a) Find the distance, a, from the center of mass to the cylinder’s original axis.

(b) Find the rotational inertia, I, of the cylinder rotating about its original axis.

(c) Find the Lagrangian for the cylinder rolling on a horizontal surface in the presence of gravity.
Take the rotation angle, ¢, as your generalized coordinate with ¢ = 0 when the center of mass is at its
lowest point.

(d) Using the small oscillation approximation, find the period of the rocking motion of the cylinder
on a horizontal surface.

4. Consider an asymmetric top (I1 < I» < I3) rotating freely (i.e., no external torques). (a) Using
Euler’s equations show that
dQQ 1 \/
=2 e (L -1
i~ Lyhn VR h)

03 — (M2 —2,T)\/(M? = 2I,T) — Ly(I — 13)03

where

T= 400+ 603+ LO3), M= \/120 + 3O} + 1303
are the kinetic energy and the magnitude of the angular momentum. (b) Show that if M? = 2T I, then
Na2(t) = Qo tanh(t/7)
where Qo = 2T /M and

1 VEVES
T=_—
Voo \| (I3 — L) (I — L)
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Figure 17: A solid cylinder (mass density p, length L, radius R;) with a cylindrical hole (radius Rs) a
distance d from the centerline.

with the initial condition Q5(0) = 0. Note that M and T are constants of the motion (i.e., conservation
of angular momentum and energy). [Hint: Simplify the equation you derived in part (a) and then
substitute in the expression given for {2(t) to check that it obeys the equation.]

(c) Use the results from parts (a) and (b) to obtain an expression for Q;(¢) in terms of Q, 7, and
the three components of the inertial tensor. Make a sketch showing the graph of Q(¢) and Q(t) versus
time.

5. Consider the torque-free motion of a slightly asymmetric top with I} + AT = I, = I3 — Al where
|AI| < I>. Take the axes of the “body” co-ordinate system, x;, z2, and 3, to point along the principal
axes of the body.

(a) Suppose that the angular velocity, ©(t), points approximately in the x3 direction, specifically
take Q4 (t) = e1(t), Qa(t) = €a(t), and Q3(t) = w+ €3(t) where w is a constant and |e| < |2|. Find €, (t);
take the initial conditions €, (0) = A and e3(0) = 0.

(b) Repeat your analysis in part (a) but with the angular velocity pointing approximately in the zo
direction, specifically take Q; (t) = €1 (t), Qa2(t) = w+€2(t), and Q3(t) = e5(t) where w is a constant and
le] < |€2|. Find € (¢), taking the initial conditions €;(0) = A and e3(0) = 0, and show that it increases
exponentially with time.

(c) Suppose that the angular velocity, Q(t), points approximately in the z3 direction (as in part
(a)). Show that in describing €2(t) we may take e3(t) ~ constant given that |e| < || (i.e.,  changes
primarily because €; and €5 change).

6. Consider a homogeneous circular cone (mass u, height h, base radius R), that lies on an incline
plane, which makes an angle a with the horizontal. The cone’s vertex angle is 2a: so when the cone is at
rest its axis is horizontal (see Fig. 18). The cone rolls without slipping in the presence of a gravitational
acceleration g. Find the small oscillations frequency for the motion of the cone rocking back and forth
from its rest position.

[Hint: When the cone is near its rest position the height of a point, located on the cone’s axis and
a distance a from the vertex, is

sin a cos® a 52
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A
Y

Side View

Figure 18: Homogeneous circular cone (mass yu, height h, base radius R, vertex angle 2«) that lies on
an incline plane, which makes an angle o with the horizontal.

where s is the arc length distance that the circular base has rolled along the surface.]

7. Consider inertial and rotating (“body”) frames of reference with a common origin, with the latter
rotating with constant angular velocity €2 relative to the former.
(a) Show that,
Fp=1; —2Q x1, — Q2 x (2 xr)

. ( d’r ) . ( d’r >
ry =| —= r=\|—=
dt? body dt? inertial

Note that Landau (see (36.1)) uses the more compact notation d'A /dt = (dA/dt), 4, -
(b) The Lorenz force acting on a particle (mass m, charge e) is

F =c(E+7xB)

where

where E and B are the applied electric and magnetic fields. Show that for a weak uniform magnetic
field the motion of a charged particle in a central electric field may be expressed as
i~ —E
m

where r;, is the position of the particle in a coordinate system rotating with angular velocity € =
—(e/2m)B; give an explicit expression for how weak |B| should be, in terms of e, m, |E|, and |r| for
this approximation to be valid.

(c) Show that the result in part (b) may be extended to a system of particles (each of mass m,
charge e) in a central electric field and weak uniform magnetic field given that the particles interact
through a potential that only depends on their separations (i.e., U =3, > 5 Uag(|ra —1s))).
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7 The Canonical Equations

1. Consider a point mass m moving in the z-y plane subject to a constant gravitational acceleration

g; its Hamiltonian is
1
H(2,y,p2,py) = 5~ (p2 +p;) +mgy

so our canonical coordinates and momenta are g1 =, g2 =y, p1 = Pz, and ps = py.
(a) Solve the Hamilton-Jacobi equation and show that the action may be written as,

1
S =+2maq z — W(Qmag —2m3gy)*/? — (a1 + ax)t + S))

where S is a constant. [Hint: Use the separated trial solution S = S;(z) + Sy(y) — at + So; note,

(0% ;é Qaq ;é Qaa, S() ;é S(l)]
(b) As discussed on page 148 (fourth paragraph), we are free to take the constants P; = aq, P, = a»
as our new momenta and the constants Q1 = 31, Q2 = B> as our new co-ordinates. Use

oS oS

Ql:a—Pl Q2:8—P2

to obtain explicit expressions for z(t) and y(¢) in terms of a1, az, B1, B2, m, and g.
(c) Fix the constants of integration in your expressions from part (b) by using the initial conditions

2(0)=xz0  #(0)=va,  y(0) =90  Y(0) = vy,

to find explicit expressions for z(t) and y(t) for these initial conditions.

2. Consider a particle (mass m) moving in the horizontal plane under the constraint r(t) = ro(1 —1¢/7)
so the initial radial position is ry and the particle is pulled into the origin at time 7. You can imagine
this as a particle on a frictionless table attached to a string that is being pulled into a hole in the center
of the table (see Fig. 19) Using polar co-ordinates the initial angle is ¢(0) = 0 and the initial angular
velocity is ¢(0) = wo.

(a) Write the Lagrangian and use Lagrange’s equation to obtain an explicit expression for ¢(t) in
terms of wg, 7 and ¢. [Hint:

dz -1
/ (a+bx)2  bla+ bx)

where a and b are constants.] [15 points]
(b) Write the Hamiltonian and use the canonical equations to obtain an explicit expression for ¢(t)
in terms of wp, 7 and ¢. [10 points]

3. Consider a simple spherical pendulum, that is, a point of mass m constrained to move on the surface
of a sphere of radius R in a constant gravitational field with constant downward acceleration g = —gZ2.
(a) Find the Hamiltonian, H (6, ¢, pg, ps), in spherical coordinates.
(b) Show that pg is a constant.
(c) Show that py is a constant if § = 6y where 6, is obtained from the equation

pz = Asin® 6, tan 8,

where A is a constant. Do not bother solving explicitly for 8, (messy but straight-forward).
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Figure 19: Particle on a frictionless table attached to a string that is being pulled into a hole in the
center of the table.

(d) Expand the Hamiltonian H (fy + 61, ¢, pg, ps) about 6y to quadratic order in 6;. Show that
H = Hy + H20? + O(63) where Hy and Hs are constants. Obtain explicit expressions for Hy and Hy;
show that your result for H> may be written as
o, - 33c0s2 O + 1
cos 0y

where B is a constant. [Hint: You do not need an expression for y, just take it as a constant.]

4. Consider the transformation

p sin q
= P =1 )
v tan g Og( p )

(a) Use Poisson brackets to show that this transformation is canonical.

(b) Express this transformation as p(g, Q) and P(q, Q).

(c) Finding the corresponding generating function F'(g, @) for this transformation. [Hint: The
condition p = OF/0q implies

F(q,Q) = / (4, Q) dq + a(Q)

where a(Q) is an unspecified function of only Q.]

(d) Check your generating function by showing that p = 0F/0q and P = —0F/0Q).

(e) Find the generating function ®(q, P); check your result by showing that p = 0®/9q and Q =
0P /OP.

5. In Cartesian co-ordinates, the relativistic Hamiltonian for a free particle (i.e., no potential energy)
is

H(x,y,2,Pe, Py, P:) = c\/m%Q +p; + v+ 02

where m is the particle’s mass and ¢ is the speed of light.
(a) Solve the Hamilton-Jacobi equation and find the function S(z,y, z,t).
(b) From your result, obtain z(¢). Fix the constants by the initial conditions x(0) = zq, (0) = vp.
(¢) From your results, obtain an expression for the energy in terms of m, ¢, and the magnitude of
the velocity.

6. Consider the Hamiltonian

H(q1,q2,p1,p2) = qip1 — @2p2 — ag; + bgs
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where a, b are constants.

(a) Show that f, = gig» is an integral of the motion, that is, df,/dt = 0.

(b) Is fp = q1e~ an integral of the motion? Justify your answer.

(c) Show that f. = ¢{(p2 + Bg=) is an integral of the motion for certain values of a and § and find
specific expressions for these constants.

(d) Solve the canonical equations and explicitly verify that the above are integrals of motion.

7. In polar co-ordinates, Hamiltonian for the relativistic Kepler problem may be written as

/ 2
D k
H=c p£+r—§+m2c2—;

(a) Solve the Hamilton-Jacobi equation to find the action S(r, ¢,t). You may leave your expressions
in terms of integrals.

(b) From the action, obtain a relation between ¢ and r of the form ¢ = [ f(r)dr + ¢o where ¢y is a
constant.
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Miscellaneous Exercises

1. A particle of mass m can slide along a wire AB whose perpendicular distance to the origin is h
(see Fig. 20). The line OC rotates about the origin at a constant angular velocity 6 = w with 6§ = 0 at
t = 0. The particle is subject to a constant gravitational force of magnitude mg in the —y direction.

(a) Taking the distance ¢ between the particle and the point C as the generalized coordinate, find
the Lagrangian. Express this Lagrangian in its simplest form, discarding all unnecessary terms.

(b) Is the energy conserved in this system? Justify your answer.

(c) Find the equation of motion.

(d) Solve the equation of motion and find ¢(¢) for the initial conditions ¢(0) = ¢(0) = 0.

(e) Show that when ¢ < w™! the solution from part (d) is ¢(t) ~ $gt>.

m
‘ \ )

l mg \

Figure 20: Particle (mass m) sliding on a wire AB whose perpendicular distance to the origin is h; the
line OC rotates about the origin as § = w with 8(0) = 0.
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